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1 Introduction

In 1971, Horadam studied on the Pell and Pell-Lucas sequences and he gave Cassini-like formula
as follows [13]:
Poi1Pyy — P = (—-1)" (D
and Pell identities
( PP +P_P,=PF,,
P,(Pys1+ Py1) = Poyp
Popyr+ Poy =2P2, = 2P — (—1)"
P+ Priy = P )
Py + Py =5(Pl + Ply)
Pn—i—a Pn+b - Pn Pn—i—a—l—b = (_1)n Pn Pn+a+b
P_,=(-1)""p,
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and in 1985, Horadam and Mahon obtained Cassini-like formula as follows [14]
Gnt1 Qo1 — qp = 8(=1)". (3)

Many kinds of generalizations of the Pell sequence have been presented in the literature [3,
10, 15]. Furthermore, Torunbalc1t Aydin and Koklii introduced the generalizations of the Pell
sequence in 2017 [3] as follows:

Po= ¢q,Pr=p Pyo=2p+gq, pge’Z

P, = 2P,_ P, > 2
n n—1 + n—2, N =2 (4)
or
In 2013, the k-Pell sequence { Py, }nen is defined by Catarino and Vasco [7] as follows
Po= 0, P =1
Popny1= 2P +kPppq, n>1 )

or
{Pentnen= {0,1,2 k+4,4k+8, k> +12k+16,...}

Here, £ is a positive real number. The studies that follows is based on the work of Catarino
and Vasco [5-9,20]. First the idea to consider Pell quaternions was suggested by Horadam in
paper [13]. In the literature, the reader can find Pell quaternions and studies on their properties
in[1,2,4,8,9,11,18,19].

In 2017, Catarino and Vasco introduced dual k-Pell quaternions and octonions [10] as follows:

R\k; = ]Sl;/n €o + Prny1 €1+ Prpgoea + Prpyses, (6)
where Pyp = P +€ Penits Pon=2Pon 1+ kPen o n>2,
eg =1, e = —1, ejej = —eje;, 1, j=1,2,3,
€40, 0e=c0=0, le=cl=¢, 2=0.
In 2018, Giil introduced k-Pell quaternions and k-Pell-Lucas quaternions [11] as follows:
Qpin = Pin + 1 Prny1 +J Penra+k Pings (7

and
QPLkn = Pk + 1Pkt + J P2 + K Prnas, ¥

where ¢, j, k£ satisfy the multiplication rules

=t =k=ijk=—1, ij=k=—ji, jk=i=—-kj, ki=j=—ik.

In 2018, Torunbalc1 Aydin introduced dual-complex Pell and Pell-Lucas quaternions [4] (sub-
mitted) as follows:

DC™ ={Qp, = Py +iPyi1 +&Pyys+ic Py | P,, n-th Pell number} )
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and
DC™ " = {Qpr, =Qn +iQni1 + € Quiz +ieQnis | @Qn,

(10)
n-th, Pell-Lucas number }

where
i2=—-1,e#0, e2=0, (ie)?=0.

Majernik has introduced the multi-component number system [16]. There are three types of
the four-component number systems which have been constructed by joining the complex, binary
and dual two-component numbers. Later, Messelmi has defined the algebraic properties of the
dual-complex numbers in the light of this study [17]. There are many applications for the theory
of dual-complex numbers. In 2017, Giing6r and Azak defined dual-complex Fibonacci and dual-
complex Lucas numbers and their properties [12].

Dual-complex numbers [17] w can be expressed in the form as

DC = {w =2 +ez|z, z € Cwhere £ =0, ¢ # 0}. (11)
Here if 2; = x1 + ¢ x5 and 25 = y; + 7 yo, then any dual-complex number can be written
W= + 1Ty +EY1 + 1Yo, (12)

i*=—1,e#0, =0, (ie)>=0.

