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Abstract: In this article we study functions related to numbers which have the same kernel.
We apply the results obtained to the sums

∑
n≤x

1
u(n)s

, where s ≥ 2 is an arbitrary but fixed
positive integer and u(n) denotes the kernel of n. For example, we prove that∑

n≤x

1

u(n)s
∼ fs(x),

where

fs(x) =
∞∑
k=1

bk,s
k!

(log x)k

and the positive coefficients bk,s of the series have a strong connection with the prime numbers.
We also prove that ∑

n≤x

1

u(n)s
= exp

(
(log x)βs(x)

)
,

where limx→∞ βs(x) = 1
s+1

. The methods used are very elementary. The case s = 1, namely∑
n≤x

1
u(n)

, was studied, as it is well-known, by N. G. de Bruijn (1962) and W. Schwarz (1965).
Keywords: Kernel function, Numbers with the same kernel.
2010 Mathematics Subject Classification: 11A99, 11B99.

1 Introduction and preliminary notes

A squarefree number (also called quadratfrei number) is a number without square factors, a prod-
uct of different primes. The first few terms of the integer sequence of squarefree numbers are

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, . . .
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Let us consider the prime factorization of a positive integer n ≥ 2

n = qs11 q
s2
2 · · · qstt ,

where q1, q2, . . . qt are the different primes in the prime factorization.
We have the following two arithmetical functions

u(n) = q1q2 · · · qt.

The arithmetical function u(n) is well-known in the literature, it is called kernel of n, or
radical of n, etc. There are many papers dedicated to this arithmetical function. This function is
fundamental in the establishment of the famous ABC conjecture

v(n) =
n

u(n)
= qs1−11 qs2−12 · · · qst−1t .

We call v(n) the remainder of n. Note that v(n) = 1 if and only if n is a squarefree.
In this article we study functions related to numbers which have the same kernel. We apply

the results obtained to the sums
∑

n≤x
1

u(n)s
, where s ≥ 2 is an arbitrary but fixed positive integer

and u(n) denotes the kernel of n. For example, we prove that∑
n≤x

1

u(n)s
∼ fs(x),

where

fs(x) =
∞∑
k=1

bk,s
k!

(log x)k

and the positive coefficients bk,s of the series have a strong connection with the prime numbers.
We also prove that ∑

n≤x

1

u(n)s
= exp

(
(log x)βs(x)

)
,

where limx→∞ βs(x) = 1
s+1

. The methods used are very elementary. The case s = 1, namely∑
n≤x

1
u(n)

, was studied, as it is well-known, by N. G. de Bruijn (1962) and W. Schwarz (1965)
(see [2]).

We shall need the following well-known lemma (see [3], Chapter XXII).

Lemma 1.1. Let cn (n ≥ 1) be a sequence of real numbers. Let us consider the function A(x) =∑
n≤x cn. Suppose that f(x) has a continuous derivative f ′(x) on the interval [1,∞], then the

following formula holds ∑
n≤x

cnf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t) dt.
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2 Main results

Let p1, . . . , pk be distinct primes fixed. Let us consider the numbers a of the form

a = ps11 p
s2
2 · · · p

sk
k , (1)

where the multiplicities s1, . . . , sk are variables. That is, the numbers a with the same kernel
u(a) = p1 · · · pk. We have the following theorem.

Theorem 2.1. Let k ≥ 2 and s be arbitrary but fixed positive integers. The following asymptotic
formula holds. ∑

a≤x

1

u(a)s
=

1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

− 1

2

1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x

+ o
(
logk−1 x

)
. (2)

Proof: The distribution of the a numbers is well-known (see either [1] or [5]). The following
asymptotic formula holds∑

a≤x

1 =
1

k!

1

log p1 · · · log pk
logk x− 1

2

1

(k − 1)!

log p1 + · · ·+ log pk
log p1 · · · log pk

logk−1 x

+ o
(
logk−1 x

)
. (3)

Therefore, we obtain∑
a≤x

1

u(a)s
=

1

u(a)s

∑
a≤x

1 =
1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

− 1

2

1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x

+ o
(
logk−1 x

)
,

since u(a)s = (p1 · · · pk)s. �

Theorem 2.2. Let k ≥ 2 and s be arbitrary but fixed positive integers. The following asymptotic
formula holds.∑

a≤x

v(a)s =
k

s

1

k!

