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Abstract: In this paper, we obtain asymptotic formula on the sum
∑
n≤x

ω
(⌊

x
n

⌋)
, where ω (n)

denote the number of distinct prime divisors of n and btc denotes the integer part of t.
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1 Introduction

Let, as usual, for an integer n ≥ 1, ω (n) : =
∑
p|n

1 denote the the number of distinct prime

divisors of n. Many authors investigated the properties of this function. In 1917, G. H. Hardy and
S. Ramanujan [4] proved the classical result,∑

n≤x

ω (n) = x log log x+Bx+O

(
x

log x

)
, (1)

such that B = γ +
∑
p

(log (1− 1/p) + 1/p) and γ is Euler’s constant. The result (1) was

generalized in 1970 [6] and in 1976 [3] by the following formula
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∑
k≤n

ω (k) = n log log n+Bn+
m∑
j=1

naj

(log n)j
+O

(
n

(log n)m+1

)
, (2)

for all integer m ≥ 1, with

aj = −
∫ ∞
1

{t}
t2

(log t)j−1 dt.

In [5], we find another interesting result∑
n≤x

ω (d(n)) = cx+O
(
x1/2 log5 x

)
, (3)

such that d(n) is the number of divisors of n and c > 0 it’s a constant. It is easy to show that the
following relationship is correct for all real x ≥ 1∑

n≤x

d(n) =
∑
n≤x

⌊x
n

⌋
,

where btc denotes the integer part of any t ∈ R ( see [2, example 4.18] ).
The possible question is what are the similarities between the mean values of the functions

ω (d(n)) and ω
(⌊

x
n

⌋)
? Since, the sum is on a less dense set than the first, it is obvious that the

result will be at least with an error term lower, than what is given in the formula (3) .

2 Main result

In this section, we establish a result concerning the mean value of the function ω
(⌊

x
n

⌋)
. More

precisely, we prove the following theorem:

Theorem 1. For all x ≥ 1 large enough, we have∑
n≤x

ω
(⌊x
n

⌋)
= Cx+O

(
x1/2 log x

)
.

Such that C ≈ 0.5918 · · · .

The proof of this result is based on the following lemmas:

Lemma 1. Let x ≥ 1 be real number. For any arithmetic function f we have∑
n≤x

f
(⌊x
n

⌋)
=
∑
n≤x

f (n)

(⌊x
n

⌋
−
⌊

x

n+ 1

⌋)
.

Proof. If we pose
⌊
x
n

⌋
= k, then we have the following equivalents:⌊x

n

⌋
= k ⇐⇒ x/n− 1 < k ≤ x/n⇐⇒ x/ (k + 1) < n ≤ x/k.
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Using that, we get ∑
n≤x

f
(⌊x
n

⌋)
=

∑
n≤x

x/n−1<k≤x/n

f (k)

=
∑
k≤x

x/(k+1)<n≤x/k

f (k)

=
∑
k≤x
n≤x/k

f (k)−
∑
k≤x

n≤x/(k+1)

f (k)

=
∑
k≤x

∑
n≤x/k

f (k)−
∑
k≤x

∑
n≤x/(k+1)

f (k)

=
∑
k≤x

f (k)
∑
n≤x/k

1−
∑
k≤x

f (k)
∑

n≤x/(k+1)

1

=
∑
k≤x

f (k)

(⌊x
k

⌋
−
⌊

x

k + 1

⌋)
.

Lemma 2. Let n ∈ Z≥0 and δ > 0 real. For all real x ≥ 1, we have

+∞∫
x

e−δt (log t)n dt ≤ n!

δ
e−δx

(
log x+

1

δx

)n
.

Proof. We put In =
+∞∫
x

e−δt (log t)n dt and we use integration by parts, so

In =
e−δx

δ
(log x)n +

n

δ

+∞∫
x

(log t)n−1

teδt
dt ≤ e−δx

δ
(log x)n +

n

δx
In−1.

And by recurrence, we get

In ≤
e−δx

δ

n∑
k=0

k!

(
n

k

)
(log x)n−k

(δx)k

≤ n!