Addition, substraction and multiplication of any two dual-complex numbers w; and w, are
defined by

wy £ we = (21 +e20) & (23 +e24) = (21 £ 23) + (20 + 24),

(13)
wy X we = (21 +€29) X (23 +¢e24) = 2123 + € (22 24 + 22 23).
On the other hand, the division of two dual-complex numbers is given by
w1 21 + €29
wy 2 tex’ a4

(21 +ez)(23 —e2g) z1 N 29 23 — 21 24
(23 +¢€24)(23 —€24) 23 22 ’

If Re(wsy) # 0, then the division g—; is possible. The dual-complex numbers are defined by the
basis {1,4,¢,ic}. Therefore, dual-complex numbers, just like quaternions, are a generalization
of complex numbers by means of entities specified by four-component numbers. But real and
dual quaternions are non-commutative, whereas, dual-complex numbers are commutative. The
real and dual quaternions form a division algebra, but dual-complex numbers form a commutative
ring with characteristics 0. Moreover, the multiplication of these numbers gives the dual-complex
numbers the structure of 2-dimensional complex Clifford algebra and 4-dimensional real Clifford
algebra.

The base elements of the dual-complex numbers satisfy the following commutative multipli-
cation scheme (Table 1).
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tel1e| —e |0 |0

Table 1. Multiplication scheme of dual-complex numbers

Five different conjugations can operate on dual-complex numbers [17] as follows:

w:$1+i$2+8y1+i5y2,

W = (r1 —ix2) Fe(yr —iy2) = (21)" +e(22)7,

*2_(931+2:E2)—5(yl+2y2)—zl—szg,
W= (1 —imy) —e(y1 —iy2) = 27 — €23, (15)
Y1+ 1Yo 29
_ 1 — 22
= (11 — 1 22)(1 — xl—l—ixQ) (z1)%( 521)
= (y1 +iy2) —e(z1 +ixzy) = 20 —e2y.

Therefore, the norm of the dual-complex numbers is defined as

Nt =l wt ) = a4+ 2¢Re(an 20),

NP =llw x w™ || = /2%,

N =llwx w*| = \/lzll2 — 2ielm(z 2), (16)

Nit = [lw x w™]| = /|1,

Ny = llw s w | = yf21 20 +2(2 = 212)

In this paper, the dual-complex k-Pell numbers and the dual-complex k-Pell quaternions will

be defined. The aim of this work is to present in a unified manner a variety of algebraic properties

of the dual-complex k-Pell quaternions as well as both the £-Pell numbers and the dual-complex

numbers. In particular, using five types of conjugations, all the properties established for dual-

complex numbers and k-Pell numbers are also given for the dual-complex k-Pell quaternions. In

addition, Honsberger Identity, d’Ocagne’s Identity, Binet’s Formula, Cassini’s Identity, Catalan’s

Identity for these quaternions are given.

2 The dual-complex £-Pell numbers

In this section, the dual-complex k-Pell, k-Pell-Lucas and modified k-Pell numbers can be

defined by the basis {1, i, ¢, i ¢ }, where i, ¢ and i ¢ satisfy the conditions

i2=—1,¢e#0, 2=0, (ie)*>=0,
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as follows
DCPyy, = (Pryp + 1 Prpt1) + € (Prpge + 1 Prpts)

. . (17)
= Ppn +1Pyni1 +€Prpyo +i€ Pppgs,
DCPLy,, = (PLgy+1PLgpi1) +¢ (PLk’n+2 + i PLjys) (18)
=PLyn+iPLypi1 +€PLlyyio+16Plyy,ys,
and
]D(CMPk,n = (MPkm +1 MPk,n+1) +¢€ (Mpk7n+2 +1 MPk,n_,_g) (19)

= MPk,n—FZ.MPkJH_l +€Mpk’n+2+i6MPk,n+3.

