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1 Introduction

In 1971, Horadam studied on the Pell and Pell–Lucas sequences and he gave Cassini-like formula
as follows [13]:

Pn+1Pn−1 − P 2
n = (−1)n (1)

and Pell identities 

Pr Pn+1 + Pr−1 Pn = Pn+r
Pn(Pn+1 + Pn−1) = P2n

P2n+1 + P2n = 2P 2
n+1 − 2P 2

n − (−1)n

P 2
n + P 2

n+1 = P2n+1

P 2
n + P 2

n+3 = 5(P 2
n+1 + P 2

n+2)

Pn+a Pn+b − Pn Pn+a+b = (−1)n Pn Pn+a+b
P−n = (−1)n+1 Pn

(2)
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and in 1985, Horadam and Mahon obtained Cassini-like formula as follows [14]

qn+1 qn−1 − q2n = 8 (−1)n+1. (3)

Many kinds of generalizations of the Pell sequence have been presented in the literature [3,
10, 15]. Furthermore, Torunbalcı Aydın and Köklü introduced the generalizations of the Pell
sequence in 2017 [3] as follows:

P0 = q, P1 = p, P2 = 2p+ q, p q ∈ Z
Pn = 2Pn−1 + Pn−2, n ≥ 2

or

Pn = (p− 2q)Pn + q Pn+1 = pPn + q Pn−1

(4)

In 2013, the k-Pell sequence {Pk,n}n∈N is defined by Catarino and Vasco [7] as follows
Pk,0 = 0, Pk,1 = 1

Pk,n+1 = 2Pk,n + k Pk,n−1, n ≥ 1

or

{Pk,n}n∈N = { 0, 1, 2, k + 4, 4 k + 8, k2 + 12 k + 16, ...}

(5)

Here, k is a positive real number. The studies that follows is based on the work of Catarino
and Vasco [5–9, 20]. First the idea to consider Pell quaternions was suggested by Horadam in
paper [13]. In the literature, the reader can find Pell quaternions and studies on their properties
in [1, 2, 4, 8, 9, 11, 18, 19].

In 2017, Catarino and Vasco introduced dual k-Pell quaternions and octonions [10] as follows:

R̃k,n = P̃k,n e0 + P̃k,n+1 e1 + P̃k,n+2 e2 + P̃k,n+3 e3, (6)

where P̃k,n = Pk,n + ε Pk,n+1, Pk,n = 2Pk,n−1 + k Pk,n−2, n ≥ 2,

e0 = 1, ei
2 = −1, ei ej = −ej ei, i, j = 1, 2, 3,

ε 6= 0, 0 ε = ε 0 = 0, 1 ε = ε 1 = ε, ε2 = 0.

In 2018, Gül introduced k-Pell quaternions and k-Pell–Lucas quaternions [11] as follows:

QP k,n = Pk,n + i Pk,n+1 + j Pk,n+2 + k Pk,n+3 (7)

and
QPLk,n = pk,n + i pk,n+1 + j pk,n+2 + k pk,n+3, (8)

where i, j, k satisfy the multiplication rules

i2 = j2 = k2 = i j k = −1 , i j = k = −j i , j k = i = −k j , k i = j = −i k .

In 2018, Torunbalcı Aydın introduced dual-complex Pell and Pell–Lucas quaternions [4] (sub-
mitted) as follows:

DCPn = {QP n = Pn + i Pn+1 + ε Pn+2 + i ε Pn+3 | Pn , n-th Pell number} (9)
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and
DCPLn = {QPLn =Qn + i Qn+1 + εQn+2 + i εQn+3 | Qn ,

n-th, Pell–Lucas number}
(10)

where
i2 = −1, ε 6= 0, ε2 = 0, (i ε)2 = 0.

Majernik has introduced the multi-component number system [16]. There are three types of
the four-component number systems which have been constructed by joining the complex, binary
and dual two-component numbers. Later, Messelmi has defined the algebraic properties of the
dual-complex numbers in the light of this study [17]. There are many applications for the theory
of dual-complex numbers. In 2017, Güngör and Azak defined dual-complex Fibonacci and dual-
complex Lucas numbers and their properties [12].

Dual-complex numbers [17] w can be expressed in the form as

DC = {w = z1 + εz2 | z1, z2 ∈ C where ε2 = 0, ε 6= 0}. (11)

Here if z1 = x1 + i x2 and z2 = y1 + i y2, then any dual-complex number can be written

w = x1 + ix2 + ε y1 + i ε y2, (12)

i2 = −1, ε 6= 0, ε2 = 0, (i ε)2 = 0.

