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Abstract: A divisor d of a positive integer n is called a unitary divisor if gcd(d, n/d) = 1;

and d is called a bi-unitary divisor of n if the greatest common unitary divisor of d and n/d is
unity. The concept of a bi-unitary divisor is due to D. Surynarayana (1972). Let σ∗∗(n) denote
the sum of the bi-unitary divisors of n. A positive integer n is called a bi-unitary multiperfect
number if σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect numbers.

Peter Hagis (1987) proved that there are no odd bi-unitary multiperfect numbers. The present
paper is Part IV(a) in a series of papers on even bi-unitary multiperfect numbers. In parts I, II and
III we found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 6 and u is
odd. There exist exactly ten such numbers. In this part we solve partly the case a = 7. We prove
that if n is a bi-unitary triperfect number of the form n = 27.5b.17c.v, where (v, 2.5.17) = 1, then
b ≥ 2. We then confine ourselves to the case b = 2. We prove that in this case we have c = 1

and further show that n = 27.32.52.7.13.17 = 44553600 is the only bi-unitary triperfect number
of this form.
Keywords: Perfect numbers, Triperfect numbers, Multiperfect numbers, Bi-unitary analogues.
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1 Introduction

Throughout this paper, all lower case letters denote positive integers; p and q denote primes. The
letters u, v and w are reserved for odd numbers.

A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. If d is a unitary divisor of n,
we write d‖n. A divisor d of n is called a bi-unitary divisor if (d, n/d)∗∗ = 1, where the symbol
(a, b)∗∗ denotes the greatest common unitary divisor of a and b. The concept of a bi-unitary
divisor is due to D. Suryanarayana (cf. [6]). Let σ∗∗(n) denote the sum of bi-unitary divisors
of n. The function σ∗∗(n) is multiplicative, that is, σ∗∗(1) = 1 and σ∗∗(mn) = σ∗∗(m)σ∗∗(n)

whenever (m,n) = 1. If pα is a prime power and α is odd, then every divisor of pα is a bi-unitary
divisor; if α is even, each divisor of pα is a bi-unitary divisor except for pα/2. Hence

σ∗∗(pα) =


σ(pα) =

pα+1 − 1

p− 1
if α is odd,

σ(pα)− pα/2 if α is even.

(1.3)

If α is even, say α = 2k, then σ∗∗(pα) can be simplified to

σ∗∗(pα) =

(
pk − 1

p− 1

)
.(pk+1 + 1). (1.4)

From (1.3), it is not difficult to observe that σ∗∗(n) is odd only when n = 1 or n = 2α.

The concept of a bi-unitary perfect number was introduced by C. R. Wall [7]; a positive integer
n is called a bi-unitary perfect number if σ∗∗(n) = 2n. C. R. Wall [7] proved that there are only
three bi-unitary perfect numbers, namely 6, 60 and 90. A positive integer n is called a bi-unitary
multiperfect number if σ∗∗(n) = kn for some k ≥ 3. For k = 3 we obtain the bi-unitary triperfect
numbers.

Peter Hagis [1] proved that there are no odd bi-unitary multiperfect numbers. Our present
paper is Part IV(a) in a series of papers on even bi-unitary multiperfect numbers. In Part I (see
[2]), we found all bi-unitary triperfect numbers of the form n = 2au, where 1 ≤ a ≤ 3 and u
is odd. We proved that if 1 ≤ a ≤ 3 and n = 2au is a bi-unitary triperfect number, then a = 3

and n = 120 = 23.3.5. In Part II (see [3]), we considered the cases a = 4 and a = 5. We
proved that if n = 24u is a bi-unitary triperfect number, then n = 2160 = 24.33.5, and that if
n = 25u is a bi-unitary triperfect number, then n = 672 = 25.3.7, n = 10080 = 25.32.5.7,
n = 528800 = 25.3.52.13 or n = 22932000 = 25.32.53.72.13. In Part III (see [4]) we showed that
the bi-unitary triperfect numbers of the form n = 26u are n = 22848 = 26.3.7.17, n = 342720 =

26.32.5.7.17, n = 51979200 = 26.3.52.72.13.17 and n = 779688000 = 26.32.53.72.13.17. In the
present part we consider the case a = 7; we solve it partly. We prove that if n is a bi-unitary
triperfect number of the form n = 27.5b.17c.v, where (v, 2.5.17) = 1, then b ≥ 2. We then
confine ourselves to the case b = 2. We prove that in this case c has to equal 1 and further
show that n = 27.32.52.7.13.17 = 44553600 is the only bi-unitary triperfect number of the form
considered here. We will continue the study of the case a = 7 in future papers.

For a general account on various perfect-type numbers, we refer to [5].
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2 Preliminaries

We assume that the reader has Part I (see [2]) available. We, however, recall Lemmas 2.1 to 2.4
from Part I, because they are so important also here.

Lemma 2.1. (I) If α is odd, then

σ∗∗(pα)

pα
>
σ∗∗(pα+1)

pα+1

for any prime p.
(II) For any α ≥ 2`− 1 and any prime p,

σ∗∗(pα)

pα
≥
(

1

p− 1

)(
p− 1

p2`

)
− 1

p`
=

1

p2`

(
p2`+1 − 1

p− 1
− p`

)
.

(III) If p is any prime and α is a positive integer, then

σ∗∗(pα)

pα
<

p

p− 1
.

Remark 2.1. (I) and (III) of Lemma 2.1 are mentioned in C. R. Wall [7]; (II) of Lemma 2.1 has
been used by him [7] without explicitly stating it.

Lemma 2.2. Let a > 1 be an integer not divisible by an odd prime p and let α be a positive
integer. Let r denote the least positive integer such that ar ≡ 1 (mod pα); then r is usually
denoted by ordpα a. We have the following properties.
(i) If r is even, then s = r/2 is the least positive integer such that as ≡ −1 (mod pα). Also,
at ≡ −1 (mod pα) for a positive integer t if and only if t = su, where u is odd.
(ii) If r is odd, then pα - at + 1 for any positive integer t.

Remark 2.2. Let a, p, r and s = r/2 be as in Lemma 2.2 (α = 1). Then p|at − 1 if and only if
r|t. If t is odd and r is even, then r - t.Hence p - at−1.Also, p|at+1 if and only if t = su,where
u is odd. In particular if t is even and s is odd, then p - at + 1. In order to check the divisibility
of at − 1 (when t is odd) by an odd prime p, we can confine to those p for which ordp a is odd.
Similarly, for examining the divisibility of at + 1 by p when t is even we need to consider primes
p with s = ordp a/2 even.

Lemma 2.3. Let k be odd and k ≥ 3. Let p 6= 5.

(a) If p ∈ [3, 2520]−{11, 19, 31, 71, 181, 829, 1741}, ordp5 is odd and p|5k−1, then we can find

a prime p′ (depending on p) such that p′|5
k − 1

4
and p′ ≥ 2521.

(b) If q ∈ [3, 2520]−{13, 313, 601}, s =1

2
ordq5 is even and q|5k+1 +1, then we can find a prime

q′ (depending on q) such that q′|5
k+1 + 1

2
and q′ ≥ 2521.

Lemma 2.4. Let k be odd and k ≥ 3. Let p 6= 7.

(a) If p ∈ [3, 2520]− {3, 19, 37, 1063}, r = ordp7 is odd and p|7k − 1, then we can find a prime

p′ (depending on p) such that p′| 7
k − 1

6
and p′ ≥ 2521.

(b) If q ∈ [3, 1193]− {5, 13, 181, 193, 409}, s = 1

2
ordq7 is even and q|7k+1 + 1, then we can find

a prime q′ (depending on q) such that q′|7
k+1 + 1

2
and q′ > 1193.
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Lemma 2.5. Let k be odd and k ≥ 3. Let p 6= 13.

(a) If p ∈ [3, 293] − {3, 61}, r = ordp13 is odd and p|13k − 1, then we can find a prime p′

(depending on p) such that p′|13
k − 1

12
and p′ ≥ 293.

(b) If q ∈ [3, 293] − {5, 17}, s = 1

2
ordq13 is even and q|13k+1 + 1, then we can find a prime q′

(depending on q) such that q′|13
k+1 + 1

2
and q′ > 293.

Proof. (a) Let p|13k − 1. If r = ordp13, that is, r is the least positive integer such that
13r ≡ 1 (mod p), then r|k. Since k is odd, r must be odd. Also, 13r − 1|13k − 1. Let

S13 = {(p, r) : p 6= 13, p ∈ [3, 293] and r = ordp13 is odd}.

From Appendix A, we have

S13 = {(3, 1), (23, 11), (43, 21), (53, 13), (61, 3), (79, 39), (103, 17),
(107, 53), (127, 63), (131, 65), (139, 69), (179, 89), (181, 45),

(191, 95), (199, 99), (211, 35), (251, 125), (263, 131), (283, 141)}.

Let p|13k−1 and p ∈ [3, 293]−{3, 61}. Then (p, r) ∈ S13−{(3, 1), (61, 3)}, where r = ordp13.

Also, 13r − 1|13k − 1. To prove (a), it is enough to show that 13r − 1

12
is divisible by a prime

p′ ≥ 293. From Appendix C, we know the factors of 13r−1. By examining the factors of 13r−1

for r /∈ {1, 3}, which correspond to the primes 3 and 61, we infer that we can find a prime

p′|13
r − 1

12
|13

k − 1

12
satisfying p′ ≥ 293. This proves (a).

For example, if p = 43, then r = 21. Also,

1321 − 1 = {{2, 2}, {3, 2}, {43, 1}, {61, 1}, {337, 1}, {547, 1}, {2714377, 1}, {5229043, 1}}.

We can take p′ = 337.

(b) Let q|13k+1 + 1 and q ∈ [3, 293] − {5, 17}. Let r = ordq13. If r is odd, then q - 13k+1 + 1

(see Remark 2.2 (a = 13)). We may assume that r is even. Let s = r/2. Then s is the least
positive integer such that q|13s + 1. Again from Remark 2.2 (a = 13), q - 13k+1 + 1 if s is odd.
Since q|13k+1 + 1, we have that s is even. Also, k + 1 = su, where u is odd. This implies that
13s + 1|13k+1 + 1. Let

T13 = {(q, s) : q 6= 13, q ∈ [3, 293] and s =
1

2
ordq13 even}.

From Appendix A, we have

T13 = {(5, 2), (17, 2), (37, 18), (41, 20), (73, 36), (89, 44),
(97, 48), (109, 54), (113, 28), (137, 68), (149, 74), (193, 32),

(197, 98), (229, 38), (233, 58), (241, 120), (257, 64), (281, 140), (293, 146)}.

