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Abstract: In this article we study functions related to numbers which have the same kernel.
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1 Introduction and preliminary notes

A squarefree number (also called quadratfrei number) is a number without square factors, a prod-
uct of different primes. The first few terms of the integer sequence of squarefree numbers are

1,2,3,5,6,7,10,11,13,14, 15,17, 19, 21, 22, 23, 26, 29, 30, . . .
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Let us consider the prime factorization of a positive integer n > 2

n=qyg gt
where ¢, g2, . . . ¢; are the different primes in the prime factorization.
We have the following two arithmetical functions

u(n) =q192 - - Q.

The arithmetical function u(n) is well-known in the literature, it is called kernel of n, or
radical of n, etc. There are many papers dedicated to this arithmetical function. This function is
fundamental in the establishment of the famous ABC conjecture

— L _ S51—1 sa—1 St— 1
v(n) u(n) =4 4 4y

We call v(n) the remainder of n. Note that v(n) = 1 if and only if n is a squarefree.
In this article we study functions related to numbers which have the same kernel. We apply

the results obtained to the sums ) where s > 2 is an arbitrary but fixed positive integer

TL<$ u(n)S ’

and u(n) denotes the kernel of n. For example, we prove that

where

Mg

k=1

and the positive coefficients by, s of the series have a strong connection with the prime numbers.

5 - on (o),

where limgHoo Bs(x) = . +1 The methods used are very elementary. The case s = 1, namely
an wmy» Was studied, as it is well-known, by N. G. de Bruijn (1962) and W. Schwarz (1965)
(see [2]).

We shall need the following well-known lemma (see [3], Chapter XXII).

We also prove that

Lemma 1.1. Let ¢, (n > 1) be a sequence of real numbers. Let us consider the function A(x) =
Y on<e Cn- Suppose that f(x) has a continuous derivative f'(x) on the interval [1, 0], then the
following formula holds

S euf(m) = A - [ A ar

n<x
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2 Main results

Let py, ..., pr be distinct primes fixed. Let us consider the numbers a of the form
a=pi'ps -yt (1)
where the multiplicities sq, ..., s, are variables. That is, the numbers a with the same kernel

u(a) = py - - - pr. We have the following theorem.

Theorem 2.1. Let k > 2 and s be arbitrary but fixed positive integers. The following asymptotic
formula holds.

1 1 1
Z —_— log® z
u(

“u(a)®* k! (pr---p)*logps - log py

1 1 logpy + -+ - + log px b1
— 5 lo x
2(k—1)!(p1- - pr) logpy - - log p,
+ o (logk_l w) . 2)

Proof: The distribution of the a numbers is well-known (see either [1] or [5]). The following
asymptotic formula holds

Z - ! lo kz—l ! 1ngl—i_”.—klogmlo Py
=" Kllogp:---logpy ST =) logpr - dogpe 0
+ o(log"'z). 3)

Therefore, we obtain

11 1 1 b
Zu(a)s_u(a)szl log

o<z - H(pl ++px)”logpr -+ - log py

a<lx S
11 logpy + -+ log py k—1
- = < log" " x
2(k=1)!(p1---pr) logpr - - -log g
+ o (logk”_1 x) ,
since u(a)® = (p1---pr)’. O

Theorem 2.2. Let k > 2 and s be arbitrary but fixed positive integers. The following asymptotic
Sformula holds.

k1 1
vla) = == - 2°log" 'z + o (2°log" ' (€))
Z () Sk?!(]h"'pk) logpy"logpk g ( g )

a<x

Proof: For the sake of simplicity, we write equation (3) in the compact form

Z 1=Clogh x4+ Chlog" x40 (logk_1 x) .

a<lx
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If we put A(z) = >, 1and f(z) = z°, then Lemma 1.1 gives

Z a® = Ciz*logh 4+ Cox®log"tz + o (a:s logh~! a:)

a<lzx

- s /x (Clts’l loght + Cyt*1logh™! t) dt + /r 0 (tsfl logh~1 t) dt
1 1
= éClxs log" 'z +o (xs logh~1 9:) , ®))
where we have used the formula (integration by parts)
/ts_l loght dt = glogkt — g/ts_l log" 1t dt = glogkt
_ K (f logh~t¢ — k=1 /ts—l logh 2 ¢ dt) = i1og’“zf — %ts logh~t¢
s \'s s s 5
—k(i; D / t*Llogh =2t dt
the formula (integration by parts)
/ts—l logh~ 1t dt = glogk_l t— % /ts—l logh =2 ¢ dt,
the formula
/z 0 (ts_l logh~? t) dt =o (ms logh! ;E) ,
1
and the formula (L’Hospital’s rule)

