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1 Introduction

Special polynomials and numbers possess a lot of importances in many fields of mathemat-
ics, physics, engineering and other related disciplines including the topics such as differential
equations, mathematical analysis, functional analysis, mathematical physics, quantum mechanics
and so on. One of the most considerable polynomials in special polynomials is the Apostol-type
polynomials that is firstly considered by Apostol [1] (also extensively investigated by Srivastava
in [32]). Since then, these type polynomials and several generalizations of them have been
studied and investigated by many mathematicians, see [2-5,7, 8, 14-21, 23,26, 27, 30, 35-37].
For example, Ozden [28] gave unification of Genocchi, Bernoulli and Euler polynomials. By the
motivation of Ozden’s work, Ozarslan [26] introduced unified Apostol-Bernoulli, Apostol-Euler
and Apostol-Genocchi polynomials. Recently, Kurt [16] also introduced and studied g-Apostol-
type polynomials.

Let us now give briefly some definitions and notations.

By means of the following Taylor series expansions about z = 0, the Apostol-Bernoulli
polynomials B, (z; ), the Apostol-Euler polynomials E, (x;\) and the Apostol-Genocchi
polynomials G, (z; \) are defined by

. < Tz .
Z B (x n! T e —1°¢ ( ’ ),
n=0
iEn 2 (A€ izl < [log (<))
o n! T et + 1 ’
and
ZG ;M) n! /\ez+1e (A € C; |z] < [log (=)
Note that

B, (0;)\) :== B, (A), E,(0;\) := E, (\) and G,, (0; \) := G, (\)

are known as, respectively, Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi numbers.
For further information about the aforementioned polynomials, see [3,7,8,18-21,26,35,37].When
A = 1, these polynomials and numbers reduce to the classical form, look at [10, 13,28,29,32-34]
for details.

In this paper, the usual notations C, R, Z, N and Nj refer to the set of all complex numbers,
the set of the all real numbers, the set of the all integers, the set of the all natural numbers and the
set of all nonnegative integers, respectively, in the content of this paper.

The ordinary quantum calculus, denoted by g-calculus, has been widely studied and
developed for a long while by a lot of mathematicians, economists, engineers and physicists. The
development of g-calculus arises from the many applications in several scientific fields such as
combinatorics, quantum mechanics, special functions, quantum gravity, umbral calculus and
other related fields. One of the significant branches of g-calculus is the g-special numbers and
polynomials (see [5,6,11,12,14-17,22-25,30,31,33] for more information related these issues).

The following notations about g-calculus are taken from [9].
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The g-numbers [z], and the g-derivative D, f (z) are defined as

f(x)—f(gz) .
. L) gf land x # 0,
g4, df(x) | oo a7 Tandrs
[z] = a’ - and D, f (z) = = () ifg=1,
a z, ifg=1 d,x . ]
1(0) ifx =0,

seeing z € R (or z € C).
The ¢-binomial coefficients are defined for the positive integers n, k as

q

where [n] ! = [1] [2],[3],---[n—1],[n], (n € N)with[0] !=1.
The following expressions can be easily derived using (1):

Dy (g (x) f(2)) = f () Dag (x) + g (q2) Dy f (x) = g (x) Dyf (x) + f (q) Dyg (x)

and

D, (9(1’)) _ fg2) Dyg (z) — g(q2) Dyf (2) _ f(2) Dyg () — g () Dy f (x)

f (@) f (@) f (qz) N f (@) f (qz)

The g-generalization of (z + y)" is defined by

n

(z+a) =3 m qq(”Ek) kg,

k=0

The two different types of the g-exponential functions are given by

6q(z):Z -

n=0 [n] q!

n ZTL

)

(z € Cwith |z] < 1)

and E, (2) = i q(3)

which possess the following features

and g-derivative representations
Dyeq(x) = eq(x) and Dy Ey(x) = Eq(qx).
For z and y in concujtion with the commuting technique yx = gxy, we note that
eq (T 4+y) =€, (x)eq (y).