Let q|13k+1 + 1 and q ∈ [3, 293] − {5, 17}. Then (q, s) ∈ T13 − {(5, 2), (17, 2)}, where
s =

1

2
ordq13. To prove (b), it is enough to show that 13s + 1

2
is divisible by a prime q′ > 293
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for all s ∈ T ′13 = {s : (q, s) ∈ T13 − {(5, 2), (17, 2)}. This follows by examining the factors of
13s + 1 given in Appendix D.

For example, if q = 37, then s = 18. Also,

1318 + 1 = {{2, 1}, {5, 1}, {17, 1}, {37, 1}, {28393, 1}, {428041, 1}, {1471069, 1}}.

We can take q′ = 28393.

Lemma 2.6. Let k be odd and k ≥ 3. Let p 6= 17.

(a) If p ∈ [3, 519] − {307}, r = ordp17 is odd and p|17k − 1, then we can find a prime p′

(depending on p) such that p′|17
k − 1

16
and p′ > 519.

(b) If q ∈ [3, 519] − {5, 29}, s =
1

2
ordq17 is even and q|17k+1 + 1, then we can find a prime q′

(depending on q) such that q′|17
k+1 + 1

2
and q′ > 519.

Proof. (a) Let p|17k − 1. If r = ordp17, that is, r is the least positive integer such that
17r ≡ 1 (mod p), then r|k. Since k is odd, r must be odd. Also, 17r − 1|17k − 1. Let

S17 = {(p, r) : p 6= 17, p ∈ [3, 519] and r = ordp17 is odd}.

From Appendix B, we have

S17 = {(19, 9), (43, 21), (47, 23), (59, 29), (67, 33), (83, 41), (103, 51),
(127, 63), (149, 37), (151, 75), (157, 39), (179, 89), (191, 95), (223, 37),

(229, 19), (239, 119), (263, 131), (271, 135), (293, 73), (307, 3), (331, 165),

(359, 179), (383, 191), (389, 97), (409, 51), (433, 27), (443, 221),

(463, 231), (467, 233), (491, 49), (509, 127)}.

Let p|17k − 1 and p ∈ [3, 519] − {307}. Then (p, r) ∈ S17 − {(307, 3)}, where r = ordp17.

Also, 17r − 1|17k − 1. To prove (a), it is enough to show that 17r − 1

16
is divisible by a prime

p′ ≥ 519. From Appendix E, we know the factors of 17r − 1. By examining the factors of
17r − 1 for r /∈ {3}, which corresponds to the prime 307, we infer that we can find a prime

p′| 17
r − 1

16
|17

k − 1

16
satisfying p′ > 519. This proves (a).

For example, if p = 19, then r = 9. Also,

179 − 1 = {{2, 4}, {19, 1}, {307, 1}, {1270657, 1}}.

We can take p′ = 1270657.

(b) Let q|17k+1 + 1 and q ∈ [3, 519] − {5, 29}. Let r = ordq17. If r is odd, then q - 17k+1 + 1

(see Remark 2.2 (a = 17)). We may assume that r is even. Let s = r/2. Then s is the least
positive integer such that q|17s + 1. Again from Remark 2.2 (a = 17), q - 17k+1 + 1 if s is odd.
Since q|17k+1 + 1, we have that s is even. Also, k + 1 = su, where u is odd. This implies that
17s + 1|17k+1 + 1. Let

T17 = {(q, s) : q 6= 17, q ∈ [3, 519] and s =
1

2
ordq17 even}.
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From Appendix B, we have

T17 = {(5, 2), (29, 2), (37, 18), (41, 20), (61, 30), (73, 12), (89, 22), (97, 48), (109, 18),
(113, 56), (137, 34), (173, 86), (181, 18), (193, 96), (197, 98), (233, 116), (241, 40),

(257, 16), (269, 134), (277, 138), (281, 70), (313, 156), (317, 158), (337, 56),

(353, 44), (397, 66), (401, 200), (449, 224)}.

Let q|17k+1 + 1 and q ∈ [3, 519] − {5, 29}. Then (q, s) ∈ T17 − {(5, 2), (29, 2)}, where
s =

1

2
ordq17. To prove (b), it is enough to show that 17s + 1

2
is divisible by a prime q′ > 519

for all s ∈ T ′17 = {s : (q, s) ∈ T17 − {(5, 2), (29, 2)}. This follows by examining the factors of
17s + 1 given in Appendix F.

For example if q = 37, then s = 18. Also,

1718 + 1 ={{2, 1}, {5, 1}, {29, 1}, {37, 1}, {109, 1}, {181, 1},
{2089, 1}, {83233, 1}, {382069, 1}}.

We can take q′ = 2089.

3 Partial results on bi-unitary triperfect numbers
of the form n = 27u

Let n be a bi-unitary triperfect number divisible unitarily by 27 so that σ∗∗(n) = 3n and n = 27.u,
where u is odd. Since σ∗∗(27) = 28 − 1 = 255 = 3.5.17, using n = 27u in σ∗∗(n) = 3n, we get
the following equations:

n = 27.5b.17c.v, (3.1a)

and
27.5b−1.17c−1.v = σ∗∗(5b).σ∗∗(17c).σ∗∗(v), (3.1b)

where (v, 2.5.17) = 1. Considering the parity of the function values of σ∗∗ and applying
multiplicativity of σ∗∗ we conclude that v has not more than five odd prime factors. Also note
that b, c ≥ 1.

In this paper we show that b ≥ 2 in (3.1a) and consider completely the case b = 2. We will
examine the case b ≥ 3 in future papers.

Theorem 3.1. (a) If n is as in (3.1a) and n is a bi-unitary triperfect number, then b ≥ 2.

(b) If b = 2, then c = 1 and n = 44553600 = 27.32.52.7.13.17.

Proof. (a) We assume that b = 1 and obtain a contradiction. Since σ∗∗(5) = 6, taking b = 1 in
(3.1b), after simplification we get

26.17c−1.v = 3.σ∗∗(17c).σ∗∗(v). (3.2)

From (3.2), 3|v. Let v = 3d.w, where (w, 2.3.5.17) = 1.
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From (3.1a) we have
n = 27.5.17c.3d.w, (3.2a)

and from (3.2),
26.17c−1.3d−1.w = σ∗∗(17c).σ∗∗(3d).σ∗∗(w), (3.2b)

w has not more than four odd prime factors and (w, 2.3.5.17) = 1. (3.2c)

If d = 1, from (3.2a), we have, by (1.3),

3 =
σ∗∗(n)

n
≥ 255

128
.
6

5
.
4

3
= 3.1875 > 3,

a contradiction.
Taking d = 2 in (3.2b), since σ∗∗(32) = 10, we see that 5|w. But this is false. Hence d 6= 2.

Thus we may assume that d ≥ 3. By Lemma 2.1, σ
∗∗(3d)

3d
≥ 112

81
. Hence from (3.2a),

3 =
σ∗∗(n)

n
≥ 255

128
.
6

5
.
112

81
= 3.3 > 3,

a contradiction.
Hence b = 1 is not admissible. Hence b ≥ 2.

The proof of (a) is complete.

(b) Since σ∗∗(52) = 26 = 2.13, taking b = 2 in (3.1b), we find that 13|v. Let v = 13d.w, where
(w, 2.5.13.17) = 1. It now follows from (3.1a) and (3.1b) that

n = 27.52.17c.13d.w, (3.3a)

and
26.5.17c−1.13d−1.w = σ∗∗(17c).σ∗∗(13d).σ∗∗(w), (3.3b)

where
w has not more than four odd prime factors and (w, 2.5.13.17) = 1. (3.3c)

The rest of the proof of (b) of Theorem 3.1 depends on the following lemmas:

Lemma 3.1. Assume that n given in (3.3a) is a bi-unitary triperfect number.
(i) If c = 1, then 32‖n.
(ii) If c = d = 1, then n = 44553600 = 27.32.52.7.13.17.

Proof. (i) Since σ∗∗(17) = 18 = 2.32, taking c = 1 in (3.3b), we obtain

25.5.13d−1.w = 32.σ∗∗(13d).σ∗∗(w). (3.3d)

Hence 32|w so that w = 3e.w′, where e ≥ 2 and (w′, 2.3.5.13.17) = 1. From (3.3a) and (3.3d),
we have

n = 27.52.17.13d.3e.w′, (e ≥ 2) (3.4a)

and
25.5.13d−1.3e−2.w′ = σ∗∗(13d).σ∗∗(3e).σ∗∗(w′), (3.4b)

where

w′ has not more than three odd prime factors and (w′, 2.3.5.13.17) = 1. (3.4c)
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When e ≥ 3, by Lemma 2.1, σ
∗∗(3e)

3e
≥ 112

81
. Using this from (3.4a), we obtain

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
18

17
.
112

81
= 3.033 > 3,

a contradiction.
Hence e ≥ 3 is not possible. Since e ≥ 2, we must have e = 2. Thus 32‖n. This proves (i).

Note 3.1. Taking e = 2, in (3.4a) and (3.4b), we obtain

n = 27.52.17.13d.32.w′, (3.5a)

and
24.13d−1.w′ = σ∗∗(13d).σ∗∗(w′), (3.5b)

where

w′ has not more than three odd prime factors and (w′′, 2.3.5.13.17) = 1. (3.5c)

(ii) From (i), c = 1 implies e = 2. Taking d = 1 in (3.5b), since σ∗∗(13) = 14 = 2.7, we find that
7|w′ so that w′ = 7f .w′′. Using these results in (3.5b) and (3.4a) (d = 1), we obtain

n = 27.52.17.13.32.7f .w′′, (3.6a)

and
23.7f−1.w′′ = σ∗∗(7f ).σ∗∗(w′′), (3.6b)

where

w′′ has not more than two odd prime factors and (w′′, 2.3.5.7.13.17) = 1. (3.6c)

Let f = 1. From (3.6b), we have w′′ = 1. Hence form (3.5a), n = 7.52.17.13.32.7 =

44553600.

If f = 2, then since σ∗∗(72) = 50 = 2.52, from (3.6b) (f = 2), it follows that 5|w′′. But w′′

is prime to 5.

We may assume that f ≥ 3. From Lemma 2.1, σ
∗∗(7f )

7f
≥ 2752

2401
. Hence from (3.6a), we obtain

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
18

17
.
14

13
.
10

9
.
2752

2401
= 3.008746356 > 3,

a contradiction. This proves (ii) and the proof of Lemma 3.1 is complete.

Note 3.2. If c = 1 and d = 2, since σ∗∗(132) = 170, it follows from (3.5b) (d = 2) that 17 divides
its left-hand side. But this is not possible. Hence we may assume that d ≥ 3 (the case c = d = 1

is settled in (ii) of Lemma 3.1).