1

(p1 · · · pk)s log p1 · · · log pk
xs logk−1 x+ o

(
xs logk−1 x

)
(4)

Proof: For the sake of simplicity, we write equation (3) in the compact form∑
a≤x

1 = C1 log
k x+ C2 log

k−1 x+ o
(
logk−1 x

)
.
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If we put A(x) =
∑

a≤x 1 and f(x) = xs, then Lemma 1.1 gives∑
a≤x

as = C1x
s logk x+ C2x

s logk−1 x+ o
(
xs logk−1 x

)
− s

∫ x

1

(
C1t

s−1 logk t+ C2t
s−1 logk−1 t

)
dt+

∫ x

1

o
(
ts−1 logk−1 t

)
dt

=
k

s
C1x

s logk−1 x+ o
(
xs logk−1 x

)
, (5)

where we have used the formula (integration by parts)∫
ts−1 logk t dt =

ts

s
logk t− k

s

∫
ts−1 logk−1 t dt =

ts

s
logk t

− k

s

(
ts

s
logk−1 t− k − 1

s

∫
ts−1 logk−2 t dt

)
=
ts

s
logk t− k

s2
ts logk−1 t

+
k(k − 1)

s2

∫
ts−1 logk−2 t dt

the formula (integration by parts)∫
ts−1 logk−1 t dt =

ts

s
logk−1 t− k − 1

s

∫
ts−1 logk−2 t dt,

the formula ∫ x

1

o
(
ts−1 logk−1 t

)
dt = o

(
xs logk−1 x

)
,

and the formula (L’Hospital’s rule)

lim
x→∞

∫ x
a
tb logc t dt
xb+1 logc x

b+1

= 1.

In the last formula a, b and c are positive numbers. Equation (5) gives∑
a≤x

v(a)s =
∑
a≤x

as

u(a)s
=

1

u(a)s

∑
a≤x

as =
k

s

C1

u(a)s
xs logk−1 x+ o

(
xs logk−1 x

)
=

k

s

1

k!

1

(p1 · · · pk)s log p1 · · · log pk
xs logk−1 x+ o

(
xs logk−1 x

)
That is, equation (4). �

In a previous article [6], the author proved the following limit

lim
x→∞

∑
n≤x v(n)

x
=∞,

where n denotes a positive integer. In the following theorem we prove more precise results.
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Theorem 2.3. Let s be an arbitrary but fixed positive integer. For all α > 0 and for all β > 0 the
following limits hold

lim
x→∞

∑
n≤x

1
u(n)s

xα
= 0, (6)

lim
x→∞

∑
n≤x

1
u(n)s

logβ x
=∞, (7)

lim
x→∞

∑
n≤x v(n)

s

xs+α
= 0, (8)

lim
x→∞

∑
n≤x v(n)

s

xs logβ x
=∞. (9)

Proof: Let α > 0. We have
∞∑
n=1

1

u(n)nα
=
∏
p

(
1 +

1

ppα
+

1

p(pα)2
+

1

p(pα)3
+ · · ·

)

=
∏
p

(
1 +

1

ppα

(
1

1− 1
pα

))
=
∏
p

(
1 +

1

p(pα − 1

)
. (10)

Now, the product
∏

p

(
1 + 1

p(pα−1

)
converges to a positive number, since the series of positive

terms
∑

p
1

p(pα−1) clearly converges. Therefore, the series of positive terms (10) is convergent,
that is, we have

∑∞
n=1

1
u(n)nα

= C > 0. Therefore, if we apply Lemma 1.1 with f(x) = xα, then
we obtain ∑

n≤x

1

u(n)
= (C + o(1))xα − α

∫ x

1

(C + o(1))tα−1 dt = o(xα).

Consequently limit (6) holds, since we have the inequality∑
n≤x

1

u(n)s
≤
∑
n≤x

1

u(n)
.

Besides, limit (8) holds, since we have∑
n≤x

v(n)s =
∑
n≤x

ns

u(n)s
≤ xs

∑
n≤x

1

u(n)s
= o(xs+α).

Limits (7) and (9) are an immediate consequence of Theorem 2.1 and Theorem 2.2, since∑
n≤x

v(n)s ≥
∑
a≤x

v(a)s,
∑
n≤x

1

u(n)s
≥
∑
a≤x

1

u(a)s
.

This completed the proof. �

In the following theorem, nk denotes a positive integer with exactly k distinct prime factors,
that is, its prime factorization is of the form nk = ps11 · · · p

sk
k , where k is fixed.
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Theorem 2.4. Let k and s be arbitrary but fixed positive integers. The following asymptotic
formula holds ∑

nk≤x

1

u(nk)s
=
bk,s
k!

logk x+ o
(
logk x

)
, (11)

where

bk,s =
∑
p1···pk

1

(p1 · · · pk)s log p1 · · · log pk
≤ aks
k!

(12)

and as =
∑

p
1

ps log p
.

The symbol
∑

p1···pk means that the sum runs on all products of k distinct primes, that is, on
all squarefree with k prime factors.

The symbol
∑

p means that the sum runs on all positive primes.
The following limit holds

lim
k→∞

bk,s = 0.

Proof: Note that the series
∑

p
1

ps log p
converges. Clearly this fact is true if s ≥ 2. Also, it is

true if s = 1 since (prime number theorem) rn ∼ n log n, log rn ∼ log n and the series
∑

1
n log2 n

converges (integral criterion). Here r(n) denotes the n-th prime number.
Therefore, the series (12) converges, since (product of convergent series) we have

k!
∑
p1···pk

1

(p1 · · · pk)s log p1 · · · log pk
≤

(∑
p

1

ps log p

)k

= aks .

