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1 Introduction

Balancing numbers were first introduced by Behera and Panda [3]. They called a natural number
n, a balancing number if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some natural number r. Further, if x is a balancing number, then
√
8x2 + 1 is known

as the Lucas-balancing number (see [9]). Moreover, Bn and Cn denote the n-th term of the
balancing and Lucas-balancing sequence, respectively. For n ≥ 1, the sequence of balancing and
Lucas-balancing numbers satisfy the homogeneous linear recurrence xn+1 = 6xn − xn−1 with
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initial terms B0 = 0, B1 = 1 and C0 = 1, C1 = 3 respectively. For α = 3+
√
8 and β = 3−

√
8,

we have
Bn =

αn − βn

α− β
, Cn =

αn + βn

2
,

the closed form expression (or Binet form) of these sequences. Panda [9] proved many interesting
properties of balancing and Lucas-balancing numbers, some of which resembles that of natural
numbers and to some trigonometric identities.

Many authors studied the closed form expressions for different power sums involving
Fibonacci and Lucas numbers (see [1,2,4,6–8]). In [5], Davala and Panda studied the sum and ra-
tio formulas for balancing and Lucas-balancing numbers. Subsequently, Rayaguru and Panda [11]
derived the closed form expressions for the power sums involving balancing and Lucas-balancing
numbers. The authors also derived expressions for some infinite products involving these numbers
(see [10]). In this paper, we obtain some new expressions for the non-alternating and alternating
power sums of balancing and Lucas-balancing numbers.

First, we list some useful identities of balancing and Lucas-balancing numbers (see [11]).

Lemma 1.1. If u and v are integers, then

(1) B−u = −Bu

(2) C−u = Cu

(3) C2
u = 8B2

u + 1

(4) C2u = 2C2
u − 1

(5) B3u = 32B3
u + 3Bu

(6) Bu±v = BuCv ± CuBv

(7) Bu+v +Bu−v = 2BuCv

(8) Cu+v + Cu−v = 2CuCv

(9) Bu+vBu−v = B2
u −B2

v

(10) B2u = 2BuCu

(11) C2u = 16B2
u + 1

(12) C3u = 4C3
u − 3Cu

(13) Cu±v = CuCv ± 8BuBv

(14) Bu+v −Bu−v = 2CuBv

(15) Cu+v − Cu−v = 16BuBv

(16) 8Bu+vBu−v = C2
u − C2

v .

The following lemma deals with the telescoping summation identities required for obtaining
the main results (see [6]).

Lemma 1.2. If f(k) is a real sequence and m and n are positive integers, then

n∑
k=1

[f(mk +m)− f(mk −m)] = f(mn+m) + f(mn)− f(m)− f(0) (1)

and
n∑

k=1

(−1)k−1[f(mk+m)−f(mk−m)] = (−1)n+1f(mn+m)+(−1)nf(mn)+f(m)−f(0). (2)
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2 Sum formulas involving the powers of balancing
and Lucas-balancing numbers

In [11], the authors established different type of representations for the non-alternating and
alternating summation formulas involving the powers of balancing and Lucas-balancing
numbers. In this section, we explore other representations for the power sums of balancing and
Lucas-balancing numbers. Further, we show that the results in [11] can be obtained from our new
findings by using the properties of balancing and Lucas-balancing numbers.

Theorem 2.1. If m and n are positive integers, then

(a)
n∑

k=1

B2mk =
1

B2m

[B2
m(n+1) +B2

mn]−
Bm

2Cm

(b)
n∑

k=1

(−1)kB2mk =
(−1)n

B2m

[B2
m(n+1) −B2

mn]−
Bm

2Cm

(c)
n∑

k=1

C2mk =
1

2B2m

[B2m(n+1) +B2mn]−
1

2

(d)
n∑

k=1

(−1)kC2mk =
(−1)n

2B2m

[B2m(n+1) −B2mn]−
1

2
.

