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1 Introduction

Quaternions are the noncommutative normed division algebra over the real numbers and they are
represented in the form of hyper-complex numbers with three imaginary components;

q = (a0, a1, a2, a3) = a0 + a1i+ a2j + a3ij, (1)

where i, j and ij = k are mutually perpendicular unit bivectors and a0, a1, a2, a3 are real
numbers [8]. These numbers obey the famous multiplication rules discovered by Hamilton in
1843; i2 = j2 = k2 = ijk = −1. Hamilton quaternions form a division algebra. Later, in
1892, Segre defined bicomplex numbers [18] which used to be neglected because of their zero
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divisors, but now they are attracting the researchers’ attention. Since the mathematical structure
of quantum mechanics is studied on the complex number field, there are many authors working
on bicomplex numbers in this area (see, [1, 11, 13–17]). Also, some researchers have studied al-
gebraic, geometric, topological and dynamic properties of bicomplex numbers (see, [11, 16,17]).

The set of bicomplex numbers BC, is defined as follows [14]:

BC = {z1 + z2j |z1, z2 ∈ BC, j2 = −1}. (2)

Any element b of BC is actually written, for t = 1, 2, 3, 4 and at ∈ R, as b = a1+a2i+a3j+a4ij.

The element b = 1 is the unit element. And the following equalities are known among other basis
elements {1, i, j, k}:

ij = ji = k, ik = ki = −j, jk = kj = −i (3)

and i2 = j2 = −1, (ij)2 = 1, where i, j and ij = k are imaginary and hyperbolic units,
respectively. Two bicomplex numbers are equal if all their components are equal, one by one.
The sum of two bicomplex numbers is defined by summing their components. The addition
operation in the set of bicomplex numbers is both commutative and associative. Zero is the null
element, and the inverse of the element b with respect to the addition is −b which is defined as
having all the coefficients of b changed in their signs. This implies that (BC,+) is an Abelian
group. The bicomplex product is obtained by taking into account the multiplication of the base
elements {1, i, j, k}.

In BC, using imaginary and hyperbolic units, three different conjugate definitions can also be
given as b̄i = a1 − a2i+ a3j − a4k, b̄j = a1 + a2i− a3j − a4k and b̄ij = a1 − a2i− a3j + a4k.

Due to the different conjugates, there are three different norm definitions as

|b|2i = bb̄i = (|z1|2 − |z2|2) + 2Re(z1z̄2)j, (4)

|b|2ij = bb̄ij = |z1|2 + |z2|2 − 2Im(z1z̄2)k, (5)

and
|b|2j = bb̄j = z21 + z22 . (6)

In this work, we remind some properties of bicomplex numbers by examining the conju-
gates and norms. Then, we introduce the set of bicomplex numbers with coefficient in complex
Fibonacci sequence, and give some fundamental properties of the defined numbers. Also, we
obtain some generalized identities associated with this sequence, such as Catalan, d’Ocagne,
Honsberger, etc. identities.

2 Bicomplex numbers whose coefficients are
from the complex Fibonacci sequence

As it is well-known the n-th Fibonacci and Lucas quaternions were defined by Horadam, for
n ≥ 0,

Qn = Fn + iFn+1 + jFn+2 + kFn+3, (7)
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and
Kn = Ln + iLn+1 + jLn+2 + kLn+3, (8)

respectively [9, 10]. In [6], Halıcıhave defined complex Fibonacci quaternions and gave some
important and basic properties. Then, in [4], the authors have considered quaternion and symbol
algebras and studied their properties. In [15], Nurkan and Guven defined the n-th bicomplex
Fibonacci and Lucas numbers using the basis elements of bicomplex numbers, as follows:

BFn = Fn + iFn+1 + jFn+2 + kFn+3 (9)

and
BLn = Ln + iLn+1 + jLn+2 + kLn+3, (10)

respectively, where Fn and Ln are the n-th Fibonacci and Lucas numbers. The authors gave
Binet’s formula involving these numbers. Also, they obtained some important identities and
relations involving these numbers. A similar sequence has been studied in [2, 3] by Deveci and
Shannon. And then, in [7], bicomplex Fibonacci numbers and a generalization of theirs has been
studied. Motivated by these references, in this section we firstly examine bicomplex numbers
whose coefficients are from the Fibonacci sequence.