The g-definite integral is defined as

/jfmdqx:(1—q>§§q’ff(q’f5) with /;fmdqx:/me)dqx_/;f(x)d
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The Apostol-type g-Bernoulli polynomials B,gfg (x,y; ) of order @ € Ny, the Apostol-type
g-Euler polynomials Sr(fq) (x,y; ) of order v € Ny and the Apostol-type g-Genocchi polynomials
Qf«fg (x,y; A) of order a € Ny are defined by the following generating functions:

S BN o = (oo e Bl - )

> (i Vo1 = () 60 B (o] < log (-3, 1= 1)
> gl oy = (o) o) B (N, 1= 1)

where « and )\ are suitable (complex or real) parameters and ¢ € C with 0 < |¢| < 1 (see [15,16]).
Putting # = 0 and y = 0, we have BY) (0,0;A) := B (A), &% (0,0;)) = £ ()) and
QT(L?‘q) (0,0;\) := g,(;’i) (A) which are termed, respectively, n-th Apostol-type g-Bernoulli number of
order o, n-th Apostol-type g-Euler number of order o and n-th Apostol-type g-Genocchi number
of order a.

In the next sections, we shall perform to derive and develop several properties of the family
of unified Apostol-type g-Genocchi, ¢g-Euler and g-Bernoulli polynomials of order . Moreover,
some relationships for the generalized ¢-Stirling numbers of the second kind of order v and unified
Apostol-type g-Genocchi, g-Euler and ¢g-Bernoulli polynomials of order « are derived. By making
use of the fermionic p-adic integral over the p-adic number fields, formulas between the family of
unified Apostol-type ¢-Genocchi, ¢g-Euler and g-Bernoulli polynomials of order o and classical
Euler numbers are derived appropriately.

2 Applications of blending generating functions
of g-Apostol-type polynomials

This section provides some properties and identities for unified Apostol-type ¢-Genocchi, g-Euler
and ¢-Bernoulli polynomials of order v defined by Kurt in [16].

Unified Apostol-type g-Genocchi, ¢g-Euler and ¢g-Bernoulli polynomials of order « are defined
by Kurt [16] as follows:

o0 n 21—kzk @
ZP (x,y,k,a,b) = (51’ ) eq (z2) B, (y2), (10)
n=0

[n],! €q(2) —a

<|z| < 2w when B = a;|z| < ‘ﬁlog (2)‘ whenﬁ#a;a,kENo;a,beR\{O};BE(C).

When y = 0 and ¢ goes to 17, then the polynomials 7372?‘5)7(1 (x,y,k,a,b) turn out to be the
following polynomials defined by Ozarslan [26]:
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o (o) . 2" _ 21_kzk * zx
an,ﬂ (x;k,a,b) o (m e, (1)

n=0

(]2\ < 27 when 8 = a;|z] <

b

Blog (—)‘ when 5 # a; o, k € No;a,b € R\ {0}; € (C> )
a

We note that (see [16])

73(1% @y kab) = Pogg(z,y,kab), P! )?q (x,y,1,1,1) = Bﬁffq) (x,y; N\,

n n

1
P (@,,0,—-1,1) = &) (z,550) . P (ﬂf,y,l,——,l) =G\ (z,y; \)
n n, 2. 2 n,q

n,

Moreover, Pffgg (x,y, k,a,b) satisfies the following properties (see [16]):

DQIP 5 (x y,k,a,b) = [n], T(fi)l’@q (z,y,k,a,b) (12)
quP 5 (x Y, k,a,b) = [n}qpfi)l’@q (x,qy, k,a,b)
and
2k 1[ ] , "
" +k]_ BP0 (0 b) = P, (0,9 k0, 0)| = PG D (0,9, k,0,0) - (13)
2k 1[ ] , )
[ +k] |:Bp+kﬁq(x0kab) P—i—k,@q( ’_1’]{;’“76)}:7)71,,3,(1 (I',_l,k,CL,b).

(14)
Using (8), we obtain the addition property given below.