Lemma 3.2. Let n be as given in (3.5a) with d ≥ 3. If n is a bi-unitary triperfect number
then 7 - n.
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Proof. By our assumption, (3.5b) and (3.5c) are valid. Suppose that 7|n. We arrive at a
contradiction as follows.

From (3.5a), 7|w′. Let w′ = 7f .w′′; using this in (3.5a) and (3.5b), we get

n = 27.52.17.13d.32.7f .w′′ (d ≥ 3), (3.7a)

and
24.13d−1.7f .w′′ = σ∗∗(13d).σ∗∗(7f ).σ∗∗(w′′), (3.7b)

where

w′′ has not more than three odd prime factors and (w′′, 2.3.5.7.13.17) = 1. (3.7c)

Since d ≥ 3, by Lemma 2.1, σ
∗∗(13d)

13d
≥ 30772

28561
; also, for f ≥ 3, σ

∗∗(7f )

7f
≥ 2752

2401
. From (3.7a),

for f ≥ 3, we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
18

17
.
30772

28561
.
10

9
.
2752

2401
= 3.0110115835 > 3,

a contradiction.
Hence f = 1 or f = 2.

Let f = 1. From (3.7a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
18

17
.
30772

28561
.
10

9
.
8

7
= 3.00136598 > 3,

a contradiction.
Let f = 2. Since σ∗∗(72) = 50, taking f = 2 in (3.7b), we find that 5|w′′, which is false. Thus

7 - n.
The proof of Lemma 3.2 is complete.

Lemma 3.3. Let n be as given in (3.5a), and let n be a bi-unitary triperfect number.
(a) Then d can neither be odd nor 4|d.
(b) Let d = 2k where k is odd and k ≥ 3. We have

σ∗∗(13d) =

(
13k − 1

12

)
.
(
13k+1 + 1

)
.

Here,
(i) 13k − 1

12
is divisible by a prime p′|w′ and p′ > 61,

(ii) 13k+1 + 1

2
is divisible by a prime q′|w′ and q′ > 61.

Proof. We assume that n is a bi-unitary triperfect number. Thus (3.5b) and (3.5c) are valid.
(a) If d is odd or 4|d, then 7|σ∗∗(13d). It follows from (3.5b) that 7|w′|n. By Lemma 3.2, 7 - n.
This proves (a).

(b) Let d = 2k, where k is odd. Since d ≥ 3, we have k ≥ 3.
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(i) Let
S ′13 = {p|13k − 1 : p ∈ [3, 61]− {3, 61} and ordp13 is odd}.

Let us replace the interval [3, 293] by [3, 61] in Lemma 2.5(a). Then it follows quickly that
(i) is true when S ′13 is non-empty.

We may assume that S ′13 is empty. Since p - 13k − 1 if ordp13 is even, it follows that
13k − 1 is not divisible by any prime p ∈ [3, 61] except for possibly p = 3, 61; but from

(3.5b), 13
k − 1

12
|σ∗∗(13d) is not divisible by 3. We may note that 9|13k−1⇐⇒ k = 3u⇐⇒

61|13k−1. Since 13k−1 is not divisible by 3, it is not divisible by 61 either. It now follows

that 13k − 1

12
is not divisible by any prime in [3, 61]. Since 13k − 1

12
is odd and > 1, we can

find an odd prime p′| 13
k − 1

12
. Clearly, p′ > 61 and from (3.5b), p′|w′. This proves (i).

(ii) Let

T ′13 = {q|13k+1 + 1 : q ∈ [3, 61]− {5, 17} and s =
1

2
ordp13 is even }.

Replacing the interval [3, 293] in Lemma 2.5 (b) by [3, 61], we infer that (ii) holds if T ′13 is
non-empty.

Suppose that T ′13 is empty. Since q - 13k+1 + 1 if s =
1

2
ordp13 is odd, it follows that

13k+1 + 1

2
is not divisible by any prime q ∈ [3, 61] except for possibly q = 5 or q = 17.

It may be noted that 5|13k+1 + 1 ⇐⇒ k + 1 = 2u ⇐⇒ 17|13k+1 + 1. From (3.5b), 5

is not a factor of its left-hand side and so 5 - 13k+1 + 1|σ∗∗(13d). Hence 17 - 13k+1 + 1

2
.

Thus 13k+1 + 1

2
is odd, > 1 and not divisible by any prime in [3, 61]. Let q′| 13

k+1 + 1

2
. Then

q′ > 61 and q′|w′ by (3.5b). This proves (ii).

The proof of Lemma 3.3 is complete.

Lemma 3.4. Let n be as given in (3.5a) with d ≥ 3. Then n cannot a bi-unitary triperfect number.

Proof. On the contrary, assume that n is a bi-unitary triperfect number.
By Lemma 3.2, 7 - n. Hence from (3.5a) each prime factor of w′ can be assumed to be ≥ 11.

By Lemma 3.3, w′ is divisible by two distinct odd prime factors p′ > 61 and q′ > 61. We may
assume without loss of generality that p′ ≥ 67 and q′ ≥ 71. By (3.5c), w′ cannot have not more
than three odd prime factors. If y denotes a possible third prime factor of w′ we may assume that
y ≥ 11 and w′ = p′f .q′g.yh. From (3.5a), we have n = 27.52.17.13d.32.p′f .q′g.yh. Hence

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
18

17
.
13

12
.
10

9
.
67

66
.
71

70
.
11

10
= 2.990822173 < 3,

a contradiction. This proves Lemma 3.4.

Remark 3.1. Thus we have proved that when b = 2, the case (i) c = 1, d = 1 yields the
bi-unitary perfect number n = 44553600. The cases (ii) c = 1, d = 2 and (iii) c = 1, d ≥ 3 lead
to a contradiction. So when b = 2 we may assume that c ≥ 2.
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Remark 3.2. Let b = 2 and c ≥ 2. If n = 27.52.17c.13d.w, where (w, 2.5.13.17) = 1, 3e‖n and
n is a bi-unitary triperfect number, then taking w = 3e.w′ in (3.3a) and (3.3b), we obtain the
following:

n = 27.52.17c.13d.3e.w′, (c ≥ 2), (3.8a)

and
26.5.17c−1.13d−1.3e.w′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(3e).σ∗∗(w′), (3.8b)

where

w′ has not more than three odd prime factors and (w′, 2.3.5.13.17) = 1. (3.8c)

Lemma 3.5. Let n = 27.52.17c.13d.3e.w′ (c ≥ 2) be as in (3.8a) and (w′, 2.3.5.13.17) = 1. Then
n cannot be a bi-unitary triperfect number if c ≥ 3 and e ≥ 3.

Proof. Let c ≥ 3 and e ≥ 3. We assume that n is a bi-unitary triperfect number and obtain a
contradiction.

By Lemma 2.1, for c ≥ 3, σ∗∗(17c)

17c
≥ 88452

83521
and for e ≥ 3, σ

∗∗(3e)

3e
≥ 112

81
. Hence from (3.8a)

for c ≥ 3 and e ≥ 3,

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
112

81
= 3.033950743 > 3,

a contradiction. This proves Lemma 3.5.

Remark 3.3. In order to prove that n given in (3.8a) is not a bi-unitary triperfect number, in view
of Lemma 3.5, it remains to examine the cases (I) c = 2, e ≥ 3, (II) c ≥ 3, e = 1 or 2, (III) c = 2,
e = 1 or 2.

In the following Lemmas 3.6 to 3.8, we deal with the three cases mentioned in Remark 3.3.

Lemma 3.6. The number n given in (3.8a) with c = 2 and e ≥ 3 cannot be a bi-unitary triperfect
number.

Proof. Assume that n in (3.8a) with c = 2 and e ≥ 3 is a bi-unitary triperfect number. We can
use (3.8b) and (3.8c). Since σ∗∗(172) = 290 = 2.5.29, taking c = 2 in (3.8b), we get after
simplification,

25.17.13d−1.3e.w′ = 29.σ∗∗(13d).σ∗∗(3e).σ∗∗(w′). (3.8d).

From (3.8d), it follows that 29|w′. Let w′ = 29f .w′′. From (3.8a) and (3.8d), we have

n = 27.52.172.13d.3e.29f .w′′, (3.9a)

and
25.17.13d−1.3e.29f−1.w′′ = σ∗∗(13d).σ∗∗(3e).σ∗∗(29f ).σ∗∗(w′′), (3.9b)

where

w′′ has not more than two odd prime factors and (w′′, 2.3.5.13.17.29) = 1. (3.9c)
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By Lemma 2.1, for d ≥ 3,
σ∗∗(13d)

13d
≥ 30772

28561
; also, for e ≥ 3,

σ∗∗(3e)

3e
≥ 112

81
. Hence from

(3.9a), for d ≥ 3, we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
290

289
.
30772

28561
.
112

81
= 3.097269697 > 3,

a contradiction.
Hence d = 1 or d = 2.

When d = 1, again from (3.9a) (d = 1), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
290

289
.
14

13
.
112

81
= 3.095860566 > 3,

a contradiction.
Let d = 2. Since σ∗∗(132) = 170 = 2.5.17, taking d = 2 in (3.9b), we find that 5 is a factor

of the left-hand side of (3.9b). This is false. This completes the proof of Lemma 3.6.

Lemma 3.7. The number n given in (3.8a) with c ≥ 3 and e = 1 or 2 cannot be a bi-unitary
triperfect number.

Proof. We assume that n is a bi-unitary triperfect number and obtain a contradiction. Since c ≥ 3,

by Lemma 2.1, σ
∗∗(17c)

17c
≥ 88452

83521
. Also, for d ≥ 3,

σ∗∗(13d)

13d
≥ 30772

28561
.

Let e = 1. Hence from (3.8a) (e = 1), for d ≥ 3,

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
30772

28561
.
4

3
= 3.152075221 > 3,

a contradiction.
Hence d = 1 or d = 2.

If d = 1, from (3.8a) (d = 1, e = 1), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
14

13
.
30772

28561
.
4

3
= 3.150614156 > 3,

a contradiction.
Let d = 2 (already e = 1). We have from (3.8a)

n = 27.52.17c.132.3.w′, (c ≥ 3) (3.10a)

and from (3.8b) (d = 2, e = 1), since σ∗∗(132) = 2.5.17, we get after simplification

23.17c−2.13.3.w′ = σ∗∗(17c).σ∗∗(w′), (3.10b)

w′ has not more than two odd prime factors and (w′, 2.3.5.13.17) = 1. (3.10c)

Let c be odd. Then 172 − 1 = 288|17c+1 − 1. Hence 9|17
c+1 − 1

16
= σ∗∗(17c). From (3.10b),

it follows that 3|w′. This is not possible.
Let c be even, say c = 2k. We have

σ∗∗(17c) =

(
17k − 1

16

)
.(17k+1 + 1).