Let us use BCF notation to represent the set of bicomplex numbers whose coefficients are
from the Fibonacci sequence. That is, BCF is

BCF = {BFn|BFn = Fn + Fn+1i+ Fn+2j + Fn+3k}, (11)

where BFn = Fn + iFn+1 + jFn+2 + kFn+3. The algebraic operations in the set BCF are as
follows:

BFn ±BFm = (Fn ± Fm) + i(Fn+1 ± Fm+1) + j(Fn+2 ± Fm+2) + k(Fn+3 ± Fm+3),

BFnBFm = (FnFm − Fn+1Fm+1 − Fn+2Fm+2 + Fn+3Fm+3) +Xi+ Y j + Zk,

where X, Y, Z are

X = FnFm+1 + Fn+1Fm − Fn+2Fm+3 − Fn+3Fm+2,

Y = FnFm+2 − Fn+1Fm+3 + Fn+2Fm − Fn+3Fm+1,

Z = FnFm+3 + Fn+1Fm+2 + Fn+2Fm+1 + Fn+3Fm.

The conjugates of the n-th Fibonacci bicomplex number, BFn, with respect to i, j, k units can
be defined as follows:

BF i
n = Fn − Fn+1i+ Fn+2j − Fn+3k; i− conjugate, (12)

BF j
n = Fn + Fn+1i− Fn+2j − Fn+3k; j − conjugate, (13)

BF k
n = Fn − Fn+1i− Fn+2j + Fn+3k; k − conjugate. (14)

From the above definitions of conjugates, we get

BF i
n = FnBF

i
1 + Fn−1BF

i
0, (15)
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BF j
n = FnBF

j
1 + Fn−1BF

j
0 , (16)

BF k
n = FnBF

k
1 + Fn−1BF

k
0 , (17)

where BF1 = 1 + i+ 2j + 3k and BF0 = i+ j + 2k. There are relationships among bicomplex
numbers, their conjugates and Fibonacci numbers Fn. Let us give some of these relationships:

1

2
(BFn +BF i

n) = Fn + jFn+2 = (1 + 2j)Fn + jFn−1, (18)

1

2
(BFn +BF j

n) = Fn + iFn+1 = (1 + i)Fn + iFn−1, (19)

1

2
(BFn +BF k

n ) = Fn + kFn+3 = (1 + 3k)Fn + 2kFn−1, (20)

1

2
(BF i

n +BF j
n) = Fn − kFn+3 = (1− 3k)Fn − 2kFn−1, (21)

1

2
(BF i

n +BF k
n ) = Fn − iFn+1 = (1− i)Fn − iFn−1, (22)

1

2
(BF j

n +BF k
n ) = Fn − jFn+2 = (1− 2j)Fn − jFn−1. (23)

Thus, by using the definitions of BF i
n, BF

j
n, BF

k
n we can calculate the norms of the elements

BFn in BCF :
(|BFn|i)2 = BFnBF

i
n = −L2n+3 + 2jF2n+3, (24)

(|BFn|j)2 = −(F2n+3 − 2Fn+2Fn+1) + 2i(F2n+3 + 2FnFn+1), (25)

(|BFn|k)2 = BFnBF
k
n = 3F2n+3 + 2k(−1)n+1. (26)

In [9], Horadam defined the n-th complex Fibonacci number as

Cn = Fn + iFn+1, (27)

where i2 = −1. Also, Horadam examined the quaternion recurrence relations [10]. In 2012,
Halıcıdefined the quaternions with components from Fibonacci numbers and gave some important
fundamental properties of them [5].

In this study, following Nurkan [15] and Halıcı [5], we define bicomplex numbers which have
coefficients in complex Fibonacci numbers. We investigate some important properties of these
numbers and gave their Binet formula. Then, we use the Binet’s formula to show some impor-
tant properties of the newly defined numbers. Also, we get the several well-known generalized
identities related to these numbers.

