
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 25, 2019, No. 3, 198–206
DOI: 10.7546/nntdm.2019.25.3.198-206

On the software computation of the formulae
for the n-th prime number

Dimitar G. Dimitrov
Faculty of Mathematics and Informatics

Sofia University
5 James Bourchier Str., Sofia, Bulgaria

e-mail: dgdimitrov@fmi.uni-sofia.bg

Received: 27 January 2019 Revised: 14 September 2019 Accepted: 16 September 2019

Abstract: Many formulae for calculating the n-th prime number exist. In this paper, a com-
parison of the computation time of different existing formulae is made.
Keywords: Prime number, Arithmetic formula, Comparison, Software computation.
2010 Mathematics Subject Classification: 11A41, 11A25, 11-04.

1 Introduction

A primary focus of number theory is the study of prime numbers. The problem of finding a
formula for calculating the n-th prime number is very old and has always been of interest to
researchers.

Following are some well-known formulae:

pn = 1 +
2n∑
m=0

 n

m∑
j=1

⌊
cos2π

(j − 1)! + 1

j

⌋

1/n
 (1)

198

pn = 1 +
2n∑
m=0

n

1 +
m∑
j=2

sin2

π{(j − 1)!}2

j

sin2

(
π

j

)

1/n

(2)

pn = 1 +
2n∑
m=0

 n

1 +
m∑
j=2

⌊
(j − 1)! + 1

j
−

⌊
(j − 1)!

j

⌋⌋

1/n
 (3)

pn =

1− 1

log2
log

(
− 1

2
+
∑
d|Pn−1

µ(d)

2d − 1

) (4)

where µ is the Möbius function and Pn−1 is the product of all previously calculated primes
p1, ..., pn−1.

Formulae (1), (2) are defined by Willans [10], (3) is a modification which uses an alternative
formula for the prime-counting function π introduced by J. Minač [10], and (4) is a recurrent
formula by J. M. Gandhi [6].

In [2–5] K. Atanassov introduced the following 10 formulae:

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(j − 1− ϕ(j))

)
(5)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(ψ(j)− j − 1)

)
(6)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(σ(j)− j − 1)

)
(7)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

fr

(
j

(j − 1)!

))
(8)

199

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

sg(j − η(j))

)
(9)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

⌊
1

δ(j)

⌋)
(10)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

⌊
1

τ(j)− 1

⌋)
(11)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

⌊
1

ω(j)

⌋)
(12)

pn =

C(n)∑
i=0

sg

(
n−

i∑
j=2

⌊
1

Ω(j)

⌋)
(13)

pn =

C(n)∑
i=0

sg

(
n− πP(i)

)
(14)

where n =
k∏
i=1

pαi
i is the canonical representation of a natural number n > 1,

C(n) =

⌊
n2 + 3n+ 4

4

⌋
,

sg(x) =

0, if x ≤ 0

1, if x > 0
,

sg(x) =

0, if x 6= 0

1, if x = 0
,

ϕ(n) =
k∏
i=1

pαi−1
i (pi − 1),

ψ(n) =
k∏
i=1

pαi−1
i (pi + 1),

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
,

200

fr

(
p

q

)
=

0, if
p

gcd(p, q)
= 1

1, else
,

η(n) =
k∑
i=1

αipi,

δ(n) =
k∏
i=1

αip
α1
1 ...p

αi−1

i−1 p
αi−1

i p
αi+1

i+1 ...p
αk
k ,

τ(n) =
k∏
i=1

(1 + αi),

ω(n) =

min(α1, ..., αk)k, if k > 1

1, if k = 1
,

Ω(n) =
k∑
i=1

αi,

πP(n) =

0, if n < 2

πP(n− 1) + P(n), else
,

P(n) =

1, if n is prime

0, if n is composite
.

We will also include some recently developed formulae. S. M. Ruiz introduced the following
three formulae [11, 12]:

pn = 1 +

b2nlogn+2c∑
k=1

(
1−

⌊
1

n

k∑
j=2

(
1 +

⌊
1

j

(
2−

j∑
s=1

(⌊j
s

⌋
−
⌊
j − 1

s

⌋))⌋)⌋)
, (15)

pn = 1 +

b2nlogn+2c∑
k=1

(
1−

⌊
1

n

k∑
j=2

⌊
lcm(1, 2, ..., j)

j · lcm(1, 2, ..., j − 1)

⌋⌋)
, (16)

pn = bnlognc+

bnlogn+n(log(logn)−0.5)+3c∑
k=bnlognc

(
1−

⌊
1

n

k∑
j=2

⌊
lcm(1, 2, ..., j)

j · lcm(1, 2, ..., j − 1)