Proof. Taking f(k) = B2
k in equation (1) of Lemma 1.2, we get

n∑
k=1

[B2
mk+m −B2

mk−m] = B2
mn+m +B2

mn −B2
m.

Applying Lemma 1.1 to the above summation, it follows that

n∑
k=1

B2mk =
1

B2m

[B2
m(n+1) +B2

mn −B2
m],

which completes the proof of (a). Now, taking f(k) = B2k+2m in equation (1) of Lemma 1.2 and
proceeding as above, it is easy to show that

2B2m

n∑
k=1

C2m(k+1) = B2m(n+2) +B2m(n+1) −B4m −B2m

=⇒ 2B2m

[ n+1∑
k=1

C2mk − C2m

]
= B2m(n+2) +B2m(n+1) −B4m −B2m

=⇒ 2B2m

n+1∑
k=1

C2mk = B2m(n+2) +B2m(n+1) −B2m,

which gives (c) after replacing (n+1) by n. The proofs of (b) and (d) are similar to the proofs of
(a) and (c), respectively, using equation (2) of Lemma 1.2. Hence, we omit the proof.
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From the proof of the above theorem, it can be seen that

n∑
k=1

B2mk =
B2

mn+m +B2
mn −B2

m

B2m

.

Using the properties of balancing and Lucas-balancing numbers from Lemma 1.1, it is easy to
show that

n∑
k=1

B2mk =
Bmn+m(Bmn+m +Bmn−m)

B2m

=
Bmn+m · 2BmnCm

B2m

=
Bmn+mBmn

Bm

.

Similarly,

n∑
k=1

C2mk =
B2mn+2m +B2mn −B2m

2B2m

=
B2mn + 2BmnCmn+2m

2B2m

=
Bmn(Cmn + Cmn+2m)

B2m

=
Bmn · 2CmCmn+m

B2m

=
Cmn+mBmn

Bm

.

The above two summation results appear in [11, Theorem 3.1]. The corresponding alternating
versions can be modified in a similar fashion to obtain the results in [11, Theorem 3.2].

The following is an immediate consequence of Theorem 2.1.

Corollary 2.1.1. If m and n are positive integers, then

(a) 6
n∑

k=1

B2k = B2
n+1 +B2

n − 1,

(b) 6
n∑

k=1

(−1)kB2k = (−1)n(B2
n+1 −B2

n)− 1,

(c) 12
n∑

k=1

C2k = B2n+2 +B2n − 6,

(d) 12
n∑

k=1

(−1)kC2k = (−1)n(B2n+2 −B2n)− 6.

The following theorem deals with the sums of balancing and Lucas-balancing squares.

Theorem 2.2. If m and n are positive integers, then

(a)
n∑

k=1

B2
mk =

1

32B2m

[B2m(n+1) +B2mn]−
1 + 2n

32
,
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(b)
n∑

k=1

(−1)kB2
mk =

(−1)n

32B2m

[B2m(n+1) −B2mn] +
(−1)n+1

32
,

(c)
n∑

k=1

C2
mk =

1

4B2m

[B2m(n+1) +B2mn] +
−1 + 2n

4
,

(d)
n∑

k=1

(−1)kC2
mk =

(−1)n

4B2m

[B2m(n+1) −B2mn] +
−2 + (−1)n

4
.

Proof. Using the identity 16B2
u = C2u − 1, it follows that

16
n∑

k=1

B2
mk =

n∑
k=1

C2mk − n.

Applying Theorem 2.1 to the above summation, the identity in (a) follows immediately. The
proof of (c) is similar to the proof of (a), by considering the alternating summation

16
n∑

k=1

(−1)k−1B2
mk =

n∑
k=1

(−1)k−1C2mk −
(−1)n−1 + 1

2
.

The proofs of (b) and (d) are similar to those of (a) and (c), respectively, from the identity
2C2

u = C2u + 1. Hence, we omit their proofs.