Let us define n-th bicomplex number, which has its coefficients from the complex Fibonacci
numbers, as follows:

Bn = Cn + Cn+1i+ Cn+2j + Cn+3k, (28)

where n is an integer, Cn = Fn + iFn+1 and {1, i, j, k} are the basis elements in BC. By the aid
of some elementary calculations, we find the following recursive relation for bicomplex numbers:

Bn +Bn+1 = Cn+2 + iCn+3 + jCn+4 + kCn+5 = Bn+2. (29)
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We denote the set of numbers Bn by BCCF :

BCCF = {Bn|Bn = Cn + Cn+1i+ Cn+2j + Cn+3ij, i
2 = j2 = −1, k2 = 1}. (30)

Note that any bicomplex number Bn consists of scalar and vector parts:

Bn = SBn + VBn = T0 + T,

where T0 and T are T0 = Cn = Fn + iFn+1, T = Cn+1i + Cn+2j + Cn+3k, respectively. Using
this representation for Bn, the addition and multiplication operations can be done more easily.
Indeed, if we write Bn = T0 + T and Bn+1 = T

′
0 + T

′ , then we write

Bn +Bn+1 = (T0 + T
′

0) + (T + T
′
), (31)

BnBn+1 = T0T
′

0 + T0T
′
+ T

′

0T − T.T
′
+ T × T ′

, (32)

where (.) and (×) denote the dot and vector product, respectively. According to the imaginary
units three different norms can be given in the set BCCF as follows:

i) NBn
i = F 2

n − 2F 2
n+2 + F 2

n+4 + 2(ia1 + jb1 − kc1) (33)

ii) NBn
j = F 2

n − 4F 2
n+1 + 2F 2

n+2 − 4F 2
n+3 + F 2

n+4 − 2Fn+2Fn+4 − 4i(F 2
n+1 + F 2

n+3) (34)

iii)NBn
k = F 2

n − F 2
n+4 + 2(ia2 − jb2 + kc2) (35)

where
a1 = (F 2

n+1 − F 2
n+2 − Fn+2Fn+1 − Fn+2Fn+3 − F 2

n+3),

c1 = FnFn+3 + Fn+1Fn+2 + Fn+1Fn+4 + Fn+2Fn+3,

b1 = FnFn+2 − Fn+2Fn+4,

a2 = 3F 2
n + 12FnFn+1 + 8F 2

n+1,

c2 = FnFn+3 − FnFn+4 + F 2
n+2,

b2 = FnFn+4 − F 2
n+2.

Since Fn 6= 0, the above all norms cannot be zero. Thus, we get i, j, k− inverses for the
number Bn as follows:

(Bi
n)−1 =

Bi
n

NBn
i ; (Bj

n)−1 =
Bj

n

NBn
j ; (Bk

n)−1 =
Bk

n

NBn
k
. (36)

The following theorem gives Binet formula for the n-th bicomplex number whose coefficients
are from the complex Fibonacci numbers.

Theorem 2.1 (Binet Formula). For n ≥ 0, the formula giving the n-th number Bn is

Bn = B0Fn−1 +B1Fn =
1√
5

(ααn + ββn), (37)

where
α = α(2i− 1) + α3(2k − j), β = β(1− 2i) + β3(j − 2k). (38)
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Proof. The general term of the sequence BCCF is

Bn = Aαn +Bβn, (39)

where constants A and B are obtained by using the initial conditions as

A =
B1 − βB0√

5
, B =

αB0 −B1√
5

. (40)

If we substitute these values in the equation, then we get

Bn =
B1α

n − βαnB0 + αβnB0 −B1β
n

√
5

, (41)

Bn =
1√
5
{(B1 − βB0)α

n + (αB0 −B1)β
n} , (42)

Bn =
1√
5

(ααn + ββn), (43)

where
α = α(2i− 1) + α3(2k − j), β = β(1− 2i) + β3(j − 2k). (44)

Thus, the theorem is proved.

The generating function is equivalent to the Binet formula which helps to find any element.
That is, the Binet formula can be controlled by the generating function.
The following theorem gives the generating function for the bicomplex number with coefficients
from complex Fibonacci numbers.

Theorem 2.2 (Generating Function). For Bn, the generating function is

G(t) =
(−1 + 2i+ (2 + t)(−j + 2k)

(1− t− t2)
. (45)

Proof. The generating function is

G(t) = B0 +B1t+B2t
2 + . . .+Bnt

n + . . . . (46)

If we multiply this equation by −t and −t2, that is

−tG(t) = −(B0t+B1t
2 +B2t

3 + . . .+Bnt
n+1 + . . .) (47)

and
−t2G(t) = −(B0t

2 +B1t
3 +B2t

4 + . . .+Bnt
n+2 + . . .), (48)

then, making the necessary steps to find G(t) with the help of the recurrence relation Bn, we get

G(t) =
B0 + (B1 −B0)t

1− t− t2
, (49)

where
B0 = −1 + 2i− 2j + 4k,B1 = −1 + 2i− 3j + 6k (50)

are the initial values for Bn. Thus we find that

G(t) =
(−1 + 2i+ (2 + t)(−j + 2k)

(1− t− t2)
.