If k is even, then 9|17
k − 1

16
|σ∗∗(17c). This leads to a contradiction as before.
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We may assume that c = 2k and k is odd. Since c ≥ 3, we have k ≥ 3. We prove that:

(I) 17k − 1

16
is divisible by an odd prime p′|w′ and p′ > 127,

(II) 17k+1 + 1

2
is divisible by an odd prime q′|w′ and q′ > 127.

• Proof of (I). Let

S ′17 = {p|17k − 1 : p ∈ [3, 127] and ordp17 is odd}.

By Lemma 2.6(a), if S ′17 is non-empty, then (I) holds. Suppose that S ′17 is empty. Since

p - 17k − 1 if ordp17 is even (and k is odd), it follows that 17k − 1

16
is not divisible by any

prime in [3, 127]. Since 17k − 1

16
is odd, > 1, it must be divisible by an odd prime p′ and

clearly p′ > 127. Also, from (3.10b), p′|w′. This proves (I).

• Proof of (II). Let

T ′17 = {q|17k+1 + 1 : q ∈ [3, 127]− {5, 29} and s =
1

2
ordq17 is even }.

By Lemma 2.6(b), if T ′17 is non-empty, (II) holds. So we may assume that T ′17 is empty.

Since s =1

2
ordq17 is not even implies that q - 17k+1+1 it follows that 17k+1 + 1

2
is divisible

by none of the primes in [3, 127] except for possibly 5 or 29.

We may note that 5|17k+1 + 1 ⇐⇒ k + 1 = 2u ⇐⇒ 29|17k+1 + 1. Let 5|17k+1 + 1.

Since 17k+1 + 1|σ∗∗(17c), it follows from (3.10b) that 5 is a factor of the left-hand side of

it. But this is false. Hence 5 - 17k+1 + 1 and hence 29 - 17k+1 + 1. Thus 17k+1 + 1

2
is not

divisible by any prime in [3, 127]. Since 17k+1 + 1

2
is > 1 and odd, we can find an odd prime

q′|17
k+1 + 1

2
. Clearly q′ > 127 and q′|w′ from (3.10b). This proves (II).

Since 17k − 1

16
and 17k+1 + 1

2
are relatively prime,we have p′ 6= q′.We may assume that p′ ≥ 131

and q′ ≥ 137. By (3.10c),w′ = (p′)f .(q′)g. Hence from (3.10a), n = 27.52.17c.132.3.(p′)f .(q′)g

and so

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
170

169
.
4

3
.
131

130
.
137

136
= 2.997112495 < 3,

a contradiction. This proves that e = 1 is not possible.
Let e = 2. Since σ∗∗(32) = 10 = 2.5, taking e = 2 in (3.8a) and (3.8b), we obtain

n = 27.52.17c.13d.32.w′, (c ≥ 3) (3.11a)

and
25.17c−1.13d−1.32.w′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(w′), (3.11b)

where

w′ has not more than three odd prime factors and (w′, 2.3.5.13.17) = 1. (3.11c)

14



Since σ∗∗(132) = 170 = 2.5.17, taking d = 2 in (3.11b), we see that 5 is a factor of its
left-hand side. But this is not so. Hence we may assume that d 6= 2.

Let d = 1. Since σ∗∗(13) = 14 = 2.7, taking d = 1 in (3.11b), we see that 7|w′. Let
w′ = 7f .w′′. From (3.11a) and (3.11b), we have

n = 27.52.17c.13d.32.7f .w′′, (c ≥ 3) (3.12a)

and
24.17c−1.32.7f−1.w′′ = σ∗∗(17c).σ∗∗(7f ).σ∗∗(w′′), (3.12b)

where

w′′ has not more than two odd prime factors and (w′, 2.3.5.7.13.17) = 1. (3.12c)

By Lemma 2.1, for f ≥ 3
σ∗∗(7f )

7f
≥ 2752

2401
and since c ≥ 3

σ∗∗(17c)

17c)
≥ 88452

83521
. Hence from

(3.12a),

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
14

13
.
10

9
.
2752

2401
= 3.009358761 > 3,

a contradiction.
Hence f = 1 or f = 2 when d = 1.

If f = 1, from (3.12a) (f = 1), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
14

13
.
10

9
.
8

7
= 3.000610625 > 3,

a contradiction.
Let f = 2. Since σ∗∗(72) = 50 = 2.52, taking f = 2 in (3.12b), we find that 5 is a factor of

its left-hand side which is false. Thus d = 1 is not admissible. Since d 6= 2, we may assume that
d ≥ 3.

Thus c ≥ 3, d ≥ 3 and e = 2. The relevant equations are (3.11a) to (3.11c).
We now show that 7 - n when n is as given in (3.11a). On the contrary, assume that 7|n.

Hence 7|w′ and let w′ = 7f .w′′. From (3.11a) and (3.11b), we get

n = 27.52.17c.13d.32.7f .w′′, (c ≥ 3, d ≥ 3) (3.13a)

and
25.17c−1.13d−1.32.7f .w′′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(7f ).σ∗∗(w′′), (3.13b)

where

w′′ has not more than two odd prime factors and (w′′, 2.3.5.7.13.17) = 1. (3.13c)

Since c and d are ≥ 3, we have by Lemma 2.1, σ
∗∗(17c)

17c
≥ 88452

83521
and σ∗∗(13d)

13d)
≥ 30772

28561
. Also,

for f ≥ 3, we have σ∗∗(7f )

7f
≥ 2752

2401
. Using these results, from (3.13a), we obtain for f ≥ 3,

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
30772

28561
.
10

9
.
2752

2401
= 3.010728519 > 3,

a contradiction. Hence f = 1 or f = 2.
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If f = 1, from (3.13a) (f = 1),

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
30772

28561
.
10

9
.
8

7
= 3.001976401 > 3,

a contradiction.
Let f = 2. Since σ∗∗(72) = 50 = 2.52, taking f = 2 in (3.13b), we see that 5 is a factor of its

left-hand side and this is false. Hence 7 - n.
We return to the equations (3.11a) − (3.11c) in which 7 - n or equivalently 7 - w′. We can

assume that each prime factor of w′ in (3.11a)− (3.11c) is at least 11.
We examine the factors of σ∗∗(13d) and obtain a contradiction when e = 2.

If d is odd or 4|d, then σ∗∗(13d) is divisible by 7. From (3.11b) it follows that 7|w′|n. But
7 - n.

Hence we may assume that d = 2k, where k is odd and k ≥ 3, since d ≥ 3. We have

σ∗∗(13d) =

(
13k − 1

12

)
.(13k+1 + 1).

We prove that:

(III) 13k − 1

12
is divisible by a prime p′|w′ and p′ > 127,

(IV) 13k+1 + 1

2
is divisible by a prime q′|w′ and q′ > 127.

• Proof of (III). Let

S ′13 = {p|13k − 1 : p ∈ [3, 127]− {3, 61} and ordp13 is odd }.

If we replace the interval [3, 293] in Lemma 2.5(a), by [3, 127], it follows that (III) holds if
S ′13 is non-empty.

Suppose that S ′13 is empty. Since p - 13k − 1 if ordp13 is even, it follows that 13k − 1

12
is not

divisible by any prime in [3, 127] except for possibly 3 and 61.

Clearly 3|13k − 1. We show that 27 - 13k − 1. On the contrary, suppose that 27|13k − 1.

This is equivalent to 9|k. Hence 139−1|13k−1. Also, 139−1 = 22.33.61.1609669. Hence
61 and 1609669 are factors of w′ and by (3.11c), w′ = 61f .(1609669)g.w′′, where w′′ = 1

or w′′ = pα where p ≥ 11. Hence σ∗∗(w′′)/w′′ < 11/10. From (3.11a),

n = 27.52.17c.13d.32.61f .(1609669)g.w′′

so that

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
10

9
.
61

60
.
1609669

1609668
.
11

10
= 2.963354615 < 3,

a contradiction. Hence 27 - 13k − 1.

We may note that 9|13k − 1⇐⇒ 3|k ⇐⇒ 61|13k − 1.

Assume that 9 - 13k − 1. Then 61 - 13k − 1. Thus 13k − 1

12
> 1, odd and not divisible by 3

and 61; and so not divisible by any prime in [3, 127]. If p′| 13
k − 1

12
, then p′ > 127 and p′|w′

by (3.11b). This proves (III) in this case.
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Suppose that 9|13k − 1. Then 61|13k − 1. Also, 13k − 1

36
> 1, odd and not divisible by 3 but

divisible by 61. We show that 13k − 1

36
must be divisible by an odd prime other than 61. If

this is not so let 13k − 1

36
= 61α, where α is a positive integer. If α ≥ 2, then 612|13k − 1.

This holds if and only if 183|k. Hence, 367|13183 − 1|13k − 1. Hence, 367| 13
k − 1

36
= 61α.

This is not possible and so α = 1. Thus 13k − 1

36
= 61 or k = 3 or d = 6.

We now show that d = 6 is not admissible. We have σ∗∗(136) = 2.3.61.14281. Taking
d = 6 in (3.11b), we see that w′ is divisible by 61 and 14281. From (3.11c), w′ =

61f .(14281)g.w′′, where w′′ = 1 or pα, where p ≥ 11. Hence

n = 27.52.17c.136.32.61f .(14281)g.w′′,

so that

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
10

9
.
61

60
.
14281

14280
.
11

10
= 2.963560292 < 3,

a contradiction.

It now follows that 13k − 1

36
is not divisible by 61 alone. Let p′| 13

k − 1

36
and p′ 6= 61. It

follows that p′ > 127 and from (3.11b), p′|w′. This proves (III).

• Proof of (IV). Let

T ′13 = {q|13k+1 + 1 : q ∈ [3, 127]− {5, 17} and s =
1

2
ordq13 is even }.

By Lemma 2.5 (b), (IV) holds if T ′13 is non-empty. We may assume that T ′13 is empty. Since

q - 13k+1 + 1 if s =
1

2
ordq13 is not even, it follows that 13k+1 + 1

2
is not divisible by any

prime in [3, 127] except for possibly 5 and 17.

If 5|13k+1+1, then 5|σ∗∗(13d) and from (3.11b), it follows that 5 divides its left-hand side.
This is false. Hence 5 - 13k+1+1. Since 5 - 13k+1+1⇐⇒ k+1 = 2u⇐⇒ 17 - 13k+1+1,

we conclude that 17 - 13k+1 + 1.

Thus 13k+1 + 1

2
> 1 and is odd, and it is not divisible by any prime in [3, 127]. Let

q′| 13
k+1 + 1

2
. Then q′ > 127 and q′|w′ from (3.11b).