With the addition, substraction and multiplication by real scalars of two dual-complex k-
Pell numbers, the dual-complex k-Pell number can be obtained again. Then, the addition and
subtraction of the dual-complex k-Pell numbers are defined by

DCP;,, £ DCP;,, = (Pen £ Pim) + 1 (Prnt1 £ Pemt1)

: (20)
+e (Pk,n+2 + Pk,m+2) +1€ (Pk,n+3 + Pk,m+3)-
The multiplication of a dual-complex k-Pell number by the real scalar A is defined as
)\D(Cpkm = )\Pk,n + 1 )\Pk:,n—H + 8)\Pk7n+2 + 1€\ Pk,n—i—?r (21)

By using (Table 1) the multiplication of two dual-complex k-Pell numbers is defined by

DCPy,, x DCPyy = (Pewm Pem — Prpt1 Prmtt)
+i (Pint1 Prom + Pren Prm+1)
+e (P Prm+2 — Pent1 Pomats
+Print2 Pom — Pents Pemt1) (22)
+ie (Pent1 Pemy2 + Pen Pomes
+Prn+s Pem + Pento Pemet1)
— DCP,,, x DCP,,,.

Also, there exist five conjugations as follows:

]D)(CP,;"}TL = Pyp — 1 Pypy1 + € Pypgo — i€ Py s, complex-conjugation (23)

DCP,:?H = Pypn + 1 Pyni1 — € Pypy2 — 1€ P i3, dual-conjugation (24)

DCP,;SH = Pin — 1 Pypt1 — € Pypto + i€ Py i3, coupled-conjugation (25)
Pypto +1 Bypgs

D(CP]::;I :(Pk,n - iPk,n—f—l) ( 1—¢

Pipn+iPypi (26)
dual-complex-conjugation
]D(CP;’STL = Pypto +1 Py pi3 — € Py — 1€ Py py, anti-dual-conjugation. 227)
In this case, we can give the following relations:
Dcpk,n (D(CPk,n)*l = P]?,n + P]37n+1 +2¢ (Pk,n Pk,n+2 + Pk,nJrl Pk:,n+3)

(28)
= Pk2,n + Pk2,n+1 + 25P]€,2n+3’
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DCPy (DCPyp)™ = Py — Ppyr + 21 (P Prnta), (29)
DCPypn (DCPyn)® = P2, + PPy + 206 (Pen Penss — Penst Pens2)

=P+ P —4ie(-1)" k", G0

DCPy, (DCPyp)™ = Pfpy + P s 31)

DCPy,, + (DCPy,)* = 2(Pip + €Pinia), (32)

DCPyp, + (DCPy)* =2 (Pey + i Pepta), (33)

DCPyn + (DCPy,)* =2 (Prn +i€Prnys), (34)

(Pin + 1 Pepy1) (DCPep)™ = (P2, + P2yt — €Poonis +2ie(—=1)" k") G5)
= (Pen — i Pepg1) (DCP )™,

eDCPyy + (DCPyp)™ = Prnga + @ Prpys, (36)

DCP;p, — € (DCPyp)"* = Prp 4 i Prpg1. (37)

The norm of the dual-complex k-Pell numbers DCPF; ,, is defined in five different ways as

follows
Nocrps, = IDCPiy x (BT ) 2

= (Pan + P;f,nﬂ) +2&( P Pent2 + Pengi Penes) (38)
= Pk27n + Pk2,n+1 +2 gpk,2n+37

Npcpra = [DCPyy x (DCPyy)™ |

. (39)
= |(P13,n - Pk2,n+1) + 22P]€,n Pk7n+1 ’a
Npcprs = [[DCPypn x (DCPyp ) |2
= (P, + Plo1) +2ie(Pen Prenys — Pentt Penga) (40)
= |Pk?,n + PkQ,nJrl - 426(_1)71 k,n|7
Npcps = IDCPy x (DCP5)* 2 @1

_ 2 2
- pk,n+Pk,n+1 .

Theorem 1. Let DCP, ,,, DCP Ly, ,, and DCM Py, ,, be the dual-complex k-Pell number, the dual-
complex k-Pell-Lucas number and the dual-complex modified k-Pell number respectively. Then,
the following relations hold

DCPynt2 = 2DCPy 41 + kDCP j,, (42)

DCPLypyo =2DCPLy 41 + kDCPLy (43)

DCM Py, = DCPFy,, + EDCPFy 1, (44)

DCM Py, = DCPF; 141 — DCPy ,,, (45)

DCPLy,, = 2(DCPy ps1 — DCPF; ), (46)