Addition, substraction and multiplication of any two dual-complex numbers w1 and w2 are
defined by

w1 ± w2 = (z1 + εz2)± (z3 + εz4) = (z1 ± z3) + ε(z2 ± z4),
w1 × w2 = (z1 + εz2)× (z3 + εz4) = z1 z3 + ε (z2 z4 + z2 z3).

(13)

On the other hand, the division of two dual-complex numbers is given by

w1

w2

=
z1 + εz2
z3 + εz4

,

(z1 + εz2)(z3 − εz4)
(z3 + εz4)(z3 − εz4)

=
z1
z3

+ ε
z2 z3 − z1 z4

z23
.

(14)

IfRe(w2) 6= 0, then the division w1

w2
is possible. The dual-complex numbers are defined by the

basis {1, i, ε, i ε}. Therefore, dual-complex numbers, just like quaternions, are a generalization
of complex numbers by means of entities specified by four-component numbers. But real and
dual quaternions are non-commutative, whereas, dual-complex numbers are commutative. The
real and dual quaternions form a division algebra, but dual-complex numbers form a commutative
ring with characteristics 0. Moreover, the multiplication of these numbers gives the dual-complex
numbers the structure of 2-dimensional complex Clifford algebra and 4-dimensional real Clifford
algebra.

The base elements of the dual-complex numbers satisfy the following commutative multipli-
cation scheme (Table 1).
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x 1 i ε i ε

1 1 i ε i ε

i i −1 i ε −ε
ε ε i ε 0 0

i ε i ε −ε 0 0

Table 1. Multiplication scheme of dual-complex numbers

Five different conjugations can operate on dual-complex numbers [17] as follows:

w = x1 + ix2 + ε y1 + i εy2,

w∗1 = (x1 − ix2) + ε(y1 − i y2) = (z1)
∗ + ε (z2)

∗,

w∗2 = (x1 + i x2)− ε (y1 + i y2) = z1 − ε z2,
w∗3 = (x1 − i x2)− ε (y1 − i y2) = z∗1 − ε z∗2 ,

w∗4 = (x1 − i x2)(1− ε
y1 + i y2
x1 + ix2

) = (z1)
∗(1− εz2

z1
),

w∗5 = (y1 + i y2)− ε(x1 + i x2) = z2 − εz1.

(15)

Therefore, the norm of the dual-complex numbers is defined as

N∗1w = ‖w × w∗1‖ =
√
|z1|2 + 2 εRe(z1 z2∗),

N∗2w = ‖w × w∗2‖ =
√
z21 ,

N∗3w = ‖w × w∗3‖ =
√
|z1|2 − 2 i εIm(z1 z2∗),

N∗4w = ‖w × w∗4‖ =
√
|z1|2,

N∗5w = ‖w × w∗5‖ =
√
z1 z2 + ε(z22 − z12).

(16)

In this paper, the dual-complex k-Pell numbers and the dual-complex k-Pell quaternions will
be defined. The aim of this work is to present in a unified manner a variety of algebraic properties
of the dual-complex k-Pell quaternions as well as both the k-Pell numbers and the dual-complex
numbers. In particular, using five types of conjugations, all the properties established for dual-
complex numbers and k-Pell numbers are also given for the dual-complex k-Pell quaternions. In
addition, Honsberger Identity, d’Ocagne’s Identity, Binet’s Formula, Cassini’s Identity, Catalan’s
Identity for these quaternions are given.

2 The dual-complex k-Pell numbers

In this section, the dual-complex k-Pell, k-Pell–Lucas and modified k-Pell numbers can be
defined by the basis {1, i, ε, i ε }, where i, ε and i ε satisfy the conditions

i2 = −1, ε 6= 0, ε2 = 0, (i ε)2 = 0,
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as follows
DCPk,n = (Pk,n + i Pk,n+1) + ε (Pk,n+2 + i Pk,n+3)

= Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3,
(17)

DCPLk,n = (PLk,n + i PLk,n+1) + ε (PLk,n+2 + i PLk,n+3)

= PLk,n + i PLk,n+1 + ε PLk,n+2 + i ε PLk,n+3,
(18)

and
DCMP k,n = (MP k,n + iMP k,n+1) + ε (MP k,n+2 + iMP k,n+3)

=MP k,n + iMP k,n+1 + εMP k,n+2 + i εMP k,n+3.
(19)

With the addition, substraction and multiplication by real scalars of two dual-complex k-
Pell numbers, the dual-complex k-Pell number can be obtained again. Then, the addition and
subtraction of the dual-complex k-Pell numbers are defined by