Theorem 2.1. The following addition formula is valid for x and u satisfying the commuting
method ur = qru:

o - n
P @+ g kab) =Y u P (2.y,k,a,b) "
j q
From the following relation

beaﬁ)q (17y7k7a7b) = Z |:ZL:| P],Bq (O y,k a b) (See [16])
q

=0
and Eq. (13), we get the formula given below.

Theorem 2.2. We have

n+k
’I’L—f—k} o [TL"‘]{?] a1
5b2[ ] J(ﬁ)q(oyyykaaab) P+kzﬁq(0 Y, k,a,b) = W nﬁq)(o y, k,a,b).

q
(15)
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Corollary 2.2.1. Putting o = 1 in Eq. (15) gives the following relation

2k71 [’I‘L] | n+k n -+ L
yﬂ = (n>—q 51) Z |: . :| Pjﬁ,q (07 Y, kv a, b) - abpn+k,ﬁ,q (07 Y, k? a, b) .
q\* [n+ k| P S
The formula in Corollary 2.2.1 seems to be a g-generalization of each of the following known
formulas:
I < (n+1 1~ (n
n— B:(y),y" == E; E, 16
y n+1Z( ; ) 5 (1), y 22(;‘) i () + En (y) (16)
Jj=0 7=0
and )
1 &= /n+1
"= G, Gp . 17
y 2(n+1);< j ) i () + Gng (y) (17)

Here is a recurrence relation of unified Apostol-type g-Bernouilli, ¢g-Euler and ¢-Genocchi
polynomials as given below.

Theorem 2.3. The following expression is valid for P, s, (v,y, k,a,b):

& n [n] ' — n—k
abpn,ﬁ,q (l",% kaaab) :ﬁbz |: :| Pj}ﬁ,q (x,y,k‘,a,b) - [_—3{:]'21 k<x+y)q :
i=0 g n @
Proof. In view of (7) and the identity
ab B AP 1
(B%q (2) —ab)eq(2)  Pleg(z) —ab  eq(2)
we can write
abzpn,ﬁ,q (‘Tayyk:aav b) © |
n=0 [n]q
= B N P k,a,b o 9l—k S n 2"
- 52 n,ﬁ,q(xa% , Ay )[n}|2[n]|_ Z(x+y)q [n]‘
n=0 a n=0 q n=0 q
By utilizing the technique of Cauchy product and thereafter matching the coefficients of %
n| !
we have the asserted result. !
Hence, the proof is completed. []

We provide now the following formula for unified Apostol-type ¢-Genocchi, g-Euler and
g-Bernoulli polynomials of order a.

Theorem 2.4. The unified polynomial Pflag g (x,y,k,a,b) satisfies the following relation:

n k—1
P(a) (l' y L a b) _ Z n 2 [n]q' (a)A
n,5,q s Yy vy Wy . . [n+ k]q| n—73,8,q

(0,0,k,a,b)
=0 L/

L+ k
' lﬁb Z l: s } Ps,ﬁ,q (:IZ', Y, k, a, b) - aij+k,B,q (.%, Y, k? a, b) :
s=0 q
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Proof. The proof of this theorem is derived from
o - n n—
P g @y ka,b) =Y u P (0,0,k,a,b) (z + )" (see [16])
=0 q
and Theorem 2.2. So we omit the proof of this theorem. [
The g-integral representations of Péaﬁ) (%Y, k, a,b) are presented in the following theorem.
Theorem 2.5. (Integral representations) We have
P (v,y k,a,b) — P (u,y, k,a,b)

]{} b d _ n+1,8,q I ) Yy n+1,8,q I » Y ’
/ nﬁq Z‘y, y @y ) qx [n+1]

P (o 2k, b) =PI o, (2,2 k. a,)

/ Pﬁfg,q (x7 y? k7 af, b) dqy =

[n+1],

Proof. Since

| Put @y = 10) = 1 @) (see 19 (18)
using Eqgs. (7), (9) and (12), we obtain

/ P’r(:ifgz,q (x7y7k7a7b) dqx — n+1 / qu +15q(x,y,k,a,b:p7q) dqx
— m [Pﬁﬁlﬁq(v y, k,a,b) — Pnﬁlﬁq(u,y,k,a,b)] .
q

Also, the other g-integral representation can be shown in a similar manner. ]

The equations in Theorem 2.5 are g-extensions of the familiar formulas for usual Apostol-type
Bernoulli, Euler and Genocchi polynomials (see [32]).