⌋⌋)
. (17)

The newest formula in the present research was developed by I. Kaddoura and S. Abdul-
Nabi [7]:

201

pn = 3 + 2 bnlognc −
b2nlognc+2∑

x=7

4 +
bx−1

6 c∑
j=1

bS(6j + 1)c+
bx+1

6 c∑
j=1

bS(6j − 1)c

n

 , (18)

where

S(x) = −

⌊
b√xc

6

⌋
+1∑

k=1

(⌊⌊
x

6k + 1

⌋
−

x

6k + 1

⌋
+

⌊⌊
x

6k − 1

⌋
−

x

6k − 1

⌋)

2

(⌊
b
√
xc

6

⌋
+ 1

) .

2 Methodology

All of the listed formulae have been implemented in C++ strictly following their definitions. No
optimizations that change their definitions have been made.

The time used for calculating some of the mathematical functions such as µ(d) greatly
depends on the specific implementations chosen. A list of all implementation details follows.

Some formulae directly or indirectly check whether a given natural number is prime or com-
posite. An efficient AKS primality test [1] has been chosen. The algorithm requires polynomial
time.

The following pseudocode represents the algorithm used to calculate the Möbius function [8]:

function MOEBIUS(n) . Where n ∈ N and n > 0

if n = 1 then return 1
end if
if n = 2 then return -1
end if
p← 0

for all i ∈ {2} ∪ {m ∈ N|m ≥ 3 ∧m mod 2 = 1 ∧m2 ≤ n} do
if n mod i = 0 then

n← n/i

p← p+ 1

if n mod i = 0 then return 0
end if

end if
end for
if p mod 2 = 0 then

return -1
else

202

return 1
end if

end function

The following is a pseudocode for finding the prime factorization of a natural number n [9]:

function DECOMPOSE(n) . Where n ∈ N and n > 1

k ← 0

for all i ∈ {2} ∪ {m ∈ N|m ≥ 3 ∧m mod 2 = 1 ∧m2 ≤ n} do
c← 0

while n mod i = 0 do
c← c+ 1

n← n/i

end while
if c > 0 then

result[k]← (i, c)

k ← k + 1

end if
end for
if n > 2 then

result[k]← (n, 1)

k ← k + 1

end if
return result

end function
The number xn, where x ∈ Z and n ∈ N, is calculated using the following well known fast

exponential algorithm:

xn =

1, if n = 0

x.xn−1, if n is odd

(x
n
2)2, if n is even

,

The greatest common divisor (gcd) of two positive natural numbers a and b is calculated
using the Stein’s binary GCD algorithm [13]. It is very efficient compared to the conventional
Euclidean algorithm. This algorithm is also used in the implementation of the least common
multiple function used in (16) and (17).

The source code was compiled with the gcc compiler on Ubuntu 16.04 LTS operating system.
Testing of the formulae was performed on a desktop computer with an Intel i7 CPU.

1024-bit integer data types from the Boost Multiprecision Library were used (uint1024 t

and int1024 t) so the implementation can handle large intermediate values such as factorials
and powers of two. For example, the largest integer for which factorial can be calculated using
32 bits is only 12, using 128 bits – 34, and so on. As a result, larger data types are needed even
for relatively small values of n.

203

Formula n = 4 n = 9 n = 10 n = 20 n = 30

(1) 0.000187 3.256814 27.839838 time out time out
(2) 0.000170 3.429308 28.946541 time out time out
(3) 0.000135 3.396208 28.492246 time out time out
(4) 0.000039 1.055240 23.841273 time out time out
(5) 0.000039 0.000388 0.000578 0.008815 0.044728
(6) 0.000038 0.000383 0.000579 0.008401 0.044321
(7) 0.000041 0.000492 0.000839 0.010981 0.055538
(8) 0.000167 0.005568 0.008969 0.605112 7.757162
(9) 0.000027 0.000333 0.000451 0.007046 0.036736

(10) 0.000030 0.000385 0.000545 0.008474 0.043577
(11) 0.000025 0.000285 0.000404 0.006202 0.032856
(12) 0.000019 0.000264 0.000371 0.005800 0.030580
(13) 0.000016 0.000229 0.000335 0.005386 0.027922
(14) 0.000006 0.000012 0.000014 0.000067 0.000128
(15) 0.000166 0.004771 0.008037 0.116386 0.578732
(16) 0.003338 0.210815 0.418192 15.278138 time out
(17) 0.000508 0.026317 0.040497 1.371085 10.674773
(18) 0.000039 0.000441 0.000656 0.004996 0.017033

Table 1. Results for very small values of n

Each combination of a formula and a value of n was executed 10 times and then the average
time in seconds was calculated.