DCPk,n ± DCPk,m = (Pk,n ± Pk,m) + i (Pk,n+1 ± Pk,m+1)

+ ε (Pk,n+2 ± Pk,m+2) + i ε (Pk,n+3 ± Pk,m+3).
(20)

The multiplication of a dual-complex k-Pell number by the real scalar λ is defined as

λDCPk,n = λPk,n + i λ Pk,n+1 + ε λPk,n+2 + i ε λ Pk,n+3. (21)

By using (Table 1) the multiplication of two dual-complex k-Pell numbers is defined by

DCPk,n × DCPk,m = (Pk,n Pk,m − Pk,n+1 Pk,m+1)

+i (Pk,n+1 Pk,m + Pk,n Pk,m+1)

+ε (Pk,n Pk,m+2 − Pk,n+1 Pk,m+3

+Pk,n+2 Pk,m − Pk,n+3 Pk,m+1)

+i ε (Pk,n+1 Pk,m+2 + Pk,n Pk,m+3

+Pk,n+3 Pk,m + Pk,n+2 Pk,m+1)

= DCPk,m × DCPk,n .

(22)

Also, there exist five conjugations as follows:

DCP ∗1k,n = Pk,n − i Pk,n+1 + ε Pk,n+2 − i ε Pk,n+3, complex-conjugation (23)

DCP ∗2k,n = Pk,n + i Pk,n+1 − ε Pk,n+2 − i ε Pk,n+3, dual-conjugation (24)

DCP ∗3k,n = Pk,n − i Pk,n+1 − ε Pk,n+2 + i ε Pk,n+3, coupled-conjugation (25)

DCP ∗4k,n =(Pk,n − i Pk,n+1) ( 1− ε
Pk,n+2 + i Pk,n+3

Pk,n + i Pk,n+1

),

dual-complex-conjugation
(26)

DCP ∗5k,n = Pk,n+2 + i Pk,n+3 − ε Pk,n − i ε Pk,n+1, anti-dual-conjugation. (27)

In this case, we can give the following relations:

DCPk,n (DCPk,n)∗1 = P 2
k,n + P 2

k,n+1 + 2 ε (Pk,n Pk,n+2 + Pk,n+1 Pk,n+3)

= P 2
k,n + P 2

k,n+1 + 2 ε Pk,2n+3,
(28)

115



DCPk,n (DCPk,n)∗2 = P 2
k,n − P 2

k,n+1 + 2 i (Pk,n Pk,n+1), (29)

DCPk,n (DCPk,n)∗3 = P 2
k,n + P 2

k,n+1 + 2 i ε (Pk,n Pk,n+3 − Pk,n+1 Pk,n+2)

= P 2
k,n + P 2

k,n+1 − 4 i ε (−1)n kn,
(30)

DCPk,n (DCPk,n)∗4 = P 2
k,n + P 2

k,n+1, (31)

DCPk,n + (DCPk,n)∗1 = 2 (Pk,n + εPk,n+2), (32)

DCPk,n + (DCPk,n)∗2 = 2 (Pk,n + i Pk,n+1), (33)

DCPk,n + (DCPk,n)∗3 = 2 (Pk,n + i εPk,n+3), (34)

(Pk,n + i Pk,n+1) (DCPk,n)∗4 = (P 2
k,n + P 2

k,n+1 − εPk,2n+3 + 2 i ε(−1)n kn)
= (Pk,n − i Pk,n+1) (DCPk,n)∗2 ,

(35)

εDCPk,n + (DCPk,n)∗5 = Pk,n+2 + i Pk,n+3, (36)

DCPk,n − ε (DCPk,n)∗5 = Pk,n + i Pk,n+1. (37)

The norm of the dual-complex k-Pell numbers DCPk,n is defined in five different ways as
follows

NDCP ∗1
k,n

= ‖DCPk,n × (DCPk,n)∗1‖2

= (P 2
k,n + P 2

k,n+1) + 2 ε(Pk,n Pk,n+2 + Pk,n+1 Pk,n+3)

= P 2
k,n + P 2

k,n+1 + 2 εPk,2n+3,

(38)

NDCP ∗2
k,n

= ‖DCPk,n × (DCPk,n)∗2‖2

= |(P 2
k,n − P 2

k,n+1) + 2 i Pk,n Pk,n+1 |,
(39)

NDCP ∗3
k,n

= ‖DCPk,n × (DCPk,n)∗3‖2

= (P 2
k,n + P 2

k,n+1) + 2 i ε(Pk,n Pk,n+3 − Pk,n+1 Pk,n+2)