. [Tt logtt dt
2 Ty !
b+1

In the last formula a, b and c are positive numbers. Equation (5) gives

s __ a’ _ 1 s_k Cl s k—1 s k—1
Zv(a) _Zu(a)s_u(a)sza = x° log :E—i-o(x log x)

a<lx a<lx alzx s u(a)s

k1 1 k—1 k—1
= —— - z®log" " x+o(z’log"
s k! (p1---pr)” logps - - - log pi ( )

That is, equation (4). [

In a previous article [6], the author proved the following limit

lim anwv(n) —
T—00 x - ’

where n denotes a positive integer. In the following theorem we prove more precise results.

47



Theorem 2.3. Let s be an arbitrary but fixed positive integer. For all « > 0 and for all B > 0 the
following limits hold

Jim wn g, (6)
T—00 T

_1
L )
T—00 logﬁ T

v(n)?®
lim —E"<x+( S _ 0, (8)
T—00 rsTa

v(n)?
fim 2z ©9)

Proof: Let a > 0. We have
1 1 1 1
— 1+ + + + .- )
u(n)n® 1;[ ( pp*  p(p*)?*  p(p*)?

1 1 1
(o) M) o

Now, the product Hp <1 + ) converges to a positive number, since the series of positive

WE

n=1

I
=

p(p>—1
terms Zp m clearly converges. Therefore, the series of positive terms (10) is convergent,

that is, we have Y °°  —L_ = (' > 0. Therefore, if we apply Lemma 1.1 with f(z) = 22, then

n=1 u(n)n®
we obtain

Z ﬁ = (C+o(1))z" — a/lx(C’ +o(1)t* dt = o(z®).

Consequently limit (6) holds, since we have the inequality

1 1
2 u < 2 umy

n<lzx n<z

Besides, limit (8) holds, since we have
s ns s 1 s+a
> v(n) :ZW < ZW = o(z™"%).
n<lx n<x n<x
Limits (7) and (9) are an immediate consequence of Theorem 2.1 and Theorem 2.2, since
s s 1 1
> () =) v(a), ZWEZW~
n<lz a<lz n<z a<lz

This completed the proof. [

In the following theorem, n; denotes a positive integer with exactly £ distinct prime factors,
that is, its prime factorization is of the form nj, = pi* - - - p*, where £ is fixed.
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Theorem 2.4. Let k and s be arbitrary but fixed positive integers. The following asymptotic
formula holds

1 b
Y = g logt e o (logh ) (1)
u(ng)® k!
nE<x
where
1 a®
br,s = <2 (12)
; pzp (P pr)*logpr---logpr — Kl
1 k
and as =3~

The symbol —

all squarefree with k prime factors.

means that the sum runs on all products of k distinct primes, that is, on

The symbol Zp means that the sum runs on all positive primes.
The following limit holds

lim bk,s =0.
k—o0

Proof: Note that the series Zp p l%)gp converges. Clearly this fact is true if s > 2. Also, it is
1

true if s = 1 since (prime number theorem) r,, ~ nlogn, logr, ~ logn and the series ) TTogZn

converges (integral criterion). Here r(n) denotes the n-th prime number.
Therefore, the series (12) converges, since (product of convergent series) we have

k
1 1
k! < = a.
2 (p1-+-pi)*logpy---logpy — (Z pslogp) ’

P1-Pk p

The sum of this series (12) we have denoted by by ;.
Let g, be the sequence of squarefree numbers with k& prime factors. There exists ¢;; such
that

Z 1 < e (13)

P11 Pk >qt+1 <p1 o ‘pk) logpl o 'logpk

On the other hand, we have (see Theorem 2.1 and (12))

> 2 (Sa)

ng<w pipr<z \aslz
k
- Z (k;!(p1 - 'pk)li)igogxpl < lngk) o (1ng :v)
P1PE<qt
+ Z (—1 Z 1) = s log"
Gt+1<p1- Pk <qa <p1 o ‘pk)s a<lz k!

