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1 Introduction

In the present research, some new mathematical objects will be described. They are generated by
a fixed arbitrary natural number n > 1. Let everywhere below it have the canonical form

n =
k∏
i=1

pαi
i ,

where k, α1, α2, . . . , αk ≥ 1 are natural numbers and p1, p2, ..., pk are different prime numbers.
In [1], the following notations related to n that we will use below, are introduced:

set(n) = {p1, p2, ..., pk},

mult(n) =
k∏
i=1

pi.

We will show that these new objects have properties specific to algebra.
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2 Main definitions

For the fixed n ≥ 2, let us define the set

Set(n) = {m|m =
k∏
i=1

pβii & h(n) ≤ βi ≤ H(n)},

where
h(n) = min(α1, . . . , αk),

H(n) = max(α1, . . . , αk)

and let ω(n) = k.

For example, Set(12) = Set(22.3) = {6, 12, 18, 36} and h(12) = 1,H(12) = 2, ω(12) = 2.
Set(72) = Set(23.32) = {36, 72, 108, 216} and h(72) = 2,H(72) = 3, ω(72) = 2.

It is suitable to define
Set(0) = {0}.

Set(1) = {1}.

Therefore, for each natural number n, Set(n) 6= ∅.

3 Properties of Set(n)

We see immediately that for n being a prime number, and more generally, if n = mult(n) and
hence, h(n) = H(n), then

Set(n) = {n}.

Theorem 1. For the natural number n the cardinality |Set(n)| of Set(n) is equal to

|Set(n)| = (H(n)− h(n) + 1)ω(n).

Proof. For n =
k∏
i=1

pαi
i , Set(n) will contain all natural numbers m with mult(m) = mult(n)

and with powers between h(n) and H(n). Therefore, each pi will be met with H(n) − h(n) + 1

different degrees and this is valid for each of the ω(n) in number divisors of n. Hence, the number
of all elements of Set(n) is exactly (H(n)− h(n) + 1)ω(n).

For example,
|Set(24)| = |Set(23.3)|

= |{2.3, 22.3, 23.3, 2.32, 22.32, 23.32, 2.33, 22.33, 23.33}|

= 9 = (3− 1 + 1)2,

|Set(36)| = |Set(22.32)| = |{22.32}| = 1 = (2− 2 + 1)2,

|Set(60)| = |Set(22.3.5)|

= |{2.3.5, 22.3.5, 2.32.5, 22.32.5, 2.3.52, 22.3.52, 2.32.52, 22.32.52}|

= 8 = (2− 1 + 1)3.
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Theorem 2. For two natural numbersm and n, ifm is a divisor of n, h(m) = h(n) and set(m) =

set(n), then
Set(m) ⊆ Set(n).

Proof. Having in mind that m is a divisor of n, we see that H(m) ≤ H(n).

Let t ∈ Set(m). Therefore, t =
k∏
i=1

pγii , where h(m) ≤ γi ≤ H(m) for each i = 1, . . . , k.

Hence,
h(n) = h(m) ≤ γi ≤ H(m) ≤ H(n),

i.e., t ∈ Set(n). �

It is important to note that without one of the conditions h(m) = h(n) and set(m) = set(n),
the Theorem is not valid. For example, 6 is a divisor of 72 and set(6) = set(72) = {2, 3}, but
Set(6) = {6}, while Set(72) mentioned above, does not contain the element 6.

On the other hand, 6 is a divisor of 30 and h(6) = h(30) = 1, but Set(30) = {30} and hence
Set(6) 6⊆ Set(30).

For the well-known operations “Greatest Common Divisor” and “Least Common Multiple”
over two natural numbers m and n that are marked by (m,n) and [m,n], respectively, the
following equalities are valid.

Theorem 3. For two natural numbers m and n so that set(m) = set(n):

Set(m) ∩ Set(n) ⊆ Set((m,n)), (1)

Set(m) ∪ Set(n) ⊇ Set([m,n]). (2)

Proof. Let t ∈ Set(m) ∩ Set(n). Therefore, t =
k∏
i=1

pγii , where γ1, . . . , γk ≥ 1 are natural

numbers. From the fact that t ∈ Set(m) it follows that h(m) ≤ γi ≤ H(m) and from the fact that
t ∈ Set(n) it follows that h(n) ≤ γi ≤ H(n) for i = 1, . . . , k. Therefore

max(h(m), h(n)) ≤ γi ≤ min(H(m),H(n)).

Obviously, when max(h(m), h(n)) > min(H(m),H(n)), the number t does not exist. For exam-
ple,

Set(6) ∩ Set(36) = {6} ∩ {36} = ∅.

Therefore, (1) is valid.
Having in mind that

(m,n) =
k∏
i=1

p
min(αi,βi)
i ,

for Set((m,n)) we see that

Set((m,n)) = {u|u =
k∏
i=1

pεii & min(h(m), ε(n)) ≤ δi ≤ min(H(m),H(n))}.