This proves (IV).

From (III), (IV) and (3.11c), w′ = (p′)f .(q′)g.th, where t is the possible third prime factor of w′

and t ≥ 11. We can assume that p′ ≥ 131 and q′ ≥ 137.

From (3.11a), n = 27.52.17c.13d.32.(p′)f .(q′)d.th, and so

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
10

9
.
131

130
.
137

136
.
11

10
= 2.958791572 < 3,

a contradiction. This completes the case e = 2 and the proof of Lemma 3.7.
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Lemma 3.8. The number n given in (3.8a) with c = 2 and e = 1 or 2 cannot be a bi-unitary
triperfect number.

Proof. We assume that n given in (3.8) is a bi-unitary triperfect number.
Let c = 2 and e = 1. Since c = 2, we can use the equations (3.9a) to (3.9c). Taking e = 1 in

(3.9a) and (3.9b), we get after simplification

n = 27.52.172.13d.3.29f .w′′, (3.14a)

and
23.17.13d−1.3.29f−1.w′′ = σ∗∗(13d).σ∗∗(29f ).σ∗∗(w′′), (3.14b)

where
w′′ = 1 or a prime power. (3.14c)

Let d = 1. Since σ∗∗(13) = 14 = 2.7, taking d = 1 in (3.14b), we see that 7|w′′. Hence form
(3.14c), w′′ = 7g. From (3.14a) and (3.14b) we have

n = 27.52.172.13.3.29f .7g, (3.15a)

and
22.17.3.29f−1.7g−1 = σ∗∗(29f ).σ∗∗(7g). (3.15b)

Since σ∗∗(7) = 8, taking g = 1 in (3.15b), we find that 24 divides the right-hand side of it,
whereas 22 is a unitary divisor of its left-hand side. Hence g = 1 is not possible.

Since σ∗∗(72) = 50, taking g = 2 in (3.15b), we see that 5 divides its right-hand side but this
is not true with respect to its left-hand side. Hence g = 2 is also not possible.

We may assume that g ≥ 3 so that σ
∗∗(7g)

7g
≥ 2752

2401
. From (3.14a), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
290

289
.
14

13
.
4

3
.
2752

2401
= 3.421711542 > 3,

a contradiction. Hence d = 1 is not admissible.
Let d = 2 in (3.14b). Since σ∗∗(132) = 170 = 2.5.17, we find that 5 is a factor of its left-hand

side. This cannot happen. Hence d = 2 is not possible. We may assume that d ≥ 3.

Let f = 1 in (3.14b). Since σ∗∗(29) = 30 = 2.3.5, we see that 5 is a factor of its left-hand
side which is not true.

Let f = 2. We have σ∗∗(292) = 842 = 2.421. From (3.14c), w′′ = (421)g. Hence from
(3.14a) (f = 2), we have

n = 27.52.172.13d.3.292.(421)g, (3.16a)

and from (3.14b) (f = 2), we obtain

22.17.13d−1.3.29.(421)g−1 = σ∗∗(13d).σ∗∗(29f ).σ∗∗((421)g). (3.16b)

We obtain a contradiction by examining the factors of σ∗∗(13d).
If d is odd or 4|d, then 7|σ∗∗(13d). From (3.16b), we find that 7 divides the left-hand side of

it. This cannot happen.
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We may assume that d = 2k where k is odd and k ≥ 3, since d ≥ 3. We have

σ∗∗(13d) =

(
13k − 1

12

)
.(13k+1 + 1).

We prove that 13k − 1

12
is not divisible by 2, 3, 5, 17, 29, and 421. This leads to a contradiction.

(i) Clearly 4|13k − 1 but 8 - 13k − 1, since k is odd. Hence 13k − 1

12
is odd.

(ii) Clearly 3|13k − 1. We note that 9|13k − 1 ⇐⇒ 3|k ⇐⇒ 61|13k − 1. Suppose 9|13k − 1.

Hence 61|13k − 1 and so 61|13
k − 1

12
|σ∗∗(13d). Thus 61 is a factor of the left-hand side of

(3.16b). This is false. Hence 9 - 13k − 1. Hence 13k − 1

12
is not divisible by 3.

(iii) We have 17|13k − 1 ⇐⇒ 4|k; 29|13k − 1 ⇐⇒ 14|k; and 421|13k − 1 ⇐⇒ 20|k. But

4, 14, 20 cannot divide k since k is odd. Hence 13k − 1

12
is not divisible by 17, 29, 421.

From (i), (ii) and (iii), 13k − 1

12
is not divisible by 2, 3, 17, 29, 421 and trivially not divisible by

13. This cannot happen in view of (3.16b). Thus f = 2 is not possible.

We may assume that f ≥ 3. Since d ≥ 3 and f ≥ 3, by Lemma 2.1, σ
∗∗(13d)

13d
≥ 30772

28561
and

σ∗∗(29f )

29f
≥ 731700

707281
. From (3.16a), we obtain

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
290

289
.
30772

28561
.
4

3
.
731700

707281
= 3.089767636 > 3,

a contradiction.
This completes the case c = 2 and e = 1.

Let c = 2 and e = 2. Taking e = 2 in (3.9b), we see that 5 is a factor of its right-hand side but
it cannot divide its left-hand side. This completes the proof of Lemma 3.8.

We return to the equations (3.3a)− (3.3c). In Lemmas 3.5 to 3.8, we proved that if 3|n, 52‖n
and 172|n, then n cannot be a bi-unitary triperfect number. In what follows we will be prove that
n cannot be a bi-unitary triperfect number if 3 - n, 52‖n and 172|n.

Lemma 3.9. Let n be as in (3.3a) with c ≥ 2. Assume that 3 - n.
(a) If 7 - n, then n is not a bi-unitary triperfect number.
(b) Assume that n is a bi-unitary triperfect number. If 7|n, then n is not divisible by s where
s ∈ {11, 13, 19, 23}.

Proof. (a) Suppose 7 - n and n is a bi-unitary triperfect number. From the hypothesis,
n = 27.52.17c.13d.w, (c ≥ 2), where w is prime to 2.5.7.13.17. Also, by (3.3c), w cannot
have more than four odd prime factors. If p1, p2, p3 and p4 denote the four odd prime factors
of w, we can assume that p1 ≥ 11, p2 ≥ 19, p3 ≥ 23 and p4 ≥ 29. We have from (3.3a),
n = 27.52.17c.13d.pe1.p

f
2 .p

g
3.p

h
4 , and by Lemma 2.1,

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
11

10
.
19

18
.
23

22
.
29

28
= 2.998289044 < 3,

a contradiction. Hence n is not a bi-unitary triperfect number. This proves (a).
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(b) Assume that 7|n so that 7|w. Let w = 7e.w′. Using this in (3.3a) and (3.3b), we obtain

n = 27.52.17c.13d.7e.w′, (c ≥ 2) (3.17a)

and
26.5.17c−1.13d−1.7e.w′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(7e).σ∗∗(w′), (3.17b)

where

w′ has not more than three odd prime factors and (w′, 2.3.5.7.13.17) = 1. (3.17c)

We next show that 11 - n. Suppose that 11|n. Hence 11|w′. Let w′ = 11f .w′′, where
(w′′, 2.3.5.7.11.13.17) = 1. From (3.17a) and (3.17b), we have

n = 27.52.17c.13d.7e.11f .w′′, (c ≥ 2) (3.18a)

and

26.5.17c−1.13d−1.7e.11f .w′′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(7e).σ∗∗(11f )σ∗∗(w′′), (3.18b)

where

w′′ has not more than two odd prime factors and (w′′, 2.3.5.7.11.13.17) = 1. (3.18c)

Let e = 1. Since σ∗∗(7) = 8, from (3.18b) it follows that w′′ = 1. In this case
n = 27.52.17c.13d.7e.11f . Hence

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
8

7
.
11

10
= 2.998052455 < 3,

a contradiction. We have

σ∗∗(7e) =


50 when e = 2,

400 when e = 3,

26.43 when e = 4.

If e = 2 or e = 3, 52|σ∗∗(7e). Hence 52 is a factor of the left-hand side of (3.18b). This is not
possible. When e = 4, 26|σ∗∗(7e). Thus 29 is a factor of the right-hand side of (3.18b), whereas
26 is a unitary divisor of its left-hand side.

Thus we may assume that e ≥ 5.

We now prove that c = 2 is not admissible in (3.18b). We assume that c = 2 and obtain a
contradiction by examining the prime factors of σ∗∗(7e). Since σ∗∗(172) = 290 = 2.5.29, taking
c = 2 in (3.18b), we find that 29|w′′. Let w′′ = 29g.w∗. Using this in (3.18a) (c = 2) and (3.18b)

(c = 2), we get
n = 27.52.172.13d.7e.11f .29g.w∗, (3.19a)

and

25.17.13d−1.7e.11f29g−1.w∗ = σ∗∗(13d).σ∗∗(7e).σ∗∗(11f ).σ∗∗(29g).σ∗∗(w∗), (3.19b)

where

w∗ has not more than one odd prime factors and (w∗, 2.3.5.7.11.13.17) = 1. (3.19c)
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If e is odd or 4|e, then 8|σ∗∗(7e); from (3.19b) we find that this results in an imbalance of
powers of 2 between both sides of (3.19b). Hence we may assume that e = 2k, where k is odd
and k ≥ 3, since e ≥ 5. We have

σ∗∗(7e) =

(
7k − 1

6

)
.(7k+1 + 1).

We obtain a contradiction by showing that 7k − 1

6
and 7k+1 + 1

2
are divisible by two distinct odd

primes p′ and q′, respectively, which are also factors of w∗. This would contradict (3.19c).
In Lemma 2.4 (a), if we replace the interval [3, 2520] by [3, 31] we have the following

conclusion:

(I) If p|7k − 1, where p ∈ [3, 31] − {3, 19} and ordp7 is odd, then we can find an odd prime

p′| 7
k − 1

6
and p′ > 31. By (3.19b), p′|w∗.

Let
S ′7 = {p|7k − 1 : p ∈ [3, 31]− {3, 19} and ordp7 is odd }.

If S ′7 is non-empty, we can conclude from (I) that w∗ is divisible by an odd prime p′|7
k − 1

6
.

Suppose that S ′7 is empty. Since p - 7k − 1 if ordp7 is even, it follows that 7k − 1 is not
divisible by any prime in [3, 31] except for possibly 3 and 19.

We have 19|7k − 1 ⇐⇒ 3|k ⇐⇒ 9|7k − 1. Also, 9|7k − 1 ⇐⇒ 3| 7
k − 1

6
. Further from

(3.19b), 3|7
k − 1

6
σ∗∗(7e) implies that 3 is a factor of the left-hand side of (3.19b) and so

3|w∗. This cannot happen. Hence 9 - 7k − 1 and consequently 19 - 7k − 1.