1 log"
S Sogpr oz (08" 0)
L= (P pi)*logpr - log py

S (% 3 1) _ (14)

P S
Gt+1<p1-Pr<qx (pl pk) a<z
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In equation (14), g, denotes the greatest squarefree number with %k prime factors not
exceeding .

Let us consider the inequality pi' - --p* < x, where py,...,p; are fixed primes. We have
pit <z(i=1,...,k), consequently, s; can take the values s; = 1,.. ., [ﬁ%ﬂ (t=1,...,k)and,
therefore, an upper bound for ), 1is

k
Zl<[log93}__[logw]§ log" x . (15)
log p1 logpe] — logps - -log py

We have (see (13) and (15))

> (52

Gt+1<p1--Pr<qx a<z

1 log" x K
< < elog” . (16)
2 (p1 - pr)* logpy - - - log pi 8

Gt+1<p1-Pr<qz

Equations (14), (13) and (16) give

< 3¢ (x > z). (17)

an<x u(nk) bk: s
log" x K

Now, € > 0 can be arbitrarily small. Consequently, equation (17) can be written in the form

1
D oni<a TR b
log" z

That is, equation (11). U

In the following theorem we obtain a stronger inequality than inequality (12).

Theorem 2.5. Let k and s be arbitrary but fixed positive integers. The following inequalities hold

()"
bks — (k!)57
where cs =3 o L

logp)t/s"

Proof: We have

k
1 |
K <(S—— ) =
2 o nosp) g (; p(logp)”) s

P1Pk

Hence,

50



and, consequently,

1
brs =
: Z (p1 -+ pr)logpy - - - log py,

P1-Pk
3 ! @
< < @)y
a ( pl"'pk(logpl)l/s"'(logpk)l/s) = (ks
P1Pk
Therefore, the inequality is proved. -

Now, we establish a general theorem.

Theorem 2.6. Let us consider the inequality

rry+ -+ rpx, <o (x > 0),

where r; (i = 1,...,n) are fixed positive real numbers. The number of solutions (z1, ..., x,)
to this inequality, where x; (i = 1,...,n) are positive integers, will be denoted by S, (x). The
following inequality holds:
1 2"
S,(r) < = > 0).
(x)_n!rl---rn (z20)
Proof: If x > ri, then the solutions to the inequality mzy < x are z; = 1,..., L%J and,

consequently, S;(z) = LiJ <

T1

f—l. On the other hand, if 0 < x < ry, we have Si(z) = 0
and, consequently, also S;(z) < % Therefore, the theorem is true for n = 1. Suppose that the

theorem is true for n — 1 > 1, we shall prove that the theorem is also true for n. Suppose that
T >1r+---+1r,,then

2] N
Sn(l’) = Z Sn_1 (I - Tnxn) < Z (x _ Tnxn)n_l

(n—1D)ryr

rn=1
1 z"

nlry--r,

rn=1
1 1

(m—1)!ry-rpy

€T

/Tn (z — rpx,)” dw, =
0

Tn

Note that the function f(z,) = (x — 7,2,)" ! is strictly decreasing in the interval [O, 1} and in
z

Tn

this interval the area below the function is greater than the sum of the areas of the L J rectangles

of base 1 and height (x — r,,z,,)" !, that is, the sum Z:,L:ZJ (x — rpxy)
On the other hand, if 0 < x < r; +---+7,, then S, (z) = 0 and, consequently, the inequality

also holds. O

n—1

We have the following immediate corollary (see Theorem 2.1).

Corollary 2.7. Let k be an arbitrary but fixed positive integer. The following inequalities hold

doi< ! ! log" (z>1)
— og" T x
~ kllogp; - --logpx & -

a<lzx
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/\

Z ! 1 ! log" (x>1)
= kN (py--pi)”logpr - - -log p o

Theorem 2.8. Let s be an arbitrary but fixed positive integer. The following inequalities hold

1 S/Ss s
D iy < Fuale) < Foala) < Fio(o) < 00TV (2, (18)
u(n)s ’ ’
n<x
where
Fiyr)= > 1 ! log" = (19)
b pLpR<z KE(pr---px) logpr -+ -log pi ’
" b
Fy4(x) = Z gﬁ log® z, (20)
k=1
= bk,s k
Fs34(x) :Z X log” . (21)
k=1

Note that in (19) the positive integer k is a variable, that is, the sum runs on all squarefree not
exceeding x. On the other hand, in (20) the positive integer h denotes the greatest number of
prime factors of the squarefree number not exceeding x.