= |P 2
k,n + P 2

k,n+1 − 4 i ε(−1)n kn|,
(40)

NDCP ∗4
k,n

= ‖DCPk,n × (DCPk,n)∗4‖2

= P 2
k,n + P 2

k,n+1 .
(41)

Theorem 1. Let DCPk,n, DCPLk,n and DCMP k,n be the dual-complex k-Pell number, the dual-
complex k-Pell–Lucas number and the dual-complex modified k-Pell number respectively. Then,
the following relations hold

DCPk,n+2 = 2DCPk,n+1 + kDCPk,n, (42)

DCPLk,n+2 = 2DCPLk,n+1 + kDCPLk,n, (43)

DCMP k,n = DCPk,n + kDCPk,n−1, (44)

DCMP k,n = DCPk,n+1 − DCPk,n, (45)

DCPLk,n = 2 (DCPk,n+1 − DCPk,n), (46)

DCPLk,n+1 = 2 (DCPk,n+1 + DCPk,n) . (47)

Proof. Proof of equalities can easily be done.
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3 The dual-complex k-Pell and k-Pell–Lucas quaternions

In this section, firstly the dual-complex k-Pell quaternions will be defined. The dual-complex
k-Pell quaternions and the dual-complex k-Pell–Lucas quaternions and the dual-complex modi-
fied k-Pell quaternions are defined by using the dual-complex Pell numbers and the dual-complex
Pell–Lucas numbers respectively, as follows

DCPk,n = {QP k,n =Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3 | Pk,n ,
n-th k-Pell number},

(48)

DCPLk,n = {QPLk,n =PLk,n + i PLk,n+1 + ε PLk,n+2 + i ε PLk,n+3 |
PLk,n , n-th k-Pell–Lucas number},

(49)

and
DCMP

k,n = {QMPk,n =MP k,n + iMP k,n+1 + εMP k,n+2 + i εMP k,n+3 |
MP k,n , n-th modified k-Pell number},

(50)

where
i2 = −1, ε 6= 0, ε2 = 0, (i ε)2 = 0.

Let QP k,n and QP k,m be two dual-complex k-Pell quaternions such that

QP k,n = Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3 (51)

and
QP k,m = Pk,m + i Pk,m+1 + ε Pk,m+2 + i ε Pk,m+3. (52)

Then, the addition and subtraction of two dual-complex k-Pell quaternions are defined in the
obvious way,

QP k,n ± QP k,m = (Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3)

±(Pk,m + i Pk,m+1 + ε Pk,m+2 + i ε Pk,m+3)

= (Pk,n ± Pk,m) + i (Pk,n+1 ± Pk,m+1)

+ε (Pk,n+2 ± Pk,m+2) + i ε (Pk,n+3 ± Pk,m+3).

(53)

Multiplication of two dual-complex k-Pell quaternions is defined by

QP k,n × QP k,m = (Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3)

(Pk,m + i Pk,m+1 + ε Pk,m+2 + i ε Pk,m+3)

= (Pk,nPk,m − Pk,n+1Pk,m+1)

+i (Pk,n+1Pk,m + Pk,nPk,m+1)

+ε (Pk,nPk,m+2 − Pk,n+1Pk,m+3

+Pk,n+2Pk,m − Pk,n+3Pk,m+1)

+i ε (Pk,n+1Pk,m+2 + Pk,nPk,m+3

+Pk,n+3Pk,m + Pk,n+2Pk,m+1)

= QP k,m × QP k,n .

(54)
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The scaler and the dual-complex vector parts of the dual-complex k-Pell quaternion (QP k,n)

are denoted by

SQPk,n
= Pk,n and VQPk,n

= i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3. (55)

Thus, the dual-complex k-Pell quaternion QP k,n is given by

QPk,n
= SQPk,n

+ VQPk,n
.

The five types of conjugation given for the dual-complex k-Pell numbers are the same within
the dual-complex k-Pell quaternions. Furthermore, the conjugation properties for these quater-
nions are given by the relations in (23)–(27). In the following theorem, some properties related
to the dual-complex k-Pell quaternions are given.