Thus 7k − 1

6
is not divisible by 3 and 19. It follows that 7k − 1

6
is not divisible by any prime

in [3, 31]; also, 7k − 1

6
> 1 and odd. Let p′|7

k − 1

6
. Then p′ > 31 and from (3.19b), p′|w∗.

In Lemma 2.4 (b), if we replace the interval [3, 1193] by [3, 31] we have the following conclusion:

(II) If q|7k+1 + 1, q ∈ [3, 31]− {5, 13} and s =1

2
ordp7 is even, then we can find an odd prime

q′|7
k+1 + 1

2
and q′ > 31. By (3.19b), q′|w∗.

Let
T ′7 = {q|7k+1 + 1 : q ∈ [3, 31]− {5, 13} and s =

1

2
ordp7 is even }.

If T ′7 is non-empty, by (II) above, we can find an odd prime q′|7
k+1 + 1

2
and q′ > 31. Also,

q′|w∗. This is what we require.

Suppose that T ′7 is empty. Since q - 7k+1 + 1 if s =
1

2
ordp7 is not even, it follows that

7k+1 + 1

2
is not divisible by any prime in [3, 31] except for possibly 5 and 13.

If 5|7
k+1 + 1

2
|σ∗∗(7e), then from (3.19b) it follows that 5 divides its left-hand side. This is

not possible. Hence 5 - 7k+1 + 1.
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Suppose 13|7k+1 + 1. This is equivalent to k + 1 = 6u. Hence 76 + 1|7k+1 + 1. Also,
76 + 1 = 2.52.13.181. Hence 5|76 + 1|7k+1 + 1. But this is false.

Thus 7k+1 + 1 is not divisible by 5 and 13 and so 7k+1 + 1

2
is not divisible by any prime in

[3, 31]. Since 7k+1 + 1

2
> 1 and odd, let q′| 7

k+1 + 1

2
. Then q′ > 31 and from (3.19b), q′|w∗.

It follows that w∗ is divisible by two distinct odd primes p′ and q′. But this is not possible
by (3.19c).

This proves that c = 2 is not admissible. We may assume that c ≥ 3. The relevant equations
are (3.18a) and (3.18b) with c ≥ 3 and e ≥ 5. By Lemma 2.1, we have σ∗∗(17c)

17c
≥ 88452

83521

(c ≥ 3),
σ∗∗(13d)

13d
≥ 30772

28561
(d ≥ 3),

σ∗∗(7e)

7e
≥ 136914

117649
(e ≥ 5) and σ∗∗(11f )

11f
≥ 15984

14641
(f ≥ 3).

If d ≥ 3 and f ≥ 3, from (3.18a), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
30772

28561
.
136914

117649
.
15984

14641
= 3.00353146 > 3, (3.19d)

a contradiction. Hence d ≥ 3 and f ≥ 3 cannot hold together. So we have the following cases:

• Case 1: {d ≥ 3, f = 1, 2}

• Case 2: {d = 1, 2, f ≥ 3}, and

• Case 3: {d = 1, 2, f = 1, 2}.

Let f = 1. Taking f = 1 in (3.18b), since σ∗∗(11) = 12, it follows that 3 is a factor of the
left-hand side of (3.18b). Since 3 - n, by our assumption, this is not possible.

Let f = 2. We have σ∗∗(112) = 122 = 2.61. From (3.18b) (f = 2), 61|w′′. Let w′′ = 61g.w∗.

From (3.18a) (f = 2) and (3.18b) (f = 2), we obtain

n = 27.52.17c.13d.7e.112.61g.w∗, (c ≥ 3) (3.20a)

and

25.5.17c−1.13d−1.7e.112.61g−1.w∗ = σ∗∗(17c).σ∗∗(13d).σ∗∗(7e).σ∗∗(61g).σ∗∗(w∗), (3.20b)

where
w∗ = 1 or a prime power with (w∗, 2.3.5.7.11.13.17) = 1. (3.20c)

We now show that 19 - w∗. On the contrary, suppose that 19|w∗ so that w∗ = 19h. Using this
in (3.20a) and (3.20b), we get

n = 27.52.17c.13d.7e.112.61g.w∗, (c ≥ 3) (3.21a)

and

25.5.17c−1.13d−1.7e.112.61g.19h = σ∗∗(17c).σ∗∗(13d).σ∗∗(7e).σ∗∗(61g).σ∗∗(19h). (3.21b)

If e is odd or 4|e, then 8|σ∗∗(7e); this brings an imbalance in powers of 2 between the two sides
of (3.21b). We may thus assume that e = 2k, where k is odd and k ≥ 3 (since e ≥ 5). So,

σ∗∗(7e) =
(
7k − 1

6

)
.(7k+1 + 1).
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Since k is odd and k ≥ 3,
7k − 1

6
> 1 and odd. Also, 7k− 1 is not divisible by 5, 11, 13, 17 and

61, since k is odd.
Further, 9|7k−1⇐⇒ 3|k ⇐⇒ 19|7k−1. But 9|7k−1 implies that 3|7

k − 1

6
|σ∗∗(7e) and from

(3.21b), we find that this is not possible. Hence 9 - 7k − 1 and consequently 19 - 7k − 1.

Thus 7k − 1

6
> 1, is odd and not divisible by 5, 7, 11, 13, 17, 19 and 61 (divisible by none of

these primes). From (3.21b), this is not possible. This contradiction shows that 19 - w∗.
From (3.20c), we may assume that w∗ = ph, where p ≥ 23. From (3.20a), we have n =

27.52.17c.13d.7e.112.61g.ph. Hence

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
7

6
.
122

121
.
61

60
.
23

22
= 2.981670063 < 3,

a contradiction.
Hence f = 2 is not admissible.
Let d = 1 and f ≥ 3. Already c ≥ 3 and e ≥ 5. From (3.18a) (d = 1), we have

3 =
σ∗∗(n)

n
≥ 255

128
.
26

25
.
88452

83521
.
14

13
.
15984

14641
.
136914

117649
= 3.002164976 > 3,

a contradiction.
Let d = 2. Since σ∗∗(132) = 170 = 2.5.17. Taking d = 2 in (3.18a) and (3.18b), we obtain

n = 27.52.17c.132.7e.11f .w′′, (3.22a)

and
25.17c−2.13.7e.11f .w′′ = σ∗∗(17c).σ∗∗(7e).σ∗∗(11f ).σ∗∗(w′′), (3.22b)

where

w′′ has not more than two odd prime factors and (w′′, 2.3.5.7.11.13.17) = 1. (3.22c)

By applying Lemma 2.4, we show that σ∗∗(7e) is divisible by two distinct odd primes each greater
than 67 when e is even and 4 - e.

If e is odd or 4|e, then 8|σ∗∗(7e). From (3.22b), it follows that w′′ = 1. Hence from (3.22a),
n = 27.52.17c.132.7e.11f and so

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
170

169
.
7

6
.
11

10
= 2.841804387 < 3,

a contradiction.
We may assume that e = 2k, where k is odd and ≥ 3. We have

σ∗∗(7e) =

(
7k − 1

6

)
.(7k+1 + 1).

We show (by using Lemma 2.4) that:

(III) 7k − 1

6
is divisible by an odd prime p′|w′′ and p′ > 67,

(IV) 7k+1 + 1

2
is divisible by an odd prime q′|w′′ and q′ > 67.
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(III) Proof of (III). If we replace the interval [3, 2520] by the interval [3, 67] in Lemma 2.4 (a),
then we have the following conclusion:

(A) If p ∈ [3, 67]− {3, 19, 37}, p|7k − 1 and ord7p is odd, then we can find an odd prime

p′|7
k − 1

6
and p′ > 67.

Let
S ′7 = {p|7k − 1 : p ∈ [3, 67]− {3, 19, 37} and ordp7 is odd }.

By (A), if S ′7 is non-empty, then (III) holds.

Suppose that S ′7 is empty. Since p - 7k − 1 if ord7p is even, it follows that 7k − 1

6
is not divisible by any prime in [3, 67] except for possibly 3, 19 and 37. We have the
following:
(i) 9|7k − 1⇐⇒ 3| 7

k − 1

6
. Hence if 9|7k − 1, then 3 is a factor of the left-hand side

of (3.22b) which is not the case. Hence 9 - 7k − 1 and so 7k − 1

6
is not divisible

by 3.

(ii) 19|7k − 1⇐⇒ 3|k ⇐⇒ 9|7k − 1. By (i), 19 - 7k − 1.

(iii) Suppose 37|7k−1.Hence 9|k and so 79−1|7k−1.Also, 79−1 = 2.33.19.37.1063.

Hence 19|79 − 1|7k − 1. By (i) this is false. Hence 37 - 7k − 1.

(iv) Since k is odd and ≥ 3, 7k − 1

6
is odd and > 1.

From the above discussion, it is clear that 7k − 1

6
> 1, is odd and is not divisible by any

prime in [3, 67]. Let p′|7
k − 1

6
. Then p′ > 67 and by (3.22b), p′|w′′. This proves (III).

(IV) Proof of (IV). If we replace the interval [3, 1193] by the interval [3, 67] in Lemma 2.4 (b),
then we have the following conclusion:

(B) If q ∈ [3, 67]− {5, 13}, q|7k+1 + 1 and s = 1

2
ord7q is even, then we can find an odd

prime q′|7
k+1 + 1

2
and q′ > 67.

Let

T ′7 = {q|7k+1 + 1 : q ∈ [3, 67]− {5, 13} and s =
1

2
ordq7 is even }.

By (B), if T ′7 is non-empty, then (III) holds.

Suppose that T ′7 is empty. Since q - 7k+1 + 1 if s = 1

2
ordq7 is not even, it follows that

7k+1 + 1

2
is not divisible by any prime in [3, 67] except for possibly by 5 and 13.

From (3.22b) it follows that 5 - σ∗∗(7e), since 5 is not a factor of the left-hand side of
(3.22b).

Note that 5|7k+1+1 implies that 52|σ∗∗(7e); also, 13|7k+1+1 implies that k+1 = 6u

and so 52|76 + 1|7k+1 + 1|σ∗∗(7e). In both the cases 52|σ∗∗(7e) which is false. Thus
7k+1 + 1 is divisible by neither 5 nor 13.

It follows that 7k+1+1
2

is not divisible by any prime in [3, 67]. Also, 7k+1 + 1

2
> 1 and

is odd. Let q′| 7
k+1 + 1

2
. Then q′ > 67 and q′|w′′ by (3.22b).