Hence, when max(h(m), h(n)) ≤ min(H(m),H(n)), for t it is valid that

min(h(m), h(n)) ≤ max(h(m), h(n)) ≤ γi ≤ min(H(m),H(n)),

i.e., t ∈ Set((m,n)).
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In the opposite case, if t ∈ Set((m,n)), then

min(h(m), h(n)) ≤ γi ≤ min(H(m),H(n)).

If h(m) ≤ h(n), then it will be certain that t ∈ Set(m), but only if h(n) ≤ γi for each
i = 1, . . . , k, then t ∈ Set(n) and therefore, t ∈ Set(m) ∩ Set(n).

Hence (1) is valid. The validity of (2) is proved in the same manner. �

4 Algebraic objects generated by an arbitrary
natural number

Let us define for the fixed n:
◦ n = (mult(n))h(n),

∗ n = (mult(n))H(n),

and for each m ∈ Set(n):

¬m =
k∏
i=1

p
H(n)+h(n)−βi
i .

We see immediately, that ◦ n, ∗ n ∈ Set(n), and for each m ∈ Set(n): ¬m ∈ Set(n).
Moreover,

¬m =
mult(n)H(n)+h(n)

m
=
◦ n. ∗ n
m

.

Therefore
¬ ◦ n = ∗ n,

¬ ∗ n = ◦ n.

Following [3], we will mention that if S is a fixed set with unit element eS and if * is an
operation over S, then 〈S, ∗, eS〉 is a commutative monoid, if:

1. (∀u, v ∈ S)(u ∗ v ∈ S),

2. (∀u, v, w ∈ S)(u ∗ (v ∗ w) = (u ∗ v) ∗ w),

3. (∀a ∈ S)(u ∗ eS = u = eS ∗ u),

4. (∀u, v ∈ S)(u ∗ v = v ∗ u).

Now, we prove the following theorem.

Theorem 4. For the fixed n:
(a) 〈Set(n), (.), ∗ n〉,
(b) 〈Set(n), [.], ◦ n〉

are commutative monoids.
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Proof. Let n be fixed. To see the validity of (a), we check sequentially the following equalities.
Let u, v, w ∈ Set(n). Therefore,

u =
k∏
i=1

pβii , v =
k∏
i=1

pγii , w =
k∏
i=1

pδii ,

where for each i = 1, 2, . . . , k: h(n) ≤ βi, γi, δi ≤ H(n). Hence,

(u, v) =
k∏
i=1

p
min(βi,γi)
i

and from h(n) ≤ min(βi, γi) ≤ H(n) it follows that (u, v) ∈ Set(n).

(u, (v, w)) = (
k∏
i=1

pβii , (
k∏
i=1

pγii ,
k∏
i=1

pδii ))

= (
k∏
i=1

pβii ,

k∏
i=1

p
min(γi,δi)
i )

=
k∏
i=1

p
min(βi,min(γi,δi)
i ) =

k∏
i=1

p
min(βi,γi,δi)
i =

k∏
i=1

p
min(min(βi,γi),δi)
i

= (
k∏
i=1

p
min(βi,γi)
i ,

k∏
i=1

pδii )

= ((
k∏
i=1

pβii ,
k∏
i=1

pγii ),
k∏
i=1

pδii )

= ((u, v), w).

(u, ∗ (n)) =
k∏
i=1

p
min(βi,H(n))
i =

k∏
i=1

pβii = u =
k∏
i=1

p
min(H(n),βi)
i = ( ∗ (n), u).

(u, v) =
k∏
i=1

p
min(βi,γi)
i =

k∏
i=1

p
min(γi,βi)
i = (v, u).

The validity of the second assertion is proved in the same manner. �

In [2], the author introduced the following concepts.
We call 〈M, ∗, e∗, e◦〉 a “(commutative) multi unitary group” (shortly, (c-)µ-group) if and only

if e0 ∈M , 〈M, ∗, e∗〉 is a (commutative) monoid and

(∀a ∈M)(∃a◦ ∈M)(a ∗ a◦ = e◦ = a◦ ∗ a). (3)

Two (c-)µ-groups MG1 and MG2 are dual, if and only if they have the forms

MG1 = 〈M, ∗, e∗, e◦〉 and MG2 = 〈M, ◦, e◦, e∗〉

for some given operations ∗ and ◦, and for the unitary elements e∗, e◦ ∈M .

Theorem 5. For the fixed natural number n

〈Set(n), (.), ∗ n, ◦ n〉 and 〈Set(n), [.], ◦ n, ∗ n〉

are dual (c-)µ-groups.
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Proof. From Theorem 4 we saw that 〈Set(n), (.), ∗ n〉 and 〈Set(n), [.], ◦ n〉 are commutative
monoids. Now, we see that for arbitrary u ∈ Set(n):

(u, ◦ n) = ◦ n = ( ◦ n, n)

and
[u, ∗ n] = ∗ n = [ ∗ n, n],

i.e., condition (3) is satisfied and hence 〈Set(n), (.), ∗ n, ◦ n〉 and 〈Set(n), [.], ◦ n, ∗ n〉 are dual
(c-)µ-groups. �

5 Conclusion

In a next research, other properties of the introduced here objects will be discussed. In addition,
we will show that these objects have properties specific for modal logic.
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