Theorem 2. Let QP k,n be the dual-complex k-Pell quaternion. In this case, we can give the
following relations:

2QP k,n+1 + k QP k,n = QP k,n+2, (56)

(QP k,n+1)
2 + k (QP k,n)

2 = QP k,2n+1 − Pk,2n+3 + i Pk,2n+2

+ε (Pk,2n+3 − 2Pk,2n+5)

+3 i ε Pk,2n+4,

(57)

(QP k,n+1)
2 − k2 (QP k,n−1)

2 = 2QP k,2n − 2 (Pk,2n+2 − i Pk,2n+1 + ε Pk,2n+4

−3 i ε Pk,2n+3),
(58)

QP k,n − i (QP k,n+1)
∗3 − εQP k,n+2 − i εQP k,n+3 = Pk,n − Pk,n+2 + 2 ε Pk,n+4. (59)

Proof. (56): By using (51) we get,

2QP k,n+1 + k QP k,n = (2Pk,n+1 + k Pk,n) + i (2Pk,n+2 + k Pk,n+1)

+ε (2Pk,n+3 + k Pk,n+2)

+i ε(2Pk,n+4 + k Pk,n+3)

= Pk,n+2 + i Pk,n+3 + ε Pk,n+4 + i εPk,n+5

= QP k,n+2 .

(57): By using (51) we get,

(QP k,n+1)
2 + k (QP k,n)

2 = (P 2
k,n+1 + k P 2

k,n)− (P 2
k,n+2 + k P 2

k,n+1)

+2 i (Pk,n+1 Pk,n+2 + k Pk,n Pk,n+1)

+2 ε [(Pk,n+1 Pk,n+3 + k Pk,n Pk,n+2)

−(Pk,n+2 Pk,n+4 + k Pk,n+1 Pk,n+3)]

+2 i ε [(Pk,n+1 Pk,n+4 + k Pk,n Pk,n+3)

+(Pk,n+2 Pk,n+3 + k Pk,n+1 Pk,n+2)]

= (Pk,2n+1 − Pk,2n+3) + 2 i Pk,2n+2

+2 ε (Pk,2n+3 − Pk,2n+5) + 2 i ε (2Pk,2n+4)

= QP k,2n+1 − Pk,2n+3 + i Pk,2n+2

+ε (Pk,2n+3 − 2Pk,2n+5) + 3 i ε (Pk,2n+4).

118



(58): By using (51) we get,

(QP k,n+1)
2 − k2 (QP k,n−1)

2 = 2 (Pk,2n − 2Pk,2n+2) + 2 i (2Pk,2n+1)

+2 ε (Pk,2n+2 − Pk,2n+4) + 2 i ε (4Pk,2n+3)

= 2 (Pk,2n + i Pk,2n+1 + ε Pk,2n+2 + i ε Pk,2n+3)

−2Pk,2n+2 + 2 i Pk,2n+1 − 2 ε Pk,2n+4

+6 i ε Pk,2n+3

= 2QP k,2n − 2 (Pk,2n+2 − i Pk,2n+1 + ε Pk,2n+4

−3 i ε Pk,2n+3).

(59): By using (51) and (25) we get,

QP k,n − i QP
∗3
k,n+1 − εQP k,n+2 − i εQP k,n+3 = (Pk,n − Pk,n+2) + 2 ε Pk,n+4.

This completes the proof.

Theorem 3. For n,m ≥ 0 the Honsberger identity for the dual-complex k-Pell quaternions
QP k,n and QP k,m is given by

k QP k,n−1QP k,m +QP k,nQP k,m+1 = QP k,n+m − Pk,n+m+2 + i Pk,n+m+1

+ε (Pk,n+m+2 − 2Pk,n+m+4)

+3 i ε Pk,n+m+3.

(60)

Proof. By using (51) we get,

k QP k,n−1QP k,m +QP k,nQP k,m+1 = (k Pk,n−1Pk,m + Pk,nPk,m+1)

−(k Pk,nPk,m+1 + Pk,n+1Pk,m+2)

+ i [(k Pk,n−1Pk,m+1 + Pk,nPk,m+2)

+(k Pk,nPk,m + Pk,n+1Pk,m+1)]

+ ε [(k Pk,n−1Pk,m+2 + Pk,nPk,m+3)

−(k Pk,nPk,m+3 + Pk,n+1Pk,m+4)

+(k Pk,n+1Pk,m + Pk,n+2Pk,m+1)

−(k Pk,n+2Pk,m+1 + Pk,n+3Pk,m+2)]

+ i ε [(k Pk,n−1Pk,m+3 + Pk,nPk,m+4)

+(k Pk,nPk,m+2 + Pk,n+1Pk,m+3)

+(k Pk,n+1Pk,m+1 + Pk,n+2Pk,m+2)

+(k Pk,n+2Pk,m + Pk,n+3Pk,m+1)]

= (Pk,n+m − Pk,n+m+2) + 2 i Pk,n+m+1

+2 ε (Pk,n+m+2 − Pk,n+m+4)