The sum of this series (12) we have denoted by bk,s.
Let qn be the sequence of squarefree numbers with k prime factors. There exists qt+1 such

that ∑
p1···pk≥qt+1

1

(p1 · · · pk)s log p1 · · · log pk
≤ ε (13)

On the other hand, we have (see Theorem 2.1 and (12))∑
nk≤x

1

u(nk)s
=

∑
p1···pk≤x

(∑
a≤x

1

u(a)s

)

=
∑

p1···pk≤qt

(
logk x

k!(p1 · · · pk)s log p1 · · · log pk

)
+ o

(
logk x

)
+

∑
qt+1≤p1···pk≤qx

(
1

(p1 · · · pk)s
∑
a≤x

1

)
=
bk,s
k!

logk x

− 1

k!

∑
p1···pk≥qt+1

logk x

(p1 · · · pk)s log p1 · · · log pk
+ o

(
logk x

)
+

∑
qt+1≤p1···pk≤qx

(
1

(p1 · · · pk)s
∑
a≤x

1

)
. (14)
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In equation (14), qx denotes the greatest squarefree number with k prime factors not
exceeding x.

Let us consider the inequality ps11 · · · p
sk
k ≤ x, where p1, . . . , pk are fixed primes. We have

psii ≤ x(i = 1, . . . , k), consequently, si can take the values si = 1, . . . ,
[

log x
log pi

]
(i = 1, . . . , k) and,

therefore, an upper bound for
∑

a≤x 1 is

∑
a≤x

1 ≤
[
log x

log p1

]
· · ·
[
log x

log pk

]
≤ logk x

log p1 · · · log pk
. (15)

We have (see (13) and (15))

∑
qt+1≤p1···pk≤qx

(
1

(p1 · · · pk)s
∑
a≤x

1

)

≤
∑

qt+1≤p1···pk≤qx

1

(p1 · · · pk)s
logk x

log p1 · · · log pk
≤ ε logk x. (16)

Equations (14), (13) and (16) give∣∣∣∣∣
∑

nk≤x
1

u(nk)s

logk x
− bk,s

k!

∣∣∣∣∣ ≤ 3ε (x ≥ xε). (17)

Now, ε > 0 can be arbitrarily small. Consequently, equation (17) can be written in the form∑
nk≤x

1
u(nk)s

logk x
− bk,s

k!
= o(1).

That is, equation (11). �

In the following theorem we obtain a stronger inequality than inequality (12).

Theorem 2.5. Let k and s be arbitrary but fixed positive integers. The following inequalities hold

bk,s ≤
(css)

k

(k!)s
,

where cs =
∑

p
1

p(log p)1/s
.

Proof: We have

k!
∑
p1···pk

1

p1 · · · pk(log p1)1/s · · · (log pk)1/s
≤

(∑
p

1

p(log p)1/s

)k

= cks .

Hence, ∑
p1···pk

1

p1 · · · pk(log p1)1/s · · · (log pk)1/s
≤ cks
k!
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and, consequently,

bk,s =
∑
p1···pk

1

(p1 · · · pk)s log p1 · · · log pk

≤

(∑
p1···pk

1

p1 · · · pk(log p1)1/s · · · (log pk)1/s

)s

≤ (css)
k

(k!)s
.

Therefore, the inequality is proved. �

Now, we establish a general theorem.

Theorem 2.6. Let us consider the inequality

r1x1 + · · ·+ rnxn ≤ x (x ≥ 0),

where ri (i = 1, . . . , n) are fixed positive real numbers. The number of solutions (x1, . . . , xn)

to this inequality, where xi (i = 1, . . . , n) are positive integers, will be denoted by Sn(x). The
following inequality holds:

Sn(x) ≤
1

n!

xn

r1 · · · rn
(x ≥ 0).

Proof: If x ≥ r1, then the solutions to the inequality r1x1 ≤ x are x1 = 1, . . . ,
⌊
x
r1

⌋
and,

consequently, S1(x) =
⌊
x
r1

⌋
≤ x

r1
. On the other hand, if 0 ≤ x < r1, we have S1(x) = 0

and, consequently, also S1(x) ≤ x
r1

. Therefore, the theorem is true for n = 1. Suppose that the
theorem is true for n − 1 ≥ 1, we shall prove that the theorem is also true for n. Suppose that
x ≥ r1 + · · ·+ rn, then

Sn(x) =

b xrn c∑
xn=1

Sn−1 (x− rnxn) ≤
1

(n− 1)!

1

r1 · · · rn−1

b xrn c∑
xn=1

(x− rnxn)n−1

≤ 1

(n− 1)!

1

r1 · · · rn−1

∫ x
rn

0

(x− rnxn)n−1 dxn =
1

n!

xn

r1 · · · rn
.

Note that the function f(xn) = (x− rnxn)n−1 is strictly decreasing in the interval
[
0, x

rn

]
and in

this interval the area below the function is greater than the sum of the areas of the
⌊
x
rn

⌋
rectangles

of base 1 and height (x− rnxn)n−1, that is, the sum
∑b xrn c

xn=1 (x− rnxn)n−1.
On the other hand, if 0 ≤ x < r1+ · · ·+ rn, then Sn(x) = 0 and, consequently, the inequality

also holds. �

We have the following immediate corollary (see Theorem 2.1).