δ
e−δx

(
log x+

1

δx

)n
.

Lemma 3. Let x be sufficiently large, there is a constant C > 0 such that∑
n≤x

ω (n)

n (n+ 1)
= C +O

(
log log x

x

)
, (4)

such that C ≈ 0.5918 . . . .

Proof. Let x ≥ 2, we have∑
n≤x

ω (n)

n (n+ 1)
=
∑
n≥1

ω (n)

n (n+ 1)
−
∑
n>x

ω (n)

n (n+ 1)
. (5)

Now the well-known trivial bound of ω (n), applied to the first sum on the right-hand side of (5),
implies that
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∑
n≥1

ω (n)

n (n+ 1)
≤ 1

log 2

∑
n≥1

log n

n (n+ 1)
.

We deduce that the series
∑
n≥1

ω (n)

n (n+ 1)
is convergent, and with a numerical calculation, we

find

C =
∑
n≥1

ω (n)

n (n+ 1)
≈ 0.5918 . . . . (6)

In the last sum in (5), we put g (t) =
1

t (t+ 1)
, and by partial summation, we have

∑
n>x

ω (n)

n (n+ 1)
= −g (x)

∑
n≤x

ω (n)−
∫ +∞

x

g′ (t)

( ∑
x<n≤t

ω (n)

)
dt

=
−1

x (x+ 1)

∑
n≤x

ω (n) +

∫ +∞

x

2t− 1

t2 (t+ 1)2

( ∑
x<n≤t

ω (n)

)
dt.

And from (1) we obtain,∣∣∣∣∣∑
n>x

ω (n)

n (n+ 1)

∣∣∣∣∣ ≤ log log x

x
+
B

x
+O

(
1

x log x

)
+O

(∫ +∞

x

log log t

t2
dt

)
. (7)

So, by Lemma 2 (n = 1, δ = 1), and using a variable change, we find∫ +∞

x

log log t

t2
dt ≤ log log x

x
+

1

x log x

= O

(
log log x

x

)
.

Finally, using the last estimate in (7), we get∑
n>x

ω (n)

n (n+ 1)
= O

(
log log x

x

)
, (8)

and collecting (8) , (6) and (5), we get the following desired result.

Lemma 4. For all x ≥ 1, we have∑
n≥0

∣∣∣∣{ x

n+ 1

}
−
{

x

n+ 2

}∣∣∣∣ = 2

π
ζ (3/2)x1/2 +O

(
x2/5

)
,

where {t} denotes the fractional part of any t ∈ R.

Proof. The proof of this result is found in the paper [1].

Proof of the theorem. For all x ≥ 1, by Lemma 1, we have∑
n≤x

ω
(⌊x
n

⌋)
=

∑
n≤x

ω (n)

(⌊x
n

⌋
−
⌊

x

n+ 1

⌋)
= x

∑
n≤x

ω (n)

n (n+ 1)
+
∑
n≤x

ω (n)

({
x

n+ 1

}
−
{x
n

})
,
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on the other hand, by trivial bound of ω (n) and Lemma 4, we have∣∣∣∣∣∑
n≤x

ω (n)

({x
n

}
−
{

x

n+ 1

})∣∣∣∣∣ ≤ ∑
n≤x

ω (n)

∣∣∣∣{xn}−
{

x

n+ 1

}∣∣∣∣
≤ log x

log 2

∑
n≥0

∣∣∣∣{ x

n+ 1

}
−
{

x

n+ 2

}∣∣∣∣
=

log x

log 2

(
2

π
ζ (3/2)x1/2 +O

(
x2/5

))
=

2ζ (3/2)

π log 2
x1/2 log x+O

(
x2/5 log x

)
.

Therefore, ∑
n≤x

ω (n)

({x
n

}
−
{

x

n+ 1

})
= O

(
x1/2 log x

)
.

Finally, by Lemma 3, we obtain∑
n≤x

ω
(⌊x
n

⌋)
= Cx+O (log log x) +O

(
x1/2 log x

)
= Cx+O

(
x1/2 log x

)
.
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