+4 i ε Pk,n+m+3

= QP k,n+m − Pk,n+m+2 + i Pk,n+m+1

+ε (Pk,n+m+2 − 2Pk,n+m+4)

+3 i ε Pk,n+m+3 .

where the identity k Pk,n−1Pk,m + Pk,nPk,m+1 = Pk,n+m is used [5].
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Theorem 4. Let QP n be the dual-complex k-Pell quaternion.Then, sum formula for these quater-
nions is as follows:

n∑
s=0

QP k,s =
1

k + 1
[QP k,n+1 + k QP k,n −QP k,1 +QP k,0 ]. (61)

Proof. Since
∑n

i=0 Pk,i =
1

k+1
(−1 + Pk,n+1 + k Pk,n), [5], we get

n∑
s=0

QP k,s =
n∑
s=0

Pk,s + i
n∑
s=0

Pk,s+1 + ε
n∑
s=0

Pk,s+2 + i ε
n∑
s=0

Pk,s+3

=
1

k + 1
[ (−1 + Pk,n+1 + k Pk,n) + i (−1 + Pk,n+2 + k Pk,n+1)

+ ε (−2− k + Pk,n+3 + k Pk,n+2)

+ i ε (−4− 3 k + Pk,n+4 + k Pk,n+3) ]

=
1

k + 1
[ (−Pk,1 + Pk,0 + Pk,n+1 + k Pk,n)

+ i (−Pk,2 + Pk,1 + Pk,n+2 + k Pk,n+1)

+ ε (−Pk,3 + Pk,2 + Pk,n+3 + k Pk,n+2)

+ i ε (−Pk,4 + Pk,3 + Pk,n+4 + k Pk,n+3) ]

=
1

k + 1
[QP k,n+1 + k QP k,n −QP k,1 +QP k,0 ] .

This completes the proof.

Theorem 5. (Binet’s Formula) Let QP n be the dual-complex k-Pell quaternion. For n ≥ 1,
Binet’s Formula for these quaternions is as follows:

QP k,n =
1

α− β

(
α̂ αn − β̂ βn

)
, (62)

where
α̂ = 1 + i α+ ε α2 + i ε α3, α = 1 +

√
2

and
β̂ = 1 + i β + ε β2 + i ε β3, β = 1−

√
2.

Proof. Binet’s formula of k-Pell number [20] is

Pk,n =
1

α− β
(αn − βn) , (63)

where α = 1 +
√
1 + k , β = 1−

√
1 + k , α+ β = 2 , α− β = 2

√
1 + k , αβ = −k .

Binet’s formula of k-Pell quaternion [20] is

QP k,n =
1

α− β

(
α̂ αn − β̂ βn

)
,
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where α̂ = 1 + i α+ j α2 + k α3, β̂ = 1 + i β + j β2 + k β3.
Using (51) and (62), the proof is easily seen.

QP k,n = Pk,n + i Pk,n+1 + ε Pk,n+2 + i ε Pk,n+3

= αn−βn

α−β + i (α
n+1−βn+1

α−β ) + ε (α
n+2−βn+2

α−β ) + i ε (α
n+3−βn+3

α−β )

= αn (1+i α+ε α2+i ε α3)−βn (1+i β+ε β2+i ε β3)
α−β

= 1
2
√
1+k

(
α̂ αn − β̂ βn

)
,

where α̂ = 1 + i α+ ε α2 + i ε α3, β̂ = 1 + i β + ε β2 + i ε β3.

Theorem 6. (d’Ocagne’s Identity) For n,m ≥ 0 the d’Ocagne’s Identity for the dual-complex
k-Pell quaternions QP k,n and QP k,m is given by

QP k,mQP k,n+1 −QP k,m+1QP k,n = (−1)n kn Pk,m−n [(1 + k) + 2 i

+(2 k2 + 6 k + 4)ε+ (4 k + 8) i ε ].
(64)

Proof. By using (62) we get,

QP k,mQP k,n+1 −QP k,m+1QP k,n = ( α̂ α
m−β̂ βm

α−β )( α̂ α
n+1−β̂ βn+1

α−β )

−( α̂ αm+1−β̂ βm+1

α−β )( α̂ α
n−β̂ βn

α−β )

= (α̂ β̂)
(α−β)2 (αβ)

n (αm−n − βm−n)(α− β)
= (α̂ β̂)

(α−β) (αβ)
n (αm−n − βm−n)

= (α̂ β̂)(αβ)n (α
m−n−βm−n

α−β )

= (α̂ β̂)(−k)n Pk,m−n
= (−1)n kn Pk,m−n [ (1 + k) + 2 i

+(2 k2 + 6 k + 4)ε+ (4 k + 8) i ε ],

where (α̂ β̂) = (1−αβ)+ i (α+β)+ ε(α2+β2−αβ3−α3β)+ i ε(α3+β3−αβ2−α2 β) =

[ (1 + k) + 2 i+ (2 k2 + 6 k + 4) ε+ (4 k + 8) i ε ].