Corollary 2.7. Let k be an arbitrary but fixed positive integer. The following inequalities hold∑
a≤x

1 ≤ 1

k!

1

log p1 · · · log pk
logk x (x ≥ 1)
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∑
a≤x

1

u(a)s
≤ 1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x (x ≥ 1)

Theorem 2.8. Let s be an arbitrary but fixed positive integer. The following inequalities hold∑
n≤x

1

u(n)s
≤ F1,s(x) ≤ F2,s(x) ≤ F3,s(x) ≤ e(s+1)c

s/s+1
s

s+1√log x (x ≥ 1), (18)

where

F1,s(x) =
∑

p1···pk≤x

1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x, (19)

F2,s(x) =
h∑
k=1

bk,s
k!

logk x, (20)

F3,s(x) =
∞∑
k=1

bk,s
k!

logk x. (21)

Note that in (19) the positive integer k is a variable, that is, the sum runs on all squarefree not
exceeding x. On the other hand, in (20) the positive integer h denotes the greatest number of
prime factors of the squarefree number not exceeding x.

Besides, for all β > 0 and all α > 0 the following limits hold

lim
x→∞

Fi,s(x)

logβ x
=∞ (i = 1, 2, 3), (22)

lim
x→∞

Fi,s(x)

xα
= 0 (i = 1, 2, 3), (23)

and also the following inequalities hold∑
n≤x

v(n)s ≤ xsF1,s(x) ≤ xsF2,s(x) ≤ xsF3,s(x) ≤ xse(s+1)c
s/s+1
s

s+1√log x, (24)

where x ≥ 1.

Proof: First all, we shall prove that the functions F3,s(x) exist for x ≥ 1. We have (see Theorem
2.5)

F3,s(x) =
∞∑
k=1

bk,s
k!

logk x ≤
∞∑
k=0

(css)
k

(k!)s+1
logk x ≤

(
∞∑
k=0

(c
s/s+1
s

s+1
√
log x)k

k!

)s+1

= e(s+1)c
s/s+1
s

s+1√log x. (25)

Note that we have used the power series ex =
∑∞

k=0
xk

k!
.
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Now, we have (see Corollary 2.7 and (19))

∑
n≤x

1

u(n)s
=

∑
p1···pk≤x

(∑
a≤x

1

u(a)s

)
≤ F (1, s)(x) (x ≥ 1).

From the definition of bk,s (see equation (12)) and the definitions of F (2, s)(x) and F (3, s)(x),
we obtain (18) (see (19), (20) and (21)).

Limit (22) is an immediate consequence of the definitions (19), (20) and (21).
Let α > 0. Limit (23) is an immediate consequence of (18) and the limit limx→∞

e
s+1√log x

xα
= 0.

Equation (24) is an immediate consequence of (18) and the trivial inequality∑
n≤x

v(n)s =
∑
n≤x

ns

u(n)s
≤ xs

∑
n≤x

1

u(n)s

�

Remark 2.9. The function
∑

n≤x
1

u(n)
(the case s = 1 in this article) has been very studied. In

1962, N. G. de Bruijn obtained the asymptotic formula log
(∑

n≤x
1

u(n)

)
= (1 + o(1))

√
8 log x
log log x

,
see [2]. An immediate consequence of this formula are limits (6) and (7) (s = 1). In 1965,
W. Schwarz obtained a function F (x) such that

∑
n≤x

1
u(n)
∼ F (x), see [2].

Now, we establish a general theorem.

Theorem 2.10. Let us consider the inequality

r1x1 + · · ·+ rnxn ≤ x (x ≥ 0),

where ri (i = 1, . . . , n) are fixed positive real numbers. The number of solutions (x1, . . . , xn) to
this inequality, where xi (i = 1, . . . , n) are positive integers, will be denoted by Sn(x).

The following inequalities hold

Sn(x) ≥
1

n!

xn

r1 · · · rn
− 1

(n− 1)!

r1 + · · ·+ rn
r1 · · · rn

xn−1 (x ≥ n (r1 + · · ·+ rn))

Sn(x) ≥ 0 (0 ≤ x < n (r1 + · · ·+ rn))

Proof: First, we shall prove that the inequality

Sn(x) ≥
1

n!

xn

r1 · · · rn
− 1

(n− 1)!

r1 + · · ·+ rn
r1 · · · rn

xn−1 (26)

holds for x ≥ 0.
If x ≥ r1, then the solutions to the inequality r1x1 ≤ x are x1 = 1, . . . ,

⌊
x
r1

⌋
and, conse-

quently, S1(x) =
⌊
x
r1

⌋
≥ x

r1
− 1. On the other hand, if 0 ≤ x < r1, we have S1(x) = 0 and,

consequently, also S1(x) ≥ x
r1
− 1. Therefore, inequality (26) is true for n = 1. Suppose that
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inequality (26) is true for n ≥ 1, we shall prove that inequality (26) is also true for n+1. Suppose
that x ≥ rn+1, then

Sn+1(x) =

⌊
x

rn+1

⌋∑
xn+1=1

Sn (x− rn+1xn+1) ≥
1

n!