Besides, for all 5 > 0 and all o > 0 the following limits hold

Fi s :
lim ’ff) —o0  (i=1,2,3), (22)
T—00 log T
Fi s .
y}ggo% =0 (i=1,2,3), (23)
and also the following inequalities hold
Zv(n)s < xsFl,s(-T) < xSFQ,s(x) < .TSF37S(ZE) < x56(5+1)cg/5+1 s+1/logx’ (24)

n<x

where x > 1.

Proof: First all, we shall prove that the functions Fj ¢(z) exist for z > 1. We have (see Theorem
2.5)

s+1
OO br.s N 00 (Cs)k © 5/5+1 s+1/_10g aj)k
Fs4(x) = Z i log"z < Z (k)T log x < Z u
k=1 k=0 k=0
— e(s+1)c§/s+1 *Hlogz (25)

Note that we have used the power series ¢* = > - %’f
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Now, we have (see Corollary 2.7 and (19))

Yo ¥ (Z@)gm,sm (x> 1)

n<w p1-pr<z \a<w

From the definition of by ¢ (see equation (12)) and the definitions of F'(2,s)(z) and F'(3, s)(z),
we obtain (18) (see (19), (20) and (21)).
Limit (22) is an immediate consequence of the definitions (19), (20) and (21).

Leta > 0. Limit (23) is an immediate consequence of (18) and the limit lim, ,,, “—— = 0.
Equation (24) is an immediate consequence of (18) and the trivial inequality
n’® 1
S — < S
n<x n<x n<x
O

Remark 2.9. The function ), _,

1962, N. G. de Bruijn obtained the asymptotic formula log <Zn§x ﬁ) = (14 o0(1)), /12?5;;0’
see [2]. An immediate consequence of this formula are limits (6) and (7) (s = 1). In 1965,
W. Schwarz obtained a function F(z) such that Y, _ —~ ~ F(x), see [2].

n<e u(n)

ﬁ (the case s = 1 in this article) has been very studied. In

Now, we establish a general theorem.

Theorem 2.10. Let us consider the inequality
e+, <o (z>0),

where r; (i = 1,...,n) are fixed positive real numbers. The number of solutions (x4, ..., x,) to
this inequality, where z; (i = 1,...,n) are positive integers, will be denoted by S, ().
The following inequalities hold
1 " I rm+tr,

> - _ >
) T T o, ¢ @Rt

Sp(x) >0 O0<z<n(ri+--+m))

Proof: First, we shall prove that the inequality

n 1
Sulw) > ——— — it e (26)

1
nlrycor, (=100 rioory,

holds for z > 0.
If z > ry, then the solutions to the inequality rx; < xare z; = 1,..., {1J and, conse-

T1
quently, Sy (z) = L%J > 2= — 1. On the other hand, if 0 < x < ry, we have Sj(z) = 0 and,

consequently, also S;(z) > .- — 1. Therefore, inequality (26) is true for n = 1. Suppose that
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inequality (26) is true for n > 1, we shall prove that inequality (26) is also true for n+ 1. Suppose
that x > 7,11, then

7]

1 1 {rnilj
Sn+1($) = Z Sh (95 - 7“n+133n+1) > mrl o Z (JU - 7“n+1£Un+1)n

Tpn+1=1 Tp41=1
1 r + . + r, \JﬁnJrlJ -
T =D rr Z (& = T Zn4)
: n

Tp+1=1
11 ot 11
n n
> - (@ = rps1®ng)” dongs — — T
niry---Tnp 0 n.ry---Tp
€T
1 rm+-+r, [
n—1
— , (& = Tn1@ng1)" " doppa
(n=1! ri--ry, 0
1 $n+1 17“1+"'+7“n+1 n
= - — "

(m+Dry-orpe nl e

On the other hand, if 0 < = < 7,1, then S, 1(z) = 0 and, consequently, the inequality also
holds, since

1 $n+1 1T1+"‘+Tn+1 n 1 :L'n+1
—_—— €T ey
m+Dlry-orp nlorpe oy (n+D)lry-rp
1 1 n Imt+eeetr, 001 1 n T
- = =" = — x —1
nlry---ry, n! ryeeorag nlry---ry, (n+ Drp
Iry+-odr, ,
- ——1" <.

nl oy

Therefore, inequality (26) is proved for x > 0. Now, inequality (26) can be written in the form

1 2"
Sp(x) > —
(z) 2 nlry---ry,
1 T1+"'+T"xn*1:i z" 1_n(7‘1+~~~+7‘n) | 27
(n—l)' 1 Tnp n!rl"'rn T
which completes the proof. U

We have the following immediate corollary (see Theorem 2.1).