This proves (IV).
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From (3.22c), we have w′′ = (p′)g.(q′)h. Hence from (3.22a), we have

n = 27.52.17c.132.7e.11f .(p′)g.(q′)h

so that

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
170

169
.
7

6
.
11

10
.
71

70
.
73

72
= 2.922434948 < 3,

a contradiction.
Hence d = 2 is not possible. Thus we proved the non-admissibility of f = 1, 2 and d = 1, 2.

These cover the three cases (Case 1, Case 2 and Case 3) mentioned below (3.19d).
This completes the proof of 11 - n.
Let s = 19 or 23. We show that s - n which is same as s - w′ where n is as in (3.17a). On the

contrary, we assume that s|w′ so that w′ = sf .w′′. From (3.17a) and (3.17b), we have

n = 27.52.17c.13d.7e.sf .w′′, (c ≥ 2) (3.23a)

and

26.5.17c−1.13d−1.7e.sf .w′′ = σ∗∗(17c).σ∗∗(13d).σ∗∗(7e).σ∗∗(sf ).σ∗∗(w′′), (3.23b)

where

w′′ has not more than two odd prime factors and (w′, 2.3.5.7.11.13.17.s) = 1. (3.23c)

We obtain a contradiction by examining σ∗∗(7e). If e is odd or 4|e, then 8|σ∗∗(7e). From
(3.23b), we infer that w′′ = 1. From (3.23a), n = 27.52.17c.13d.7e.sf where s ≥ 19; and so

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
7

6
.
19

18
= 2.936854836 < 3,

a contradiction.
We may assume that e = 2k, where k is odd, and since e 6= 2, k ≥ 3. Also,

σ∗∗(7e) =

(
7k − 1

6

)
.(7k+1 + 1) (k odd, k ≥ 3).

We show that:

(III)′ 7k − 1

6
is divisible by a prime p′ > 89 and p′|w′′,

(IV)′ 7k+1 + 1

2
is divisible by a prime q′ > 89 and q′|w′′.

The left-hand side of (3.23b)) is neither divisible by 3 nor 52. The proofs of (III)′ and (IV)′ are
similar to those of (III) and (IV); we need to apply Lemma 2.4 by replacing the intervals [3, 2520]
and [3, 1193] by [3, 89]. We omit the details.

From (3.23c), we have w′′ = (p′)g.(q′)h. We may assume that p′ ≥ 97 and q′ ≥ 101. From
(3.23a), we have n = 27.52.17c.13d.7e.sf .(p′)g.(q′)h, so that

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
7

6
.
19

18
.
97

96
.
101

100
= 2.997121544 < 3,

a contradiction. Hence s - w′′.
Thus if n is as in (3.3a), 3 - n and 7|n, then n is divisible by none of 11, 19 and 23. The proof

of (b) of Lemma 3.9 is complete.
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Lemma 3.10. Let n be as in (3.3a) with c ≥ 2. Assume that 3 - n. If 7|n, then n cannot be a
bi-unitary triperfect number.

Proof. Suppose that 7|n and n is a bi-unitary triperfect number. Then n satisfies the equations
(3.17a)− (3.17c). We obtain a contradiction by examining the factors of σ∗∗(7e) in (3.17b).

If e is odd or 4|e, then 8|σ∗∗(7e). From (3.17b), we at once have w′ = pf , where p ≥ 29 by
Lemma 3.9 (b). Hence from (3.17a), n = 27.52.17c.13d.7e.pf and so by Lemma 2.1,

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
7

6
.
29

28
= 2.881650798 < 3,

a contradiction.
Let e = 2k, where k is odd and k ≥ 3 (as e 6= 2). We note that the left-hand side of (3.17b)

is neither divisible by 3 nor 52. As in (III)′ and (IV)′ of Lemma 3.9 (b), 7k − 1

6
and 7k+1 + 1

2
are

divisible by odd primes p′ > 89 and q′ > 89, respectively.
Further, w′ is divisible by p′ and q′. We may assume that p′ ≥ 97 and q′ ≥ 101. Assuming

that y is a possible third prime factor of w′ by (3.17c), by Lemma 3.9 (b), we have y ≥ 29 and
w′ = (p′)f .(q′)g.yh. By (3.17c) and (3.17a), n = 27.52.17c.13d.7e.(p′)f .(q′)g.yh and by Lemma
2.1, we have

3 =
σ∗∗(n)

n
<

255

128
.
26

25
.
17

16
.
13

12
.
7

6
.
97

96
.
101

100
.
29

28
= 2.940784673 < 3,

a contradiction. Hence n cannot be a bi-unitary triperfect number. The proof of Lemma 3.10 is
complete.

Completion of Proof of Theorem 3.1(b). Theorem 3.1(b) follows from Lemmas 3.1–3.10.

Remark 3.4. Let n be as given in (3.1a) and b ≥ 3. Assume that n is a bi-unitary triperfect
number. Then (3.1b) is valid. Further suppose that n is not divisible by 3. If b is odd or 4|b, then
3|σ∗∗(5b). Also, if c is odd or 4|c, then 9|σ∗∗(17c). These are not possible in (3.1b), and therefore
it follows that b = 2k and c = 2`, where k ≥ 3 and ` are odd. Hence b ≥ 6 and c ≥ 2. We will
consider the case 3 - n in more detail in future.
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Appendix A Tables of ordp13

Let p denote an odd prime 6= 13. In the following table, r denotes the smallest positive integer
such that 13r ≡ 1 (mod p); that is, r = ordp13; s denotes the smallest positive integer such that
13s ≡ −1 (mod p) if s exists; if s does not exist, that is, if 13t + 1 is not divisible by p for any
positive integer t, the entry in column s will be filled up by dash sign. If r is even, then s = r/2,
and if r is odd s does not exist.

SL.No p r s

1 3 1 −
2 5 4 2

3 7 2 1

4 11 10 5

5 13 − −
6 17 4 2

7 19 18 9

8 23 11 −
9 29 14 7

10 31 30 15

11 37 36 18

12 41 40 20

13 43 21 −
14 47 46 23

15 53 13 −
16 59 58 29

17 61 3 −
18 67 66 33

19 71 70 35

20 73 72 36

21 79 39 −
22 83 82 41

23 89 88 44

24 97 96 48

25 101 50 25

26 103 17 −
27 107 53 −
28 109 108 54

29 113 56 28

30 127 63 −
31 131 65 −
32 137 136 68

33 139 69 −
34 149 148 74

35 151 150 75

36 157 6 3

SL.No p r s

37 163 54 27

38 167 166 83

39 173 86 43

40 179 89 −
41 181 45 −
42 191 95 −
43 193 64 32

44 197 196 98

45 199 99 −
46 211 35 −
47 223 74 37

48 227 226 113

49 229 76 38

50 233 116 58

51 239 238 119

52 241 240 120

53 251 125 −
54 257 128 64

55 263 131 −
56 269 134 67

57 271 18 9

58 277 46 23

59 281 280 140

60 283 141 −
61 293 292 146

62 307 306 153

63 311 31 −
64 313 156 78

65 317 316 158

66 331 66 33

67 337 21 −
68 347 173 −
69 349 348 174

70 353 352 176

71 359 358 179

72 367 183 −

SL.No p r s

73 373 62 31

74 379 378 189

75 383 382 191

76 389 97 −
77 397 396 198

78 401 400 200

79 409 136 68

80 419 11 −
81 421 20 10

82 431 430 215

83 433 216 108

84 439 219 −
85 443 17 −
86 449 448 224

87 457 456 228

88 461 92 46

89 463 42 21

90 467 233 −
91 479 478 239

92 487 486 243

93 491 245 −
94 499 166 83

95 503 251 −
96 509 508 254

97 521 260 130

98 523 261 −
99 541 540 270

100 547 21 −
101 557 556 278

102 563 281 −
103 569 284 142

104 571 285 −
105 577 576 288

106 587 586 293

107 593 592 296

108 599 299 −
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Appendix B Tables of ordp17

Let p denote an odd prime 6= 17. In the following table, r denotes the smallest positive integer
such that 17r ≡ 1 (mod p); that is, r = ordp17; s denotes the smallest positive integer such that
17s ≡ −1 (mod p) if s exists; if s does not exist, that is, if 17t + 1 is not divisible by p for any
positive integer t, the entry in column s will be filled up by dash sign. If r is even, then s = r/2,
and if r is odd s does not exist.

SL.No p r s

1 3 2 1

2 5 4 2

3 7 6 3

4 11 10 5

5 13 6 3

6 17 − −
7 19 9 −
8 23 22 11

9 29 4 2

10 31 30 15

11 37 36 18

12 41 40 20

13 43 21 −
14 47 23 −
15 53 26 13

16 59 29 −
17 61 60 30

18 67 33 −
19 71 10 5

20 73 24 12

21 79 26 13

22 83 41 −1
23 89 44 22

24 97 96 48

25 101 10 5

26 103 51 −
27 107 106 53

28 109 36 18

29 113 112 56

30 127 63 −
31 131 130 65

32 137 68 34

SL.No p r s

33 139 138 69

34 149 37 −
35 151 75 −
36 157 39 −
37 163 54 27

38 167 166 83

39 173 172 86

40 179 89 −
41 181 36 18

42 191 95 −
43 193 192 96

44 197 196 98

45 199 66 −
46 211 210 105

47 223 37 −
48 227 226 113

49 229 19 −
50 233 232 116

51 239 119 −
52 241 80 40

53 251 125 −
54 257 32 16

55 263 131 −
56 269 268 134

57 271 135 −
58 277 276 138

59 281 140 70

60 283 282 141

61 293 73 −
62 307 3 −
63 311 310 155

64 313 312 156

SL.No p r s

65 317 316 158

66 331 165 −
67 337 112 56

68 347 346 173

69 349 58 29

70 353 88 44

71 359 179 −
72 367 366 183

73 373 62 31

74 379 378 189

75 383 191 −
76 389 97 −
77 397 132 66

78 401 400 200

79 409 51 −
80 419 418 209

81 421 210 105

82 431 430 215

83 433 27 −
84 439 438 219

85 443 221 −
86 449 448 224

87 457 38 19

88 461 230 115

89 463 231 −
90 467 233 −
91 479 478 239

92 487 486 243

93 491 49 −
94 499 498 249

95 503 502 251

96 509 127 −
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Appendix C Factors of 13t − 1