So, the proof is complete.
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Corollary 2.2.1. For the numbers Bn, Bn, B
i
n, B

j
n and Bk

n the following equalities are satisfied:

1

2
(Bn +Bn) = Qn, (51)

(Bi
n +Bj

n +Bk
n) = 3Cn − iCn+1 − jCn+2 − kCn+3, (52)

1

4
(Bn +Bi

n +Bj
n +Bk

n) = Cn. (53)

Corollary 2.2.2. For the negative integers n, B−n is as follows:

B−n = (−1)n {(Fn−2 − Fn) + 2Fn−1i+ (Fn−4 − Fn−2)j + (Fn+3 + Fn−3)k} . (54)

Proof. Using the identity F−n = (−1)n+1Fn, we write

B−n =
{

(−1)n+1Fn + i(−1)n+2Fn−1

}
+
{

(−1)n+2Fn−1 + i(−1)n+3Fn−2

}
i

+
{

(−1)n+3Fn−2 + i(−1)n+4Fn−3

}
j +

{
(−1)n+4Fn−3 + i(−1)n+5Fn−4

}
k.

Making the necessary arrangements, we get

B−n = (−1)n((−Fn + iFn−1)+(Fn−1− iFn−2)i+(−Fn−2 + iFn+3)j+(Fn−3− iFn−4)k) (55)

which is the desired result.

Theorem 2.3 (Cassini’s Identity). For the elements Bn of the sequence BCCF , we have

Bn−1Bn+1 −B2
n = 6(−1)n−1(3j − 4k). (56)

Proof. We prove this claim by direct calculation. For this purpose, using the Binet formula for
the numbers Bn, we can write

Bn−1Bn+1 −B2
n =

1√
5

(ααn−1 + ββn−1)
1√
5

(ααn+1 + ββn+1)− 1

5
(ααn + ββn)2

Bn−1Bn+1 −B2
n =

1

5
(ααn−1ββn+1 + ββn−1ααn+1 − 2ααnββn).

Making the necessary arrangements and calculations, we obtain

Bn−1Bn+1 −B2
n = (−1)n−1αβ.

Calculating the value αβ, we find that

αβ = 6(3j − 4k). (57)

Thus, the proof is completed.

Theorem 2.4 (Catalan’s Identity). For the integers n ≥ k and the numbers Bn, the following
equality is true:

Bn+kBn−k −B2
n =

6

5
(−1)n(3j − 4k){(−1)k(αk + βk)2 − 4}. (58)
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Proof. Let us use Binet formula forBn to prove this theorem. Hence, the formulaBn+kBn−k−B2
n

is equal to
1√
5

(ααn+k + ββn+k)
1√
5

(ααn−k + ββn−k)− 1

5
(ααn + ββn)2.

Thus, we obtain

1

5
(α2α2n + αβαn+kβn−k + βαβn+kαn−k + β2β2n − α2α2n − 2ααnββn − β2β2n).

By completing the necessary abbreviations and procedures, we get

Bn+kBn−k −B2
n =

1

5
αβ(αn+kβn−k + βn+kαn−k − 2(−1)n).

On the other hand, calculating the

αn+kβn−k + βn+kαn−k − 2(−1)n = (−1)n{(−1)kαk + βk)2 − 4},

we find that
Bn+kBn−k −B2

n =
6

5
(−1)n(3j − 4k){(−1)k(αk + βk)2 − 4}.

This completes the proof.

Taking k = 1 in Theorem 2.6, we obtain the Cassini’s Identity for the bicomplex numbers
BCCF .

The following theorem gives Honsberger formula involving the numbers Bn in BCCF

Theorem 2.5 (Honsberger Formula). For the integers n, k and the elements Bn of sequence
BCCF , the following formula is satisfied:

Bk−1Bn +BkBn+1 =
1

5
{α2αk−1+n(1 + α2) + β2βk−1+n(1 + β2)}. (59)

Proof. Using the Binet formula for Bk−1Bn +BkBn+1 for the right-hand side of above equation,
we can write

1√
5

(ααk−1 + ββk−1)
1√
5

(ααn + ββn) +
1√
5

(ααk + ββk)
1√
5

(ααn+1 + ββn+1)

=
1

5
(α2αk−1+n + ααk−1ββn + ββk−1ααn + β2βk−1+n)

+
1

5
(α2αk+n+1 + ααkββn+1 + ββkααn+1 + β2βk+n+1).