1

r1 · · · rn

⌊
x

rn+1

⌋∑
xn+1=1

(x− rn+1xn+1)
n

− 1

(n− 1)!

r1 + · · ·+ rn
r1 · · · rn

⌊
x

rn+1

⌋∑
xn+1=1

(x− rn+1xn+1)
n−1

≥ 1

n!

1

r1 · · · rn

∫ x
rn+1

0

(x− rn+1xn+1)
n dxn+1 −

1

n!

1

r1 · · · rn
xn

− 1

(n− 1)!

r1 + · · ·+ rn
r1 · · · rn

∫ x
rn+1

0

(x− rn+1xn+1)
n−1 dxn+1

=
1

(n+ 1)!

xn+1

r1 · · · rn+1

− 1

n!

r1 + · · ·+ rn+1

r1 · · · rn+1

xn.

On the other hand, if 0 < x < rn+1, then Sn+1(x) = 0 and, consequently, the inequality also
holds, since

1

(n+ 1)!

xn+1

r1 · · · rn+1

− 1

n!

r1 + · · ·+ rn+1

r1 · · · rn+1

xn =
1

(n+ 1)!

xn+1

r1 · · · rn+1

− 1

n!

1

r1 · · · rn
xn − 1

n!

r1 + · · ·+ rn
r1 · · · rn+1

xn =
1

n!

1

r1 · · · rn
xn
(

x

(n+ 1)rn+1

− 1

)
− 1

n!

r1 + · · ·+ rn
r1 · · · rn+1

xn < 0.

Therefore, inequality (26) is proved for x ≥ 0. Now, inequality (26) can be written in the form

Sn(x) ≥
1

n!

xn

r1 · · · rn

− 1

(n− 1)!

r1 + · · ·+ rn
r1 · · · rn

xn−1 =
1

n!

xn

r1 · · · rn

(
1− n(r1 + · · ·+ rn)

x

)
, (27)

which completes the proof. �

We have the following immediate corollary (see Theorem 2.1).

Corollary 2.11. Let k and s be arbitrary but fixed positive integers. If x ≥ (p1 · · · pk)k, then the
following inequalities hold∑

a≤x

1 ≥ 1

k!

1

log p1 · · · log pk
logk x− 1

(k − 1)!

log p1 + · · ·+ log pk
log p1 · · · log pk

logk−1 x

∑
a≤x

1

u(a)s
≥ 1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

− 1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x.
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Theorem 2.12. Let s be an arbitrary but fixed positive integer. The following inequality holds∑
n≤x

1

u(n)s
≥ F5,s(x) (x ≥ 1),

where

F5,s(x) =
∑

p1···pk≤x
(p1···pk)k≤x

(
1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

− 1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x

)
.

Besides, for all β > 0 and all α > 0 the following limits hold

lim
x→∞

F5,s(x)

logβ x
=∞,

lim
x→∞

F5,s(x)

xα
= 0.

Proof: It is an immediate consequence of Corollary 2.11 and the definition of the function
F5,s(x). �

Let qn be the n-th prime. Note that in the series (12) the greatest term is

1

(q1 · · · qk)s log q1 · · · log qk
.

In the following theorem, we compare the sum bk,s of the series (12) with its greatest term. Before
that, we need the following well-known lemma.

Lemma 2.13. Let us consider the two series of positive terms
∑∞

i=1 ai and
∑∞

i=1 bi. If ai ∼
bi(i→∞) and the series

∑∞
i=1 bi diverges, then

∑n
i=1 ai ∼

∑n
i=1 bi(n→∞)

Proof: See, for example, [7]. �

Theorem 2.14. Let s be an arbitrary but fixed positive integer. The following limit holds

lim
k→∞

bk,s
1

(q1···qk)s log q1··· log qk

=∞,

where qn denotes the n-th prime.

Proof: Note that (due to the Prime Number Theorem and Lemma 2.13) we have

k∑
i=1

qsi log qi ∼
k∑
i=1

is logs+1 i.
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Now,

k∑
i=1

is logs+1 i =

∫ k

1

xs logs+1 x dx+O
(
ks logs+1 k

)
∼ ks+1

s+ 1
logs+1 k ∼ qs+1

k

s+ 1

(since L’Hospital’s rule)

lim
x→∞

∫ x
1
ts logs+1 t dt

xs+1

s+1
logs+1 x

= 1.

Therefore,

bk,s
1

(q1···qk)s log q1··· log qk

=
∑
p1···pk

(q1 · · · qk)s log q1 · · · log qk
(p1 · · · pk)s log p1 · · · log pk

≥
k∑
i=1

(q1 · · · qk)s log q1 · · · log qk(qsi log qi)
(q1 · · · qk)s log q1 · · · log qk

(
qsk+1 log qk+1

) =
1

qsk+1 log qk+1

k∑
i=1

qsi log qi

∼ k

s+ 1
.