DCPLg i1 =2 (DCPy; 1 + DCP ) . (47)

Proof. Proof of equalities can easily be done. [
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3 The dual-complex k-Pell and k-Pell-Lucas quaternions

In this section, firstly the dual-complex k-Pell quaternions will be defined. The dual-complex
k-Pell quaternions and the dual-complex k-Pell-Lucas quaternions and the dual-complex modi-
fied k-Pell quaternions are defined by using the dual-complex Pell numbers and the dual-complex
Pell-Lucas numbers respectively, as follows

}DXCPk’n = {ka,n :Pk,n +1 Pk,nJrl +e Pk,n+2 +ie Pk,n+3 ’ Pk:,n )

(48)
n-th k-Pell number},
DCFLrn = {QpLyy =PLin +1PLypyy +€PLyyyo +1i6PLy s | 49)
PLy ,, ,n-th k-Pell-Lucas number },
and
DCYY = {Qumppp =M Py +iMPipi1+eMPipiz+ic MPpyys | (50)
M Py, , n-th modified k-Pell number},
where
i2=—1,6#40, =0, (ie)*=0.
Let Qpy ,, and Qpy ,,, be two dual-complex k-Pell quaternions such that
Qpin = Pin 1Pyt + € Prnyo+ 16 Prpas (51)
and
QPrm = Pron + 1 Pyt + € Pomya + 1€ Prmys. (52)

Then, the addition and subtraction of two dual-complex k-Pell quaternions are defined in the
obvious way,

Qppn £ Qpim = (Pin + 1 Pyns1 + & Prpgo +1€ Py pys)
+( Py + 7 Pemt1 + € Pomgo + 96 Prnas)
= (Pin £ Pem) +1(Pent1 = Pemi1)
+& (Pont2 £ Prmy2) 1€ (Prnys £ Pemys).

(53)

Multiplication of two dual-complex k-Pell quaternions is defined by

(P + 1 Pynt1 + € Prpyo + 1€ Py pys)

(Pim + @ Poms1 + € Pemya + 1€ Pinys)

(P Prm — Prent1Prm1)

+1 (Pyns1Prm + PinProm+1)

+e (P Prmt2 — Pint1 Prm+s (54)
+Pint2Pem — PentsPrm+1)

+i€ (Pent1Pemt2 + PonPrm+s
+Prn+3Pem + Pent2Prems1)

= QPk,m X QP/WT

ka,n X QPk,m =
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The scaler and the dual-complex vector parts of the dual-complex k-Pell quaternion (Qpy ,,)

are denoted by
SQPk,n = P]f’n and VQPk,n = iPk7n+1 +e€ Pk7n+2 +1e Pk,n+3- (55)
Thus, the dual-complex k-Pell quaternion Q) p, ,, is given by

QPk-,n = SQP,WL + VQPkm .

The five types of conjugation given for the dual-complex £-Pell numbers are the same within
the dual-complex k-Pell quaternions. Furthermore, the conjugation properties for these quater-
nions are given by the relations in (23)—(27). In the following theorem, some properties related
to the dual-complex k-Pell quaternions are given.

Theorem 2. Let Q)p, ,, be the dual-complex k-Pell quaternion. In this case, we can give the
following relations:

2Qprkni1 T EQprry = QpPipnyas (56)
(QPrni1)’ +E(Qprn)’ = Qpraonit — Pronts +1 Pranso
+e (Pronts — 2 Pronys) (57)
‘|—3 1€ Pk,2n+47

(QPrni1)? — K (Qrrn1)’= 2Qpron — 2 (Prantz — 1 Pront1 + € Poonta
—31i¢€ Ppony3),

Qpiy — 1 (Qpppi1)™ —€QPppi2 —1€QPrnis = Prn — Prnt2 +26 Prnga. (59)

Proof. (56): By using (51) we get,

(58)

2QpPkni1 ThQprryn = (2Piny1 +kPen) +1(2Pinia+k Prpg1)
+6 (2 Ponss + k Ponso)
+i16(2 Pyyta + k Penys)
Pynto+1Pypi3+Pnia+ 1P nts