From the above theorem, it can be seen that

16
n∑

k=1

B2
mk =

B2mn+2m +B2mn −B2m

2B2m

− n

=
Cmn+mBmn

Bm

− n,

which appears in [11, Theorem 3.5]. The corresponding summation identities for Lucas-balancing
numbers and the alternating versions can be modified in a similar manner to obtain other results
in [11, Theorem 3.5].

The following is an immediate consequence of Theorem 2.2.

Corollary 2.2.1. If m and n are positive integers, then

(a) 192
n∑

k=1

B2
k = B2n+2 +B2n − 6(2n+ 1),

(b) 192
n∑

k=1

(−1)kB2
k = (−1)n(B2n+2 −B2n)− 6(−1)n,

(c) 24
n∑

k=1

C2
k = B2n+2 +B2n + 6(2n− 1),

(d) 24
n∑

k=1

(−1)kC2
k = (−1)n(B2n+2 −B2n) + 6((−1)n − 2).
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The following theorem deals with the sums of balancing and Lucas-balancing cubes.

Theorem 2.3. If m and n are positive integers, then

(a)
n∑

k=1

B3
2mk =

1

32B6m

[B2
3m(n+1) +B2

3mn]−
3

32B2m

[B2
m(n+1) +B2

mn]−
B3m

64C3m

+
3Bm

64Cm

,

(b)
n∑

k=1

(−1)kB3
2mk =

(−1)n

32B6m

[B2
3m(n+1)−B2

3mn]−
3(−1)n

32B2m

[B2
m(n+1)−B2

mn]−
B3m

64C3m

+
3Bm

64Cm

,

(c)
n∑

k=1

C3
2mk =

1

8B6m

[B6m(n+1) +B6mn] +
3

8B2m

[B2m(n+1) +B2mn]−
1

2
,

(d)
n∑

k=1

(−1)kC3
2mk =

(−1)n

8B6m

[B6m(n+1) −B6mn] +
3(−1)n

8B2m

[B2m(n+1) −B2mn]−
1

2
.

Proof. Using the identities 32B3
u = B3u− 3Bu and 4C3

u = C3u +3Cu, respectively, proof of this
theorem follows from the results obtained in Theorem 2.1 and the proof of Theorem 2.2. Hence,
we omit the proof.

From the above theorem, it can be seen that

n∑
k=1

B3
2mk =

B2
3mn+3m +B2

3mn −B2
3m

32B6m

−
3(B2

mn+m +B2
mn −B2

m)

32B2m

=
B3mnB3mn+3m

32B3m

− 3BmnBmn+m

32Bm

.

Using the identity B3u = Bu(32B
2
u + 3), we have

B3mnB3mn+3m = BmnBmn+m[(32BmnBmn+m)
2 + 96(B2

mn +B2
mn+m) + 9]

and hence
n∑

k=1

B3
2mk =

BmnBmn+m

32B3m

[(32BmnBmn+m)
2 + 96(B2

mn +B2
mn+m −B2

m)]

=
BmnBmn+m

B3m

[2BmnBmn+m(16BmnBmn+m + 3Cm)]

=
2B2

mnB
2
mn+m

B3m

[16BmnBmn+m + 3Cm]

=
2B2

mnB
2
mn+m

B3m

[C2mn+m + 2Cm]

=
2B2

mnB
2
mn+m

B3m

[2CmnC2mn+m + Cm],
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which appears in [11, Theorem 3.9]. Further,
n∑

k=1

B3
2mk =

2B2
mnB

2
mn+m

B3m

[2CmnC2mn+m + Cm]

=
BmnBmn+m

4B3m

[16BmnBmn+mCmnCmn+m + 8CmBmnBmn+m]

=
2B2

mnB
2
mn+m

B3m

[4B2mnB2mn+2m + 8CmBmnBmn+m]

=
2B2

mnB
2
mn+m

B3m

[Cm(C2mn+m − Cm)

2
+
C4mn+2m − C2m

4

]
=

2B2
mnB

2
mn+m

B3m

[CmC2mn+m − C2
m

2
+
C2

2mn+m − C2
m

2

]
=

2B2
mnB

2
mn+m

B3m

[CmnCmn+mC2mn+m − C2
m],

which appears in [11, Theorem 3.7]. Proceeding as above, corresponding summation formulas
for Lucas-balancing numbers and the alternating versions can be obtained, which appears in
[11, Theorem 3.7, Theorem 3.9, Theorem 3.13, Theorem 3.15].