1311 − 1 ={{2, 2}, {3, 1}, {23, 1}, {419, 1}, {859, 1}, {18041, 1}}
1313 − 1 ={{2, 2}, {3, 1}, {53, 1}, {264031, 1}, {1803647, 1}}
1317 − 1 ={{2, 2}, {3, 1}, {103, 1}, {443, 1}, {15798461357509, 1}}
1321 − 1 ={{2, 2}, {3, 2}, {43, 1}, {61, 1}, {337, 1}, {547, 1}, {2714377, 1}, {5229043, 1}}
1335 − 1 ={{2, 2}, {3, 1}, {211, 1}, {30941, 1}, {5229043, 1}, . . .}
1339 − 1 ={{2, 2}, {3, 2}, {53, 1}, {61, 1}, {79, 1}, {1093, 1}, {4603, 1}, . . .}
1345 − 1 ={{2, 2}, {3, 3}, {61, 1}, {181, 1}, {4651, 1}, {30941, 1}, {161971, 1}, . . .}
1363 − 1 ={{2, 2}, {3, 3}, {43, 1}, {61, 1}, {127, 1}, {337, 1}, {547, 1}, . . .}
1365 − 1 ={{2, 2}, {3, 1}, {53, 1}, {131, 1}, {1171, 1}, . . .}
1369 − 1 ={{2, 2}, {3, 2}, {61, 1}, {139, 1}, {1381, 1}, {10903, 1}, . . .}
1389 − 1 ={{2, 2}, {3, 1}, {179, 1}, {9257, 1}, . . .}
1395 − 1 ={{2, 2}, {3, 1}, {191, 1}, {27361, 1}, {30941, 1}, . . .}
1399 − 1 ={{2, 2}, {3, 3}, {23, 1}, {61, 1}, {199, 1}, {419, 1}, {859, 1}, {3169, 1}, . . .}
13125 − 1 ={{2, 2}, {3, 1}, {251, 1}, {701, 1}, {9851, 1}, . . .}
13131 − 1 ={{2, 2}, {3, 1}, {263, 1}, {135979, 1}, . . .}
13141 − 1 ={{2, 2}, {3, 2}, {61, 1}, {283, 1}, {1693, 1}, {183959, 1}, . . .}

Appendix D Factors of 13t + 1

1318 + 1 ={{2, 1}, {5, 1}, {17, 1}, {37, 1}, {28393, 1}, {428041, 1}, {1471069, 1}}
1320 + 1 ={{2, 1}, {41, 1}, {14281, 1}, {29881, 1}, {543124566401, 1}}.
1328 + 1 ={{2, 1}, {113, 1}, {14281, 1}, {4803378460849459680406337, 1}}
1332 + 1 ={{2, 1}, {193, 1}, {1601, 1}, {10433, 1}, {68675120456139881482562689, 1}}
1336 + 1 ={{2, 1}, {73, 1}, {4177, 1}, {14281, 1}, . . .}
1338 + 1 ={{2, 1}, {5, 1}, {17, 1}, {229, 1}, {94621, 1}, . . .}
1344 + 1 ={{2, 1}, {89, 1}, {6073, 1}, {14281, 1}, . . .}
1348 + 1 ={{2, 1}, {97, 1}, {2657, 1}, {88993, 1}, {441281, 1}, . . .}
1354 + 1 ={{2, 1}, {5, 1}, {17, 1}, {37, 1}, {109, 1}, {28393, 1}, . . .}
1358 + 1 ={{2, 1}, {5, 1}, {17, 1}, {233, 1},

{1025438434909702346128619902547481080256923768726946695435273, 1}}
1364 + 1 ={{2, 1}, {257, 1}, {3230593, 1}, . . .}
1368 + 1 ={{2, 1}, {137, 1}, {409, 1}, {14281, 1}, . . .}
1398 + 1 ={{2, 1}, {5, 1}, {17, 1}, {197, 1}, {2710681, 1}, . . .}
13120 + 1 ={{2, 1}, {241, 1}, {1009, 1}, {407865361, 1}, . . .}
13140 + 1 ={{2, 1}, {41, 1}, {113, 1}, {281, 1}, {14281, 1}, . . .}
13146 + 1 ={{2, 1}, {5, 1}, {17, 1}, {293, 1}, {466462905277, 1}, . . .}
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Appendix E Factors of 17t − 1

179 − 1 ={{2, 4}, {19, 1}, {307, 1}, {1270657, 1}}
1719 − 1 ={{2, 4}, {229, 1}, {1103, 1}, {202607147, 1}, {291973723, 1}}
1721 − 1 ={{2, 4}, {43, 1}, {307, 1}, {13567, 1}, {25646167, 1}, {940143709, 1}}
1723 − 1 ={{2, 4}, {47, 1}, {26552618219228090162977481, 1}
1727 − 1 ={{2, 4}, {19, 1}, {307, 1}, {433, 1}, {24733, 1}, {1270657, 1}, . . .}
1729 − 1 ={{2, 4}, {59, 1}, {7193, 1}, {6088087, 1}, {11658852700685942029849, 1}}
1733 − 1 ={{2, 4}, {67, 1}, {307, 1}, {3697, 1}, {976669, 1}, . . .}
1737 − 1 ={{2, 4}, {149, 1}, {223, 1}, {1016919604559540581, 1}, . . .}
1739 − 1 ={{2, 4}, {157, 1}, {307, 1}, {212057, 1}, {2919196853, 1}, . . .}
1741 − 1 ={{2, 4}, {83, 1}, {892079, 1}, {13365673, 1}, . . .}
1749 − 1 ={{2, 4}, {491, 1}, {883, 1}, {25646167, 1}, {474969439337, 1}, . . .}
1751 − 1 ={{2, 4}, {103, 1}, {307, 1}, {409, 1}, {10949, 1}, {1749233, 1}, . . .}
1763 − 1 ={{2, 4}, {19, 1}, {43, 1}, {127, 1}, {307, 1}, {13567, 1}, . . .}
1773 − 1 ={{2, 4}, {293, 1}, {1621745371, 1}, {3038535503, 1}, {319344640907, 1}, . . .}
1775 − 1 ={{2, 4}, {151, 1}, {307, 1}, {2551, 1}, {5101, 1}, {5351, 1}, . . .}
1789 − 1 ={{2, 4}, {179, 1}, {7121, 1}, {10859, 1}, . . .}
1795 − 1 ={{2, 4}, {191, 1}, {229, 1}, {1103, 1}, {88741, 1}, {202607147, 1}, . . .}
1797 − 1 ={{2, 4}, {389, 1}, {90976939813, 1}, {65888627940954399173, 1}, . . .}
17119 − 1 ={{2, 4}, {239, 1}, {2381, 1}, {3571, 1}, {10949, 1}, {16661, 1}, . . .}
17127 − 1 ={{2, 4}, {509, 1}, {2287, 1}, {19813, 1}, {9085073, 1}, . . .}
17131 − 1 ={{2, 4}, {263, 1}, {367056542472353396414551932367550703732602240

626266437580589512042557939674013046425712329694554361136410

49586841689181084276511163513402458984276636720387829, 1}}
17135 − 1 ={{2, 4}, {19, 1}, {271, 1}, {307, 1}, {433, 1}, {3691, 1}, {24733, 1}, . . .}
17165 − 1 ={{2, 4}, {67, 1}, {307, 1}, {331, 1}, {3697, 1}, {46861, 1}, {88741, 1}, . . .}
17179 − 1 ={{2, 4}, {359, 1}, {18617, 1}, {121721, 1}, {1108776121, 1}, . . .}
17191 − 1 ={{2, 4}, {383, 1}, {3738211891, 1}, . . .}
17221 − 1 ={{2, 4}, {443, 1}, {10949, 1}, {151607, 1}, {212057, 1}, {1749233, 1}, . . .}
17233 − 1 ={{2, 4}, {467, 1},

{662463291227225180212676697073783578164677575256855318635602076
6775492769444675372228864152379392277413358880893612987903057911321843

4295120243879391825646598579562732265304498078847938955250726380620973

1783877309393965931437452025559757828597962954773024783566035419681902

8096943763, 1}}
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Appendix F Factors of 17t + 1

1712 + 1 ={{2, 1}, {73, 1}, {1321, 1}, {41761, 1}, {72337, 1}}
1716 + 1 ={{2, 1}, {257, 1}, {1801601, 1}, {52548582913, 1}}
1718 + 1 ={{2, 1}, {5, 1}, {29, 1}, {37, 1}, {109, 1}, {181, 1}, {2089, 1}, {83233, 1}, . . .}
1720 + 1 ={{2, 1}, {41, 1}, {41761, 1}, {1186844128302568601, 1}}
1722 + 1 ={{2, 1}, {5, 1}, {29, 1}, {89, 1}, {25741, 1}, . . .}
1730 + 1 ={{2, 1}, {5, 2}, {29, 1}, {61, 1}, {541, 1}, {21881, 1}, . . .}
1734 + 1 ={{2, 1}, {5, 1}, {29, 1}, {137, 1}, {1361, 1}, {2698649, 1}, . . .}
1740 + 1 ={{2, 1}, {241, 1}, {18913, 1}, {184417, 1}, . . .}
1744 + 1 ={{2, 1}, {353, 1}, {41761, 1}, {4578289, 1}, . . .}
1748 + 1 ={{2, 1}, {97, 1}, {257, 1}, {1120513, 1}, {1801601, 1}, {53160769, 1}, . . .}
1756 + 1 ={{2, 1}, {113, 1}, {337, 1}, {18913, 1}, {184417, 1}, . . .}
1766 + 1 ={{2, 1}, {5, 1}, {29, 1}, {89, 1}, {397, 1}, {19801, 1}, . . .}
1770 + 1 ={{2, 1}, {5, 2}, {29, 1}, {281, 1}, {21881, 1}, {63541, 1}, . . .}
1786 + 1 ={{2, 1}, {5, 1}, {29, 1}, {173, 1}, {2237, 1}, {26673589, 1}, . . .}
1796 + 1 ={{2, 1}, {193, 1}, {1409, 1}, {165569, 1}, {2533128442908097, 1}, . . .}
1798 + 1 ={{2, 1}, {5, 1}, {29, 1}, {197, 1}, {578789, 1}, {5766433, 1}, . . .}
17116 + 1 ={{2, 1}, {233, 1}, {41761, 1}, {244297, 1}, . . .}
17134 + 1 ={{2, 1}, {5, 1}, {29, 1}, {269, 1}, {522580700249, 1}, . . .}
17138 + 1 ={{2, 1}, {5, 1}, {29, 1}, {277, 1}, {83233, 1}, {102121, 1}, . . .}
17156 + 1 ={{2, 1}, {73, 1}, {313, 1}, {1321, 1}, {41761, 1}, {72337, 1}, . . .}
17158 + 1 ={{2, 1}, {5, 1}, {29, 1}, {317, 1}, {6637, 1}, {155473, 1}, . . .}
17200 + 1 ={{2, 1}, {241, 1}, {401, 1}, {18913, 1}, {184417, 1}, {3583912721, 1}, . . .}
17224 + 1 ={{2, 1}, {449, 1}, {1409, 1}, {165569, 1}, . . .}
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