Corollary 2.11. Let k and s be arbitrary but fixed positive integers. If © > (py - - - pk)k, then the
following inequalities hold

1 1 1 1 |
Z 1> log* z — ogpy + -+ -+ log py log" ! &
k!'logp; - - - log py, (k—1)! logp: - logps

a<lx

Z 1! 1 ook
— i
u(a)® = k!'(p1---pr)®logps - - - logpy s

1 logpy +---+logpr -k
— og" .
(k= 1) (p1 -+ pg)*logpr - - - log p
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Theorem 2.12. Let s be an arbitrary but fixed positive integer. The following inequality holds

> Fule) (@21,

where

1 1
Fa= X log*

H (pl o 'pk)slogpl - -log pg

p1pp <z
(p1--pr)F<z
1 logpi + -+ +log py logh—1 )
og" " x).
(k—=1)!(p1---px)®logp: - - - log py,

Besides, for all > 0 and all o > 0 the following limits hold

F5
lim —2 ﬁ(x) = 00,
T—00 log T

Fs
tim 2= _

T—00 T

Proof: It is an immediate consequence of Corollary 2.11 and the definition of the function
F 5, S(Z') ]

Let ¢,, be the n-th prime. Note that in the series (12) the greatest term is

1
(1~ qr)*loggqr---log gy’

In the following theorem, we compare the sum by, ; of the series (12) with its greatest term. Before
that, we need the following well-known lemma.

Lemma 2.13. Let us consider the two series of positive terms Z;’il a; and Z;’il bi. If a; ~
b;(1 — 00) and the series Y ;- | b; diverges, then Y . a; ~ > " bi(n — 00)

Proof: See, for example, [7]. O

Theorem 2.14. Let s be an arbitrary but fixed positive integer. The following limit holds

bk‘,s
1
(q1--gr)* log g1+ log gy,

lim
k—o00

= 00,

where q,, denotes the n-th prime.

Proof: Note that (due to the Prime Number Theorem and Lemma 2.13) we have

k k
Z ¢’ log q; ~ Z i*log®ti.
=1 =1
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Now,

k k s+1 qs+1
;z"s log*tti = /1 2*log"™ x dx + O (k*log®*' k) ~ 3 log*t k ~ ﬁ
(since L’Hospital’s rule)
“ 5 log®t ¢ dt
lim flst : s+l
Tr—00 s+_1 log €
Therefore,
br,s )*log qy - - -log gy,
i = Z

)*logpy - - - log pi

(q1-qx)® log g1--- log gy 1Dk

k
(g1~ qr)*logqr - - - log (g} log ¢;)
Z : Q'L ]'Og ql
Z (1 qr)*logq - - -log gk (QZH log Qk+1) Qi1 108; Ak+1 Z

=1
k
s+ 1
This completes the proof. ]

Theorem 2.15. Let s be an arbitrary but fixed positive integer. The following asymptotic formulas
hold

log by s ~ —sklogk ~ —sqy, (28)

bk,s — efs(1+o(1))klogk — efs(lJro(l))q;C (29)

Y
where q,, denotes the n-th prime.