Calculate with a second method: By using (51) we get,

QP k,mQP k,n+1 −QP k,m+1QP k,n =[ (Pk,mPk,n+1 − Pk,m+1Pk,n)

− (Pk,m+1Pk,n+2 − Pm+2Pn+1) ]

+ i [Pk,mPk,n+2 − Pk,m+2Pk,n ]

+ ε [ (Pk,mPk,n+3 − Pk,m+1Pk,n+2)

− (Pk,m+1Pk,n+4 − Pk,m+2Pk,n+3)

+ (Pk,m+2Pk,n+1 − Pk,m+3Pk,n)

− (Pk,m+3Pk,n+2 − Pk,m+4Pk,n+1) ]
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+ i ε [Pk,mPk,n+4 − Pk,m+4Pk,n ]

=(−1)n kn (1 + k)Pm−n

+ 2 i (−1)n kn Pm−n
+ ε [ (−1)n kn (1 + k)

(k2 Pm−n−2 + Pm−n+2) ]

+ i ε [ (−1)n kn (4 k + 8)Pk,m−n ]

=(−1)n kn Pk,m−n [ (1 + k) + 2 i

+ (2 k2 + 6 k + 4)ε+ (4 k + 8) i ε ],

where the identity Pk,mPk,n+1 − Pk,m+1Pk,n = (−1)n kn Pk,m−n are used [6]. Furthermore,

Pk,m+2 Pk,n+1 − Pk,m+1 Pk,n+2 = (−1)n kn+1 Pk,m−n,

Pk,m Pk,n+2 − Pk,m+2 Pk,n = 2 (−1)n kn Pk,m−n,
Pk,m Pk,n+3 − Pk,m+1 Pk,n+2 = (−1)n kn+2 Pk,m−n−2,

Pk,m+2 Pk,n+1 − Pk,m+3 Pk,n = (−1)n kn Pk,m−n+2,

Pk,m+4 Pk,n+1 − Pk,m+3 Pk,n+2 = (−1)n kn+1 Pk,m−n+2,

Pk,m+2 Pk,n+3 − Pk,m+1 Pk,n+4 = (−1)n kn+3 Pk,m−n−2,

Pk,m Pk,n+4 − Pk,m+4 Pk,n = (−1)n kn (8 + 4k)Pk,m−n,

Pk,m−n+2 + k2 Pk,m−n−2 = (2 k + 4)Pk,m−n.

are used.

Theorem 7. (Cassini’s Identity) Let QP k,n be the dual-complex k-Pell quaternion. For n ≥ 1,
Cassini’s Identity for QP k,n is as follows:

QP k,n−1QP k,n+1 −QP
2
k,n =(−1)n kn−1 [(1 + k) + 2 i

+ (2 k2 + 6 k + 4)ε+ (4 k + 8) i ε ].
(65)

Proof. By using (62) we get,

QP k,n−1QP k,n+1 −QP
2
k,n =(

α̂ αn−1 − β̂ βn−1

α− β
)(
α̂ αn+1 − β̂ βn+1

α− β
)

− (
α̂ αn − β̂ βn

α− β
)2

=
−(α̂ β̂)
(α− β)2

(αβ)n (α−1β + β−1α− 2)

=
−1

(α− β)2
(α̂ β̂) (αβ)n (αβ)(

α−1β + β−1α− 2

αβ
)

=
−1

(α− β)2
(α̂ β̂) (αβ)n (

α2 + β2

αβ
− 2)

=
−1

(α− β)2
(α̂ β̂) (αβ)n

(α− β)2

αβ

=− (α̂ β̂)(αβ)n−1
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=(−1)n kn−1 [(1 + k) + 2 i+ (2 k2 + 6 k + 4)ε

+ (4 k + 8) i ε ],

where (α̂ β̂) = (1−αβ)+ i (α+β)+ ε(α2+β2−αβ3−α3β)+ i ε(α3+β3−αβ2−α2 β) =

[ (1 + k) + 2 i+ (2 k2 + 6 k + 4) ε+ (4 k + 8) i ε ].