This completes the proof. �

Theorem 2.15. Let s be an arbitrary but fixed positive integer. The following asymptotic formulas
hold

log bk,s ∼ −sk log k ∼ −sqk, (28)

bk,s = e−s(1+o(1))k log k = e−s(1+o(1))qk , (29)

where qn denotes the n-th prime.

Proof: The following equation is well-known (see [4])

log(q1 · · · qk) = k log k + k log log k − k + o(k). (30)

From the Stirling’s formula k! ∼
√
2πkk

√
k

ek
, we obtain

log(k!) = k log k − k + o(k), (31)

and besides we have

k∑
i=2

log log i = log log 2 +

∫ k

e

log log x dx+O (log log k) = log log 2

+ k log log k −
∫ k

e

1

log x
dx+O (log log k) = k log log k + o(k).
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Therefore, we have

log log q1 + · · ·+ log log qk = log log q1 + log log q2 +
k∑
i=3

log log i+
k∑
i=3

o(1)

= k log log k + o(k), (32)

since the Prime Number Theorem qn ∼ n log n implies log log qn = log log n+ o(1).
Now, we have the inequality (see Theorem 2.5 and the definition of bk,s)

1

(q1 · · · qk)s log q1 · · · log qk
≤ bk,s ≤

(css)
k

(k!)s
. (33)

Therefore,

−sk log k ∼ log

(
1

(q1 · · · qk)s log q1 · · · log qk

)
≤ log bk,s ≤ log

(
(css)

k

(k!)s

)
∼ −sk log k. (34)

This completes the proof. �

Theorem 2.16. Let s be an arbitrary but fixed positive integer. The following limit holds

lim
k→∞

bk,s
1

(q1···qk)s−1 log q1··· log qk

= 0,

where qn denotes the n-th prime.

Proof: We have (see Theorem 2.15)

log

(
bk,s
1

(q1···qk)s−1 log q1··· log qk

)
= log bk,s + (s− 1) log(q1 · · · qk)

+ (log log q1 + · · ·+ log log qk) ∼ −k log k.

This completes the proof. �

Theorem 2.17. Let s be an arbitrary but fixed positive integer. There exists k0, such that if k ≥ k0,
then we have

bk,s =
1

(q1 · · · qk)βk log q1 · · · log qk
(35)

where s− 1 < βk < s, limk→∞ βk = s and qn denotes the n-th prime.
Besides, the following asymptotic formulas hold

log bk,s = −βkk log k + (1− βk)k log log k + βkk + o(k) (36)

bk,s = exp (−βkk log k + (1− βk)k log log k + βkk + o(k)) (37)

(bk,s)
1/k ∼ exp (−βk log k + (1− βk) log log k + βk) (38)
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Proof: From the definition of bk,s and Theorem 2.16, there exists k0, such that if k ≥ k0, the
following inequality holds

1

(q1 · · · qk)s log q1 · · · log qk
< bk,s <

1

(q1 · · · qk)s−1 log q1 · · · log qk
, (39)

therefore, there exists a unique βk, such that s− 1 < βk < s and

bk,s =
1

(q1 · · · qk)βk log q1 · · · log qk
. (40)

From equation (40) and using the formulas proved in Theorem 2.16, we obtain (36). Equation
(36) can be written in the form

log bk,s = −βkk log k + o(k log k). (41)

On the other hand, we have by Theorem 2.16

log bk,s = −sk log k + o(k log k). (42)

Equations (41) and (42) give limk→∞ βk = s. �

Theorem 2.18. Let s be an arbitrary but fixed positive integer. There exists k0, such that if k ≥ k0,
the following inequality holds

bk,s < bk−1,s. (43)

Besides, the following limit holds

lim
k→∞

bk,s
bk−1,s

= 0. (44)

Proof: We have, p1 < · · · < pk,

bk,s =
∑
p1···pk

1

(p1 · · · pk)s log p1 · · · log pk

=
∑

p1···pk−1

(
1

(p1 · · · pk−1)s log p1 · · · log pk−1

(∑
p≥pk

1

ps log p

))

≤
∑

p1···pk−1

(
1

(p1 · · · pk−1)s log p1 · · · log pk−1

(∑
p≥qk

1

ps log p

))

= bk−1,s

(∑
p≥qk

1

ps log p

)
Now, limk→∞

∑
p≥qk

1
ps log p

= 0. Therefore, (44) is proved.
Let us choose k0, such that

∑
p≥qk0

1
p log p

< 1. Hence, if k ≥ k0, we have∑
p≥qk

1

ps log p
≤
∑
p≥qk0

1

ps log p
≤
∑
p≥qk0

1

p log p
< 1.

Therefore, (43) is proved. �

58



Theorem 2.19. Let s be an arbitrary but fixed positive integer. We have

bk,s
k!