Proof: The following equation is well-known (see [4])

log(q1 -+ - qx) = klogk + kloglogk — k + o(k). (30)
From the Stirling’s formula &! ~ \/ﬂ+€"\/ﬁ, we obtain
log(k!) = klogk — k + o(k), (31)

and besides we have

k k
Z loglogi = loglog 2 + / loglog x dx + O (loglog k) = loglog 2
=2 e

k
+ kloglogk—/ dx 4+ O (loglog k) = kloglogk + o(k).

log x
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Therefore, we have

k k

loglog q, + - - - 4+ loglog ¢ = loglog q; + log log ¢ + Z loglogi + Z o(1)
=3 =3

= kloglogk + o(k), (32)

since the Prime Number Theorem ¢,, ~ nlog n implies log log ¢,, = log logn + o(1).
Now, we have the inequality (see Theorem 2.5 and the definition of by, ;)

1 (Cs)k

(1 @) loggr - -logge — " = (k1)°
Therefore,
1 (Cs)k’)
—sklogk ~ lo <logb, s <lo 5
g g<(Q1"‘Qk)SlOgQI"‘IOng> =Rk g((k!)s
~ —sklogk. (34)
This completes the proof. U
Theorem 2.16. Let s be an arbitrary but fixed positive integer. The following limit holds
b, s
lim ]? = 07
o0 Gran) Tlog ar—Tog ax
where q,, denotes the n-th prime.
Proof: We have (see Theorem 2.15)
bk:,s
log T = log bys + (s — 1) log(q1 - - - q)
(q1--qi)®~ " log q1-+-log gy
+ (loglogq + - - +loglog qx) ~ —klogk.
This completes the proof. U

Theorem 2.17. Let s be an arbitrary but fixed positive integer. There exists ko, such that if k > k,
then we have

1
brs = 35
“ 7 (g qr)Plog g - log g
where s — 1 < By, < s, limy_,, Bx = s and q,, denotes the n-th prime.
Besides, the following asymptotic formulas hold
log by, s = —Brklogk + (1 — Bi)kloglog k + Bk + o(k) (36)
brs = exp (—frklogk + (1 — Bx)kloglog k + Bk + o(k)) (37)
(br.s) ¥ ~ exp (=B log k + (1 — Bi) loglog k + S) (38)
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Proof: From the definition of by ; and Theorem 2.16, there exists ko, such that if & > ko, the
following inequality holds

1 1

< b < ; (39)
(Q1 T %)S log gy - - - log qi " (Ch - 'Qk)s_l log gy - - - log qi
therefore, there exists a unique Sy, such that s — 1 < 3, < s and
1
br.s = (40)

(¢1--qx)% logq - log g
From equation (40) and using the formulas proved in Theorem 2.16, we obtain (36). Equation
(36) can be written in the form

log b s = —frklogk + o(klogk). 41)
On the other hand, we have by Theorem 2.16
log by s = —sklogk + o(klog k). (42)

Equations (41) and (42) give limy_, Br = s. O

Theorem 2.18. Let s be an arbitrary but fixed positive integer. There exists kg, such that if k > k,
the following inequality holds

bk,s < bkfl,s- (43)
Besides, the following limit holds
bk s
I 2 =0. 44
s 9

Proof: We have, p; < -+ < pg,

1
s = 2 (v

1"'pk)slogp1"'10gpk

P1-P
P1Ph—1 (pl T pk71>s logpl ct ]‘ngkfl pzpk ps ]'ng
1 1
<
1
- bk_l’s (Z S )
P2qk p*logp

Now, lity, 00 35,50 57iesp = 0- Therefore, (44) is proved.

Let us choose ko, such that ) | < 1. Hence, if k£ > kg, we have

1
P>qky plogp

1
Yoley Loyl
P>qp plogp P>k plogp D>k plogp
Therefore, (43) is proved. ]
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Theorem 2.19. Let s be an arbitrary but fixed positive integer. We have

*(log z)* = B8, (45)

kl

where

E(k) =
(— (Be+ 1) logk + (1 — Bg)loglogk + B + 1 + loglogx + o(1)) k (46)

and k > 2, B — s.
Let € > 0. There exists ko, such that if k > ko, the following inequalities hold

Ek)<(—(s+1—¢€)logk+ (1—s+e)loglogk+s+1+€e+loglogz)k, 47)

E(k) > (—=(s+1)logk + (1 — s)loglogk + s + 1 — 2¢ + loglog x) k. (48)

Proof: Equation (46) is an immediate consequence of equation (36). Let € > 0. There exist kg
such that if & > k, the following inequalities hold

—e<o(l) <e s—e< [ < s, (49)

and, consequently, the following inequalities hold

—(s+1)<—=(Br+1) <—(s+1—c¢), l—s<1—-fr<l—s+e (50)
s+1—e+loglogz < B+ 1+loglogz < s+ 1+ loglogx. (51)
Inequalities (49), (50), (51) and equation (46) give inequalities (47) and (48). ]

Theorem 2.20. Let s be an arbitrary but fixed positive integer. The following asymptotic formula
holds

= exp ((log :E)as(m)) , (52)

FSS Z

k=1

where lim,_,, as(z) = —=.