The following theorem involves the recurrence relationship for unified Apostol-type
g-Bernoulli, g-Euler and ¢-Genocchi polynomials of order c.

Theorem 2.6. (Recurrence relationship) The following equality is true for n, k € Ny:

61)2[ 1 ! Jﬁq(x O k a, b —“bz L} ij;;;)’q(x,—l,k,a,b) (1)
q

7=0

217k[n]|nk n—k ' -

B W Z [ j } m]+k7)](,5,q1) (x7 —l,k,a,b).
q

q° =0

Proof. The proof of this theorem follows from the following expression:

0o o 2
2777(%5;) (x,—1,k,a,b)m |
n=0
( 21 (mz)* )a Be, (mz) — a®

q

Breq (mz) —a® 21k (m2)"
= 2% (m [Bbzpﬁqx()kab
n=0 q

n

—abipgfqu —1,k,a,b)m |i
n=0 :0

q

78



n

By utilizing the Cauchy product and equating the coefficients 7 on both sides, we procure the

[n]q'
recurrence relation (19). [l
Considering the Theorem 2.6, we acquire the following result:
Corollary 2.6.1. We have
5y m mIP; s, (2,0, k,a,0) —a® m mMIP; 54 (x,—1,k, a,b) (20)
— |J J
7=0 q q

J=0

ol-k [n] | n—k

n—=~k , ;
+k
D Dl e FEUERVA
! ] q
‘We now state the recurrence relation as follows.

Theorem 2.7. Forn € Ny and x,y € C, the following formulas are valid:
P?S‘?éﬁ),q (I’,y, kwaa b) = n i k l Z |: :| n+k—s,B,q (O my,k a, b) 21

S S " .
{”ZM JﬂﬂM&mw—mmM&mw}
Jj=0

2k 1[]'n+k‘

n+k
Pnﬁq(xyyuk;a,b) = [7’L—|——/{jqqlsz|: :|q73n+k qu(mekab)

<

. {,Bb |:S:| P,ii)j,ﬁyq (Oa Y, k; a, b) m‘j _ abpéié)’q (07 Y, k, a, b)} .
q

=0
Proof. Indeed,

n

o z
Z 7(15)(1 .CE y7k7 avb) [n_}q|
( gLk )“ o, (1z) 2ea () —a 27 (z/m)kqu ()

pBheq (2) — a® 21k (z/m)" Be, (£) —a m

mk S ) n . B X
- 21k Z [S]Q{Bbz |: :| P( —J:B:q l’ O’k’a’b)m ’ _abps(,ﬂ),q ($7O7k7a>b)}

n=0 s=0

n—k

Prspq(0,my, k,a,b)m™

[n]y!

[n],"
equation can be proved similarly. ]

Matching the coefficients of ——, we obtain the desired result for the first equation. The other

By combining Theorem 2.7 and Eq. (21), the following theorem is given.
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Theorem 2.8. We have

ﬂ%u%kavn>

n

2k 1 'HZM |: :|
pq s—n
n+k—s,ﬂ (07 my, ka a, b: b, Q> m
n+ k ' g v

21*]@ B ! s—k —k s—k—j .
. {ﬂ |:S 1 p( 2 )m]JrklPJ(%il) (x,—l,k,a,b iy Q)
p.q

*[s s—j (o N
—l—abz {] p( 2 )mJPJ(’B)( —1,k,a,b:p,q )—ast(yﬁ) (x,0,k, a,b:p,q)}.
p,q

We now give a special case of Theorem 2.8.