QPk,n+2 :

(57): By using (51) we get,

(QPk,n+1)2 +k (QPk,n)2 = (PkQ,nJrl + k’P]in) - (Pl?,n+2 + k PkZ,nJrl)
+20 (Pynt1 Prnge + k Prn Prpg1)
+2¢€ [(Pent1 Pents + k Py Prpta)
—(Prni2 Pepya + Kk Peng1 Penes)]
+2i¢e [(Prnt1 Penta + K Py Penes)
+(Pr g2 Pronts + Kk Prpt1 Penta)
= (Pront1 — Prons+s) + 21 Pronto
+2¢ (Pronts — Pronts) +21€ (2 Pronta)
= Qpront1 — Pronts + 1 Prante
+e (Pronts — 2 Pronts) +3ie (Pronya).
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(58): By using (51) we get,

(QpPrni1)? — K (Qrrn-1)’= 2(Pran —2Pront2) +21(2 Pront)
+2¢& (Pront2 — Pronya) +2i€ (4 Pronys)
= 2(Pion+1Piont1+€Pronyo+ 1€ Pronts)
—2Ppont2+ 21 Pyoni1 — 26 Pronya
+6i¢e Py onts
= 2Qpran — 2 (Prons2 — 1 Proni1 +€ Pronta
—3i¢e Pronts)-

(59): By using (51) and (25) we get,

Qpry —1Qprr1 —€EQPrnt2 —1€QPp i3 = (Prn — Prnt2) + 26 Prnga

This completes the proof.

]

Theorem 3. For n,m > 0 the Honsberger identity for the dual-complex k-Pell quaternions

Qpyn and Qpy ,, is given by

k QPk,n_l QPk’m + QPk,n QPk,m-H = QPk,n—l—m - Pk,n+m+2 +1 Pk,n+m+1
+e (Pk,n+m+2 - 2 Pk,n+m+4)
+3 7 19 Pk7n+m+3.

Proof. By using (51) we get,

k QPk,n—l QPk,m + Qsz,n QPk,m+1 = (k Pk’,n—lpk‘m + Pk,nPk,m-i-l)
—(k Pry Pems1 + Prns1 Prm+2)
+ i [(k Pen-1Prmi1 + PrnPrm2)
+(k Py Peom + Prns1 Prm+1)]
+ e [(k Pen—1Pem+2 + PenPrm+s)
—(k PryPem+s + Prnt1Prm+a)
+(k Pint1Pem + PintoPrm+1)
—(k Py ntoPrms1 + Prnt3Promt2)]
+ e [(k Pop-1DPsmss + PenPrm+a)
+(k Py Prm+2 + Pint1 Prm+s)
+(k Pr 1 Pems1 + PrntoPrm+2)
+(k PentoPrem + PintsPrm+1)]
= (Prontm — Pensms2) 20 Pynsms
+2e (Pk,n—i—m—&-? - Pk,n+m+4)
+41e Pppymys
= QPrntm — Prntmi2 + 1 Prnimia
+¢ (Prptm+2 — 2 Ponymta)
+31€ P pimes -

where the identity & Py ,—1 Prm + PinPrmt+1 = Prntm is used  [S].
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Theorem 4. Let () p,, be the dual-complex k-Pell quaternion.Then, sum formula for these quater-
nions is as follows:

Z QPks Tkt 1[QPk il T kQPkn QPM + QPk,O]' (61)

Proof. Since Y " Py; = k+1( 14 Pipi1 + k Pry), [5], we get

n n n n n
E Qprs = E P+t E Ppsi1+e E Ppsio+ice E P si3
s=0 s=0 s=0 s=0 s=0

1 .
= L1 F Ponsr + K Pl) 4 (=14 Pons + 5 Pensa)
+e(=2—=k+ Pyopys +k Pipnyo)
+ie(—4—3k+ Prnra+Fk Prnys)]
1
Ck+1

+i(—Pro+ Py + Ponto + k Pipyi)
+e(—Pps+ Pra+ Pents + k Prnto)