(log x)k = eE(k), (45)

where

E(k) =

(− (βk + 1) log k + (1− βk) log log k + βk + 1 + log log x+ o(1)) k (46)

and k ≥ 2 , βk → s.
Let ε > 0. There exists k0, such that if k ≥ k0, the following inequalities hold

E(k) < (−(s+ 1− ε) log k + (1− s+ ε) log log k + s+ 1 + ε+ log log x) k, (47)

E(k) > (−(s+ 1) log k + (1− s) log log k + s+ 1− 2ε+ log log x) k. (48)

Proof: Equation (46) is an immediate consequence of equation (36). Let ε > 0. There exist k0
such that if k ≥ k0 the following inequalities hold

−ε < o(1) < ε, s− ε < βk < s, (49)

and, consequently, the following inequalities hold

−(s+ 1) < −(βk + 1) < −(s+ 1− ε), 1− s < 1− βk < 1− s+ ε, (50)

s+ 1− ε+ log log x < βk + 1 + log log x < s+ 1 + log log x. (51)

Inequalities (49), (50), (51) and equation (46) give inequalities (47) and (48). �

Theorem 2.20. Let s be an arbitrary but fixed positive integer. The following asymptotic formula
holds

F3,s(x) =
∞∑
k=1

bk,s
k!

(log x)k = exp
(
(log x)αs(x)

)
, (52)

where limx→∞ αs(x) =
1
s+1

.

Proof: Let ε > 0. Let us consider the positive integer depending on x

k′ =
⌊
(log x)

1
s+1+ε

⌋
= f(x)(log x)

1
s+1+ε = f(x)(log x)

1
s+1
−ε′ , (53)

where limx→∞ f(x) = 1. We have

log k′ = g(x)
1

s+ 1 + ε
log log x, log log k′ = h(x) log log log x, (54)
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where limx→∞ g(x) = 1 and limx→∞ h(x) = 1. Substituting (53) into (48), we obtain

lim
x→∞

E(k′)

k′
=∞.

Therefore, from a certain value of x we have

k′ < E(k′), (55)

and, consequently, we have (see equations (55), (45), (18) and (21))

ek
′
< eE(k′) =

bk′,s
k′!

(log x)k
′
< F3,s(x) ≤ eC

s+1√log x, (56)

where C = (s+ 1)c
s/s+1
s . Hence, (see (56) and (53)) if we put logF3,s(x) = (log x)αs(x), then

k′ = f(x)(log x)
1
s+1
−ε′ ≤ (log x)αs(x) ≤ C(log x)

1
s+1

From here we obtain limx→∞ αs(x) = 1
s+1

, since ε and, consequently, ε′ can be arbitrarily
small. �

Theorem 2.21. Let s ≥ 2 an arbitrary but fixed positive integer. The following asymptotic
formulas hold (see Theorems 2.8 and 2.12)∑

n≤x

1

u(n)s
∼ Fi,s(x) (i = 1, 2, 3, 5). (57)

Besides ∑
n≤x

1

u(n)s
= exp

(
(log x)βs(x)

)
, (58)

where limx→∞ βs(x) =
1
s+1

.

Proof: We have (see Theorem 2.12)

F5,s(x) =
∑

p1···pk≤x
(p1···pk)k≤x

(
1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

− 1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x

)
= G1,s(x)−G2,s(x). (59)

If we put

ak,s(x) =
∑

p1···pk≤x1/k

1

(p1 · · · pk)s log p1 · · · log pk
, (60)

bk,s(x) =
∑

p1···pk>x1/k

1

(p1 · · · pk)s log p1 · · · log pk
, (61)

60



ck,s(x) =
∑

p1···pk≤x1/k

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

, (62)

then

G1,s(x) =
∑

p1···pk≤x
(p1···pk)k≤x

1

k!

1

(p1 · · · pk)s log p1 · · · log pk
logk x

=
h′∑
k=1

ak,s(x)
(log x)k

k!
, (63)

G2,s(x) =
∑

p1···pk≤x
(p1···pk)k≤x

1

(k − 1)!

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

logk−1 x

=
h′∑
k=1

ck,s(x)
(log x)k−1

(k − 1)!
, (64)

where h′ is the greatest k such that there exist p1 · · · ph′ , such that (p1 · · · ph′)h
′ ≤ x. Note that

(see (60), (61) and (12))

bk,s = ak,s(x) + bk,s(x). (65)

Let qn be the n-th prime. Let us consider the inequality (q1 · · · qk)k ≤ x, that is
k log(q1 · · · qk) ≤ log x, that is (see Theorem 2.16) f(k)k2 log k ≤ log x, where f(k) → 1.
From here we obtain ⌊

(log x)5/12
⌋
≤ h′ ≤

⌊
(log x)1/2

⌋
. (66)

Note that 1/3 < 5/12 < 1/2.
Let k0 = blog xc. We have (see (43) and (29))

0 ≤
∞∑

k=k0

bk,s
k!

(log x)k ≤ bk0,s

∞∑
k=k0

(log x)k

k!
≤ bk0,se

log x

= exp (−s(1 + o(1)) blog xc log blog xc+ log x)

= exp (−s(1 + o(1)) log x log log x+ log x) = o(1).

That is
∞∑

k=blog xc

bk,s
k!