Corollary 2.8.1. We have

Pn,,B,q (757 Y, ka a, b) =

-
l=k[gl | 3Zk o _ . .
. { . [ ]‘1 ' |:8 . k} m]+k (x . 1)2
m* [s — k]! =L,

') [ﬂ " Pisa (2, =1k, 0,0) = P (3, 0,k b)}.

Kurt [16] introduced the generalized g-Stirling numbers of the second kind of order v as:

3 S, (n,v,a.b, 6) [;]n! _ (e [(z])'_a) . 22)

q

Also, Kurt [16] gave the following relation for PT%H (x,y,k,a,b)and S, (n,v,a,b, B):

v] M n —vk] | O
MZ [n] P](%Tqa) (z,y,k,a,b) Sy (n — j,v;a,b,f).
q

Pr g (@, K, a, b) = 2671
vk,ﬁ,q( ) [n]q| g j

n

By this motivation, we list the following theorems.

Theorem 2.9. The correlation given below is valid:
o(1—k)v

[0],!

Proof. The right-hand side is obtained by:

nvk[n—vk]q!_ - o
(x—i_y) _Z ] Pqu($7yakaaab)sq<” j,U,CL,b,B). (23)
q

R~

z
k,a,b
nq|n0 n6q$y7 , 4, )[n}q|
o n ' o
=33 [}] P vk s o gnan e
=0 5=0 q q
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the left-hand side is derived as

n

> z
;Sq(n?vja,b’ﬂ Z n,Bq [E yvkaa'7b) [n]q'

q n=0
_ (Bleg() —a?)”  (2F)
= veq (12) By (y2)
[v]q (Beq (2) —ab)" ™ !
kv Sntkv
Z r + y
q n=0 Q’
Equating the coefficients [Z] ;on both sides yields the asserted result (23). [
nl,!
Theorem 2.10. We have
[l o], "R+ ko] e ,
Pr(LBq (z,y,k,a,b) — 9(k=1)v [nj__k‘v]q' z; [ j LRH),W Jﬂq(x v, k,a,b) S, (j,v;a,b,B).
J
(24)
Proof. Using (10), it is observed that
Bbe, (t) —a®\" 1 2"
( 21k k [v],! 2(1 kv ZS n—l—kvvabﬁ)[ + kv] I’
Then, by (22), with some elementary calculatlons, we obtain
Z (x,y,k,a,b) —— - '
[n]q’
= vy OOS(nvabﬁ)zniO:P()(1’ykab)zn
v —k)v q s Uy My Uy )
Zk 2(1 g n=0 [n]q' n=0 [ ]q'
B [U]q! ) n P(a) " DS (5o ab Zn—kv
—2(17@@2 Z j nJBq(x’y’ 1a,0) S (j,v3 0,0, 5) [n] !
n=0 \ j=0 q q
By matching the coefficients [Z] ;on both sides, we obtain the asserted result (24). U
nl,!
Theorem 2.11. We have
n n . ; 2(1—k)v[ ] |
Proof. Considering the Eqs. (10) and (22), we obtain
Bbeq (Z) —qa 2(171{)’021}]9

ZS n,v,a,b, f) — [ ] eq (z2) B, (yz) = (W} e, (22) B, (y2) —[U]q! ,

then
n+vk 2(1 —k)v

:ZPT(LB;(:C v, k,a, b)

=0 PR [l [l

Using the Cauchy product and comparing the coefficients of ﬁ on both sides, we arrive at the
nl !
q

desired result (25). L]
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3 p 5> . (@, Y, k, a,b) associated with fermionic
p-adic integral on Z,

In this part, we will consider fermionic p-adic integral representation of the polynomials
Pé ,52 o (7,9, k, a,b). Therefore, we first state some definitions and notations which will be useful
for the sequel of this paper.