+1i¢e (—Pk,4 + Pk73 + Pk,n+4 + k Pk,,ﬂ_g)]
1
Tkt 1

[(=Px1+ Peo+ Pensr + k Pry)

[QpPrns1 +EQpr, — Qprry + Qpro]-

This completes the proof. [

Theorem 5. (Binet’s Formula) Let ()p,, be the dual-complex k-Pell quaternion. For n > 1,
Binet’s Formula for these quaternions is as follows:

Qrin = 5 (@07 = 35"). (62)

where

v=1+ia+ea’+ica®, a=1++2
and

B=1+4+iB+eB+icB B=1-2
Proof. Binet’s formula of £-Pell number [20] is

1

a—p
where a=1++V1+k ,f=1—-V14+k, a+=2, a—=2V1+k, af =—

Binet’s formula of k-Pell quaternion [20] is

Pppn = (a" = p"), (63)

Py = —— (40"~ "),
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wheread = 1+ia+ja?+kad, B=1+iB8+ 8%+ k3.
Using (51) and (62), the proof is easily seen.

QPypn= Prin+iPiny1+€Piniot+16Prpys

n+1 Bn+1 n+2_an+2

a—pBm" e — @ . an+3_ n+3

a™ (14+iate a’+ie a®)—B™ (144 B+e B2+ic 53)
a—p

_ 1 ~Aon 5 an
= k= (e —6),
where @ = 1+ia+eca?+icad, B=1+iB+e8%+icf. O

Theorem 6. (d’Ocagne’s Identity) For n,m > 0 the d’Ocagne’s Identity for the dual-complex
k-Pell quaternions Qpy, ,, and Qpy ,, is given by

QpPim QPrns1 — QPrmi1 @rrn = (—1)" K" Peppn [(1 4+ k) + 21

+(2k*+6k+4)e+ (4k+8)ie]. )

Proof. By using (62) we get,

A om_ A pm 4 antl_gpn+l
QPk,mQPk,n+1_QPk,m—i-lQPk,n: (OéOé 7 )(OéOé = )

a—p a=B
e =
= aaﬂ (aﬁ) (™" =g (e — B)
_ La_ﬁg (a ﬁ)n( _ Bm—n)

— (a=h) I
= (a 5)(04 s (%)

where (&) = (1—af)+i(a+p8)+e(a?+ 2 —afP —a?f)+ic(a®+ B —ap?—a?p) =
(14 k) +2i4+ 2k +6k+4)e+ (4k+8)ic].

Calculate with a second method: By using (51) we get,

QPk,m QPk,n—H - QPk,m—i—l QPk,n :[ (Pk,mPk,nH - Pk,m+1Pk,n)
— (Prny1Prnve — Pry2Poy1) |
+ [ PP+ — Pomt2Pin |
€ [ (PemPrnts — Prmt1Pens2)
— (Pimt1Penta — PemtoPrn+ts)
+ (Pem+2Prnt1 — Pom+3Prn)

— (Pem+3Prens2 — PemiaPrnt1) ]
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+ie[ PonPrnta — PemraPrn]
=(=1)"E" (1 + k) Pp_n

+2i (=1)" K" Pp_n
+e[(—1)" K" (1+k)

(k* Pr—n—2 + Pons2)]
Fic[(=1)"k" (4% +8) Popmn]
=(=1)"k" Pom—n[(14+ k) + 21

+ 2k +6k+4)e+ (4k+8)ic],

where the identity Py ., Py i1 — Premi1Pen = (—1)" k™ Py, are used [6]. Furthermore,

Prm+a Pentt — Pemt1 Penga = (1) K" Py,
P Pinto — Pomso Pon = 2(=1)" k™ Py,
P Pents — Pemi1 Penye = (1) k"2 Py ypopa,
Pk,m+2 Pk,n+1 - Pk,m+3 Pk,n - (‘Dn k" Pk,m—n+27

_ 1
Pk,m+4 Pk,n—l—l - Pk,m+3 Pk,n+2 - (_1)71 kn+ Pk,m—n+2a

Pk,m+2 Pk,n—i—S - Pk,m—l—l Pk,n+4 = (_1)n kn+3 Pk,m—n—Za
Py Pinta — Poga P = (—1)" k™ (8 + 4k) Pry—n,
Pk,mfn+2 + kz Pk:,mfnf2 = (2 k + 4) Pk,mfn-

are used. ]