So, we can now get

1

5
{α2(αk−1+n + αk+1+n) + αβ(αk−1βn + βk−1αn + αkβn+1 + βkαn+1)

+β2(βk−1+n + βk+1+n)}.

We can now get that

αβ(αk−1βn + βk−1αn + αkβn+1 + βkαn+1) = 0.

Thus, the claim is proved.
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Theorem 2.6 (d’Ocagne’s Identity). For the integers m,n and the elements Bn of sequence
BCCF , we have

BmBn+1 −BnBm+1 =
6

5
(3j − 4k)(−1)m(αn−m−1(α2 + 1) + βn−m−1(β2 + 1)). (60)

Proof. Let us start by considering the right-hand side of the above equation:

=
1√
5

(ααm + ββm)
1√
5

(ααn+1 + ββn+1)− 1√
5

(ααn + ββn)
1√
5

(ααm+1 + ββm+1)

=
1

5
{(ααm + ββm)(ααn+1 + ββn+1)− (ααn + ββn)(ααm+1 + ββm+1)}.

After some algebraic manipulations, we obtain

BmBn+1 −BnBm+1 =
1

5
αβ(αmβn+1 + βmαn+1 − αnβm+1 − βnαm+1).

Calculating the following equality, we have

αmβn+1 + βmαn+1 − αnβm+1 − βnαm+1 = (−1)mαn−m−1(α2 + 1) + βn−m−1(β2 + 1).

Thus, we get

BmBn+1 −BnBm+1 =
6

5
(3j − 4k)((−1)mαn−m−1(α2 + 1) + βn−m−1(β2 + 1)).

Thus, the proof is completed.

Theorem 2.7 (Vajda’s Identity). For the integers m,n, k and the number Bn, we have

Bn+mBn+k −BnBn+m+k =
6(−1)n

5
(3j − 4k)(αk − βk)(βm − αm). (61)

Proof. The formula
Bn+mBn+k −BnBn+m+k

is equal to this:

1

5
{(ααn+m + ββn+m)(ααn+k + ββn+k)− (ααn + ββn)ααn+m+k + ββn+m+k)}.

If we assume that some arrangements and arithmetic operations are performed, then we get:

Bn+mBn+k −BnBn+m+k =
(−1)n

5
αβ{αm(βk − αk) + βm(αk − βk)}, (62)

Bn+mBn+k −BnBn+m+k =
6(−1)n

5
(3j − 4k)(αk − βk)(βm − αm). (63)

Thus, the correctness of the claim is seen.
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Theorem 2.8 (Gelin–Cesaro Identity). For the numbers Bn, n ≥ 2, the following identity is
satisfied:

Bn−2Bn−1Bn+1Bn+2 −B4
n =

3

50
αβ

{
(−1)n(α2α2n + β2β2n)− 15

}
. (64)

Proof. Let us start by considering the right-hand side of equation

Bn−2Bn−1Bn+1Bn+2 −B4
n (65)

and use the formula
Bn =

1√
5
{(B1 − βB0)α

n + (αB0 −B1)β
n} . (66)

Then, we have

1

25

{
(ααn−2 + ββn−2)(ααn−1 + ββn−1)(ααn+1 + ββn+1)(ααn+2 + ββn+2)

}
− 1

25

{
(ααn + ββn)4

}
=

1

25
(α3βα3nβn(α−1β + αβ−1 + α2β−2 + α−2β2 − 4) + α2β2(αβ−1 + α3β−3

+ α−3β3 + α−1β − 4) + αβ3αnβ3n(α2β−2 + α−2β2 + α−1β + αβ−1 − 4)).

Making the necessary arrangements, we obtain that Bn−2Bn−1Bn+1Bn+2 −B4
n is equal to

3

50
αβ

{
(−1)n(α2α2n + β2β2n)− 15

}
. (67)

Thus, the claim is true.

Conclusion

In this work, we defined a new sequence of bicomplex numbers. The elements of this sequence
have the coefficients from complex Fibonacci numbers. We examined some important properties
of these newly defined numbers and gave their Binet formula. By the help of the Binet formula,
we also obtained the respective generalizations of some well-known important identities involving
these numbers.
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