The symbols Z,, Q, and C, denote the ring of the p-adic integers, the field of the p-adic
numbers, and the field of p-adic completion of an algebraic structure of Q,, respectively, by

letting p be an odd prime number. For d an odd positive number with (p, d) = 1, put

X:=X,= h;vn Z)dpNZ and X, =7,

and
a+dpVZ,={x € X | x=a(mod dp")}

where a € Z lies in 0 < a < dp". The normalized p-adic value is given by |p|, = p~',

of [6,12,13]. For
feCZ,) ={f|f:Z,— C,, fis acontinuous function }

the fermionic p-adic integral on Z,, of a function f € C'(Z,) is originally defined by Kim [12,13],
as follows:

/ (@) dpes () = i 3 7 ) (1)
We know the following idenitities from Kurt’s work (see [16])
« = n

Py (2.y. kab) = ZM P 50 (0.9, a,b) 2™ (26)

m=0 q
n n .

=¥ [m] )P (2,0,k,a,b) y™. 27)

m=0 q

Thus, we now give the following Theorem 3.1.

Theorem 3.1. The following relationships hold true

/ P(agq(fﬁ y,k,a,b)dp_y (v) = Z {n} Pfl )mgq(() y, k,a,b) E (28)
q

/ nﬁq 23 y,k,a,b)d,u,l (y) = Z |:n:| ( )P’r(za)mﬁq(x707k7a7b) Em’ (29)
q

where E,, is the m-th usual Euler number.
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Proof. Since

Enz/xdul /yduly (see [13])
Z Zp

P

and Eq. (26), we have

P P m=0

n
P Oka) [ s (o)

P

3
(uj
3

3

= } ntqu,kab)E
0

3
I

/ ,Pflaﬁ)q (:c,y,k,a, b) dlu’*l (l’) = / Z |:T7;’LL:| P?iamﬁq 0 y,k;,a, b) xm) d,ufl (;E)
Z

which is a linear combination of the product 737(:1) (0,v,k,a,b) E,,. Also, by using Eq. (27),

m,B,q

we may obtain the other fermionic p-adic integral representation in Theorem 3.1. Thus, we

acquire the desired results.

Corollary 3.1.1. When y = 0 and x = 0 in Egs. (28) and (29), respectively, we obtain

Zyp m

PAD g (.0, k0, b)dpuy (2) = m P 5, (0,0,k,a,0) By,
q

m=0

a - n o
/va(uﬁ),q 0.y, k,a,b)du_y (y) = > M G)p© 0,0,k a,b) E,.
P m=0 q

Note that taking y = 0 (or x = 0) in Eq. (25) yields to

-~ [0 | w20 )
Z m Sq(n_myvya7b7/3>x = W,Pn Ukﬁq(li,o,k,aﬁb)’
m=0 q q
3 21— k)v [n] |
n (7;) — . b m — e ( ’U) k b
—~ |:m:|qq Sq (n m,'U7a7 7/8>y [”U] '[n—/[)kj]q',])n ’l)kﬁq(O?yJ ’a, ).

]

(30)

(31)

(32)

(33)

If the integral pr du—1 (y) is applied to both sides of Egs. (32) and (33), by making use of

the Egs. (30) and (31), we have the theorem given below.

Theorem 3.2. For n, k € Ny, each of the following relationships holds true:

n+vk

k
Z {n;v } Sy (n+ vk —m,v;a,b, ) E
q

m=0
20k [n 4+ vk] !

B (1] 5 00k

m=0

n—+uvk n—l—’l]k
Z { } q(z)Sq(n—{—ka—m,U;aab>ﬁ)E
q

m

20—k [y 4- vk],!

=T [ZfJ qq@P’(‘ mq (0:0:8:.0) E

m=0
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4 Conclusion

Kurt [16] introduced unified Apostol-type g-Genocchi, g-Euler and g-Bernoulli polynomials of
order o and investigated some properties of them. Also, by defining the generalized ¢-Stirling
numbers of the second kind, he derived a relation between these numbers the unified Apostol-type
g-polynomials. In the present paper, we have obtained a lot of novel identities for these unified
Apostol-type g-polynomials and some new theorems for these generalized Stirling numbers and
unified g-polynomials. Moreover, using the fermionic p-adic integral over the p-adic numbers
field, we acquire relations between the new and old polynomials.
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