3 Results

Table 1 shows the measured times for small values of n. A time out was set to 60 seconds.
As expected, formulae (1)−(4) which use sums with 2n summands, as well as (8), (16) and

(17) are significantly slower than the other formulae. Also for these formulae with increasing
n, the number of digits required for intermediate numbers increases drastically and therefore
calculations will be slower. For that reason, these formulae were excluded from further testing
with larger values. Results can be seen in Table 2. Time out was set to 300 seconds.

It is important to note that the presented results are large because 1024-bit integer types were
used. This was needed because, as already pointed, some formulae contain factorials and powers
of two which require a large number of digits even for small values of n. If we use standard 32
or 64-bit integers, calculations will be faster. Table 3 shows the results when 64-bit data types are
used.

204

Formula n = 100 n = 200

(5) 7.611714 167.108847
(6) 7.499903 163.355355
(7) 9.037541 188.893689
(9) 6.611778 148.642090

(10) 7.491476 163.455926
(11) 6.104673 140.214233
(12) 5.820569 135.284282
(13) 5.541861 130.774057
(14) 0.001620 0.008684
(15) 50.872570 time out
(18) 0.494740 3.383555

Table 2. Results for larger values of n

Formula n = 10 n = 100 n = 200 n = 1000 n = 20000

(5) 0.000030 0.309244 7.135392 time out time out
(6) 0.000024 0.307875 7.115837 time out time out
(7) 0.000030 0.371489 8.190629 time out time out
(9) 0.000022 0.275384 6.708046 time out time out

(10) 0.000036 0.322498 7.475469 time out time out
(11) 0.000021 0.275238 6.627389 time out time out
(12) 0.000021 0.258818 6.370391 time out time out
(13) 0.000020 0.271519 6.572727 time out time out
(14) 0.000002 0.000054 0.000321 0.027147 113.856200
(18) 0.000049 0.022168 0.158724 14.874442 time out

Table 3. Results for implementation with 64-bit data types

4 Conclusion

The time needed for calculating each formula greatly depends on software implementation details
such as data types and algorithms for formulae like sin, log, µ, etc. The present research shows
that Atanassov’s formula (14) is the fastest one at least for values of n up to 20000. It inherits
its efficiency as an immediate consequence of applying the AKS prime testing formula to find
πP(i). The most recent formula (18) developed by Kaddoura and Abdul-Nabi is also fast, and it
took second place.

205

References

[1] Agrawal, M., Kayal., N., & Saxena, N. (2004). PRIMES is in P , Annals of Mathematics,
160 (2), 781–793.

[2] Atanassov, K. (2001). A new formula for the n-th prime number, Comptes Rendus de
l’Academie Bulgare des Sciences, 54 (7), 5–6.

[3] Atanassov, K. (2009). A remark on an arithmetic function. Part 3, Notes on Number Theory
and Discrete Mathematics, 15 (4), 23–27.

[4] Atanassov, K. (2013). A formula for the n-th prime number, Comptes Rendus de l’Academie
bulgare des Sciences, 66, 4, 503–506.

[5] Atanassov, K., Formulas for the n-th prime number, Unpublished manuscript.

[6] Gandhi, J. (1971). Formulae for the nth prime, Proc. Washington State Univ. Conf. on Num-
ber Theory, Washington State Univ., 96–101.

[7] Kaddoura, I., & Abdul-Nabi S. (2012). On Formula to Compute Primes and the nth Prime,
Applied Mathematical Sciences, 6, 76, 3751–3757.

[8] Mahapatra, S. (2018). Program for Mobius Function, GeeksForGeeks.org, Available online
at: https://www.geeksforgeeks.org/program-mobius-function/.

[9] Rath B. (2019). Efficient program to print all prime factors of a given number,
GeekForGeeks.org, Available online at: https://www.geeksforgeeks.org/

print-all-prime-factors-of-a-given-number/.

[10] Ribenboim, P. (1995). The New Book of Prime Number Records, Springer, New York.

[11] Ruiz, S. M. (2000). A functional recurrence to obtain the prime numbers using the Smaran-
dache Prime Function, Smarandache Notions J., Vol. 11, p. 56.

[12] Ruiz, S. M. (2005). A new formula for the nth prime. Smarandache Notions Journal, Vol.
15.

[13] Stein, J. (1967). Computational problems associated with Racah algebra, Journal of Com-
putational Physics, 1 (3), 397—405.

206