Theorem 7. (Cassini’s Identity) Let Q) p,,, be the dual-complex k-Pell quaternion. For n > 1,
Cassini’s Identity for Qpy , is as follows:

ka:,n—l QPk,n-‘rl - Qpi,n :<_1)n kn_l [(]' + k) + 24

+ 2k +6k+4)e+ (4k+8)ic]. (©3)

Proof. By using (62) we get,

&al — Bﬁn—l &antl — Bﬁn—i—l
(

)

2
QPk,n—l QPk,n—i-l - QPk,n :(

)

- a_3
_ (@a; = gﬁ")g

D (a7t )

@) ey s A

R e ()

@) sy O



=(—1)"E" (1 + k) +2i+ (2K + 6k + 4)e
+(4k+8)ie],

where (4f3)=(1—apf)+i(a+pf)+e(a®+82—af —a?f)+ic(a®+F —af2—a?f) =
[((1+k)+2i+ (2k*+6k+4)e+ (4k +8)ic].

Calculate with a second method: By using (51) we get

Qrip-1QPrnt1 — (Qprn)? = (Pon-1Pinir — P+ (PE i1 — PenPrni2)
—1 (P 1 Pin — Pent2Prin—1)
+e [—(Pent2Pin — Pont3Prn-1)
—(PenPrnt2 — Pent1Prnt1)
+(Pen+1Pripnts — Pent2Prent2)
+(f)k,n-i-fif)k,n—i-l - Pk,n+4Pk,n)]
—1€ (PentsPen — PintaPrn-1)

= (-D)"k" A4+ k)+2i+ 2k + 6k +4)e

L4kt 8)ic],

where the identities of the k-Pell numbers Py ., Py nt1 — Pims1Pipn = (—1)" k" Py, and
Pin-1Pini1 — P, = (—1)" k" " are used [6]. Furthermore,

Pin1 Ponsa = Pon Pronsr = 2(=1)" k"1,

Pin-1 Pinis — Pen Penso = (—1)" k" 14+ k),
Pyt Pints — Pen Penta = (— "k (4 + k),
Pin+1 Pens1 — Pong2 Pen = (—1)" K

Prnts Penr1r — Penso Penyo = (—1)" knﬂ,

Pin-1 Pinta — Pim Prpgs = (=1)" En—t (4k+8).

are used. ]

Theorem 8. (Catalan’s Identity) Let ()p;,,, be the dual-complex k-Pell quaternion. For n > 1,
Catalan’s Identity for Q)p , is as follows:

sz,n - QPk:,n-H’ ka,n—r :(_k>n—'r+1 Pk2,'r [(1 + k) +21+ (2 k.2 +6 k + 4)5 (66)
+(4k+8)ig].

Proof. By using (62) we get

Qptnr QPrnrr — Qpiyn = (aa" - M" T)(‘“O‘"” 55"”) _ (O?a::gﬂ”)z
(;_“5 (aﬁ)” (@™ +77a" = 2)

- (6 8) (aB)" (ap)" (%3
= o - (6 8) (aB)" ( 2;;?” —2)]
= @ [-@p) (@) (0" = 57)’]

= —(@p)(af)" T (55
= (=) R P (k) 4 24
+(2k +6k+4)e+ (4k+8)ic],

Q
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where (4f3)=(1—ap)+i(a+pB)+e(a®+82—af —a®f)+ic(@®+ B —af2—a?f) =
(1+k)+2i+ (2k*+6k+4)e+ (4k+8)ie. O

4 Conclusion

In this study, a number of new results on dual-complex k-Pell quaternions were derived. Quater-
nions have great importance as they are used in quantum physics, applied mathematics, quantum
mechanics, Lie groups, kinematics and differential equations.

This study fills the gap in the literature by providing the dual-complex k-Pell quaternion using
definitions of the dual-complex number [20] and k-Pell number [7].
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