An immediate consequence of Theorem 2.3 is as follows.

Corollary 2.3.1. If m and n are positive integers, then

(a) 221760
n∑

k=1

B3
2k = [B2

3n+3 +B2
3n − 3(B2

n+1 +B2
n)] + 2240,

(b) 221760
n∑

k=1

(−1)kB3
2k = (−1)n[B2

3n+3 −B2
3n − 3(B2

n+1 −B2
n)] + 2240,

(c) 55440
n∑

k=1

C3
2k = [B6n+6 +B6n + 3(B2n+2 +B2n)]− 27720,

(d) 55440
n∑

k=1

(−1)kC3
2k = (−1)n[B6n+6 −B6n + 3(B2n+2 −B2n)]− 27720.

In the following theorem, we explore the non-alternating and alternating summations
involving the fourth power of balancing and Lucas-balancing numbers.

Theorem 2.4. If m and n are positive integers, then

(a)
n∑

k=1

B4
mk =

1

1024B4m

[B4m(n+1) +B4mn]−
1

256B2m

[B2m(n+1) +B2mn] +
6n+ 3

1024
,

(b)
n∑

k=1

(−1)kB4
mk =

(−1)n

1024B4m

[B4m(n+1) −B4mn]−
(−1)n

256B2m

[B2m(n+1) −B2mn] +
3(−1)n

1024
,

(c)
n∑

k=1

C4
mk =

1

B4m

[B4m(n+1) +B4mn] +
1

B2m

[B2m(n+1) +B2mn] +
6n− 5

1024
,
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(d)
n∑

k=1

(−1)kC4
mk =

(−1)n

B4m

[B4m(n+1) −B4mn] +
(−1)n

B2m

[B2m(n+1) −B2mn] +
3(−1)n

1024
− 1

128
.

Proof. In view of Lemma 1.1, we have

16B2
u = C2u − 1 and 2C2

u = C2u + 1.

Upon squaring these identities, we get

256B4
u = C2

2u − 2C2u + 1 and 4C4
u = C2

2u + 2C2u + 1,

respectively. Using the results obtained in Theorem 2.1, proof of this theorem is similar to the
proof of Theorem 2.3 and hence, we omit the proof.

From the above theorem, it can be seen that

512
n∑

k=1

B4
mk =

B4mn+4m +B4mn

2B4m

− 2(B2mn+2m +B2mn)

B2m

+
6n+ 3

2

=
B4mn+2mC2m

B4m

− 4B2mn+mCm

B2m

+
6n+ 3

2

=
B2mn+m(C2mn+m − 4Cm)

B2m

+
6n+ 3

2
,

which appears in [11, Theorem 3.19]. In a similar fashion, corresponding summation for Lucas-
balancing numbers and the alternating versions can be obtained, which appears in [11, Theo-
rem 3.19, Theorem 3.21, Theorem 3.22].

The following is an immediate consequence of Theorem 2.4.

Corollary 2.4.1. If m and n are positive integers, then

(a) 208896
n∑

k=1

B4
k = [B4n+4 +B4n − 136(B2n+2 +B2n) + 612(2n+ 1)],

(b) 208896
n∑

k=1

(−1)kB4
k = (−1)n[B4n+4 −B4n − 136(B2n+2 −B2n) + 612],

(c) 52224
n∑

k=1

C4
k = [256(B4n+4 +B4n) + 8704(B2n+2 +B2n) + 51(6n− 5)],

(d) 52224
n∑

k=1

(−1)kC4
k = (−1)n[256(B4n+4 −B4n) + 8704(B2n+2 −B2n) + 153]− 408.
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