(log x)k = o(1). (67)

Let us put

k′ =
⌊
(log x)

1
s+1−2ε

⌋
=
⌊
(log x)

1
s+1

+ε′
⌋
. (68)
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Equation (47) gives

lim
x→∞

E(k′)

k′
= −∞.

Therefore, from a certain value of x

E(k′) < 0

and also (see (47)) if k ≥ k′,

E(k) < 0.

Therefore, if k ≥ k′,
bk,s
k!

(log x)k = eE(k) < 1. (69)

On the other hand, we have∑
p1···pk>x

1

(p1 · · · pk)s log p1 · · · log pk
≤

∑
p1···pk>x

1

log 2

1

(p1 · · · pk)s
≤ 1

log 2

∑
n>x

1

ns

≤ 1

log 2

∫ ∞
bxc

t−s dt =
1

log 2

1

(s− 1) (bxc)s−1
= C

1

(bxc)s−1
. (70)

Consequently, if k = 1, 2, . . . , k′ =
⌊
(log x)

1
s+1

+ε′
⌋

, then (see (61) and (70))

bk,s(x) ≤ C
1

(bx1/kc)s−1
≤ C

1

(bx1/k′c)s−1
. (71)

Therefore, (see (71)) we have

0 ≤
k′∑
k=1

bk,s(x)
(log x)k

k!
≤ Ck′

(bx1/k′c)s−1
(log x)k

′

1!
=

Ck′

f(x)x(s−1)/k′
(log x)k

′

= exp
(
−(s− 1)(1 + o(1))(log x)

s
s+1
−ε′
)
= o(1).

That is,
k′∑
k=1

bk,s(x)
(log x)k

k!
= o(1). (72)

Now, (see equations (21), (60), (61), (63), (65), (66), (68), (69), (72) and (67)), we have

F3,s(x) =
∞∑
k=1

bk,s
(log x)k

k!
=

h′∑
k=1

(ak,s(x) + bk,s(x))
(log x)k

k!

+
∞∑

k=h′+1

bk,s
(log x)k

k!
= G1,s(x) +

h′∑
k=1

bk,s(x)
(log x)k

k!

+
∞∑

k=h′+1

bk,s
(log x)k

k!
= G1,s(x) +

k′∑
k=1

bk,s(x)
(log x)k

k!

+
h′∑

k=k′+1

bk,s(x)
(log x)k

k!
+

blog xc−1∑
k=h′+1

bk,s
(log x)k

k!
+

∞∑
k=blog xc

bk,s
(log x)k

k!

= G1,s(x) + o(1) +O (log x) + o(1) = G1,s(x) +O (log x)

= G1,s(x) + o (F3,s(x)) . (73)
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Besides, ∑
p1···pk

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

=
∑
p1···pk

log(p1 · · · pk)
(p1 · · · pk)s log p1 · · · log pk

≤ 1

log 2

∞∑
n=1

log n

ns
,

that is, the series converges. Hence, we have∑
p1···pk

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

= ck,s. (74)

If p1 < · · · < pk, we have

ck,s =
∑
p1···pk

log p1 + · · ·+ log pk
(p1 · · · pk)s log p1 · · · log pk

=
∞∑
i=k

 ∑
p1···pk−1qi

log p1 + · · ·+ log pk−1 + log qi
(p1 · · · pk−1qi)s log p1 · · · log pk−1 log qi


≤

∞∑
i=k

 ∑
p1···pk−1qi

k log qi
(p1 · · · pk−1qi)s log p1 · · · log pk−1 log qi


≤ kbk−1,s

∞∑
i=k

1

qsi
≤ kbk−1,s

∞∑
n≥qk

1

ns
≤ bk−1,s

1

s− 1

k

(qk − 1)s−1

Therefore,

lim
k→∞

ck,s
bk−1,s

= 0 (75)

Consequently, if α > 0 there exists k0 such that if k ≥ k0, then ck,s
bk−1,s

< α. Hence, (see (64))

0 ≤ G2,s(x) =
h′∑
k=1

ck,s(x)
(log x)k−1

(k − 1)!
≤

∞∑
k=1

ck,s
(log x)k−1

(k − 1)!

=

k0−1∑
k=1

ak,s
(log x)k−1

(k − 1)!
+ α

∞∑
k=k0

bk−1,s
(log x)k−1

(k − 1)!
=

k0−1∑
k=1

ak,s
(log x)k−1

(k − 1)!

+ α
∞∑

k=k0−1

bk,s
(log x)k

(k)!
.

That is, from a certain value of x we have (see (21) and (22))

0 ≤ G2,s(x)

F3,s(x)
≤ o(1) + α ≤ 2α

and since α can be arbitrarily small, we find that

G2,s(x) = o (F3,s(x)) . (76)
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Equations (59), (76) and (73) give F3,s(x) ∼ F5,s(x) and, consequently, (see (59), (18) and
Theorem 2.12) equation (57) is proved. Finally, equations (52) and (57) give (58). �

To finish, we establish the following question.

Question: Does equation (57) hold when s = 1?
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