Calculate with a second method: By using (51) we get

QP k,n−1QP k,n+1 − (QP k,n)
2 = (Pk,n−1Pk,n+1 − P 2

n) + (P 2
k,n+1 − Pk,nPk,n+2)

−i (Pk,n+1Pk,n − Pk,n+2Pk,n−1)

+ε [−(Pk,n+2Pk,n − Pk,n+3Pk,n−1)

−(Pk,nPk,n+2 − Pk,n+1Pk,n+1)

+(Pk,n+1Pk,n+3 − Pk,n+2Pk,n+2)

+(Pk,n+3Pk,n+1 − Pk,n+4Pk,n)]

−i ε (Pk,n+3Pk,n − Pk,n+4Pk,n−1)

= (−1)n kn−1 [(1 + k) + 2 i+ (2 k2 + 6 k + 4)ε

+(4 k + 8) i ε ],

where the identities of the k-Pell numbers Pk,mPk,n+1 − Pk,m+1Pk,n = (−1)n kn Pk,m−n and
Pk,n−1Pk,n+1 − P 2

k,n = (−1)n kn−1 are used [6]. Furthermore,

Pk,n−1 Pk,n+2 − Pk,n Pk,n+1 = 2 (−1)n kn−1,
Pk,n−1 Pk,n+3 − Pk,n Pk,n+2 = (−1)n kn−1(4 + k),

Pk,n+1 Pk,n+3 − Pk,n Pk,n+4 = (−1)n kn (4 + k),

Pk,n+1 Pk,n+1 − Pk,n+2 Pk,n = (−1)n kn,
Pk,n+3 Pk,n+1 − Pk,n+2 Pk,n+2 = (−1)n kn+1,

Pk,n−1 Pk,n+4 − Pk,n Pk,n+3 = (−1)n kn−1 (4 k + 8) .

are used.

Theorem 8. (Catalan’s Identity) Let QP k,n be the dual-complex k-Pell quaternion. For n ≥ 1,
Catalan’s Identity for QP k,n is as follows:

QP
2
k,n −QP k,n+rQP k,n−r =(−k)n−r+1 P 2

k,r [(1 + k) + 2 i+ (2 k2 + 6 k + 4)ε

+ (4 k + 8) i ε].
(66)

Proof. By using (62) we get

QP k,n−rQP k,n+r −QP
2
k,n = ( α̂ α

n−r−β̂ βn−r

α−β )( α̂ α
n+r−β̂ βn+r

α−β )− ( α̂ α
n−β̂ βn

α−β )2

= −(α̂ β̂)
(α−β)2 (αβ)

n [(α−rβr + β−rαr − 2)

= 1
(α−β)2 [−(α̂ β̂) (αβ)

n (αβ)r (α
−rβr+β−rαr−2

αβ

r
)

= 1
(α−β)2 [−(α̂ β̂) (αβ)

n (α
2r+β2r

αβr − 2)]

= 1
(α−β)2 [−(α̂ β̂) (αβ)

n−r (αr − βr)2]
= −(α̂ β̂)(αβ)n−r (αr−βr

α−β )2

= (−1)n−r+1 kn−r P 2
k,r [ (1 + k) + 2 i

+(2 k2 + 6 k + 4) ε+ (4 k + 8) i ε ],

123



where (α̂ β̂) = (1−αβ)+ i (α+β)+ ε(α2+β2−αβ3−α3β)+ i ε(α3+β3−αβ2−α2 β) =

(1 + k) + 2 i+ (2 k2 + 6 k + 4) ε+ (4 k + 8) i ε.

4 Conclusion

In this study, a number of new results on dual-complex k-Pell quaternions were derived. Quater-
nions have great importance as they are used in quantum physics, applied mathematics, quantum
mechanics, Lie groups, kinematics and differential equations.

This study fills the gap in the literature by providing the dual-complex k-Pell quaternion using
definitions of the dual-complex number [20] and k-Pell number [7].
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[2] Aydın Torunbalcı, F., Köklü, K., & Yüce, S. (2017). Generalized dual Pell quaternions,
Notes on Number Theory and Discrete Mathematics, 23 (4), 66–84.
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[19] Tokeşer, Ü., Ünal, Z., & Bilgici, G. (2017). Split Pell and Pell–Lucas quaternions, Advances
in Applied Clifford Algebras, 27 (2), 1881–1893.

[20] Vasco, P., Catarino, P., Campos, H., Aires, A. P., & Borges, A. (2015). k-Pell, k-Pell–Lucas
and modified k-Pell numbers: some identities and norms of Hankel matrices, CM-Centro de
Matematica, 9 (1), 31–37.

125