Proof: Let € > 0. Let us consider the positive integer depending on x
¥ = |toga) 7 | = f(a)(og) 7 = (o) 1oga) =, 5
where lim, .., f(z) = 1. We have

1
log k' = g(x)———— loglog , loglog k' = h(z)logloglog z, (54)

s+1+¢
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where lim, ., g(x) = 1 and lim,_,, h(z) = 1. Substituting (53) into (48), we obtain

/
lim E(K) =00
z—oo k!

Therefore, from a certain value of x we have
kK < E(K), (55)
and, consequently, we have (see equations (55), (45), (18) and (21))

/ / b IS / s+1
e < P = %(logx)k < Fy(z) <e® WViogz (56)

where C' = (s + 1)02/”1. Hence, (see (56) and (53)) if we put log F3 (7) = (log 2)*(®), then

1

K = f(z)(logz)71 ¢ < (logz)*® < C(logz)+

From here we obtain lim, ., as(z) = 5%1, since € and, consequently, € can be arbitrarily

small. O

Theorem 2.21. Let s > 2 an arbitrary but fixed positive integer. The following asymptotic
formulas hold (see Theorems 2.8 and 2.12)

1
~ F, ' =1,2,3,5). 57
2y~ P 0 ) (57)
n<x
Besides
1
- = exp (logx)ﬁs(x) , (58)
nzgx ey ( )
where lim,_,, Bs(z) = 34%1
Proof: We have (see Theorem 2.12)
1 1
F54(x) = — 5 log" x
bs(2) ZI; (k! (- pr) ogpr - logpy
(p1--pr)F <z
1 logpy + - -+ + log pi, k—1 >
— lo ) =G4(x) — Gaglx). (59)
(k= 1) (p1---pr)*logpy - - - log py & 10(®) 2()
If we put
(@) = Y . (60)
s (1 pu)”logpy - -logpy
p1-pp<zl/k

1
brs(x) = < , 61
ksl) Z (p1---pr)’logp - - - log p 61

propp>at/k
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logpy + - - + log px
Crs(x) = S , (62)
ko(2) Zl/k (p1---px) logpy - - - log py,

p1Ppr<T

then

1 1

Gis(z) = il : log”
15(2) 2 Koy p) logpy - logpr

p1pR <z
(p1-pr)F<z

1
S AL 4 )

Z 1 logp: + -+ + log py log~!

Gos(x) =
2:(%) (k= 1)1 (pr -~ pr)* logpr -+ log py

log )+ !
= Y o9
where &’ is the greatest k such that there exist p; - - - py, such that (p; - - - pp)" < x. Note that
(see (60), (61) and (12))
bk,s = a;@s(x) + bkﬁ(ZE). (65)

Let g, be the n-th prime. Let us consider the inequality (¢;---qx)* < =z, that is
klog(q---qr) < logm, that is (see Theorem 2.16) f(k)k?logk < logx, where f(k) — 1.
From here we obtain

|(log2)*2] <1 < |(logz)"?]. (66)

Note that 1/3 < 5/12 < 1/2.
Let ko = |log z|. We have (see (43) and (29))

= bk,s ~ (IOgZE)k ogx
0 < Z ] (log:c)kﬁbko,sz 1 < by, €%
k=ko k=ko
= exp(—s(l+o0(1)) [logz]log |log x| + log x)

= exp(—s(1+o(1))logzloglogx +logz) = o(1).

That is
= bk,s k
Z X (logx)® = o(1). (67)
k=[logz|
Let us put
[ {(logx)sﬂlf?eJ = L(logm)ﬁﬁlJ . (68)



Equation (47) gives

/
tim S = -

Therefore, from a certain value of =

E(K) <0
and also (see (47)) if k > K/,

E(k) <0
Therefore, if &k > &/,

b (log r)f = PR < 1. (69)

On the other hand, we have

1 1 1 1 1
E < E < =
(p1 -+~ pr)*logps - - log py log2 (p1---p)* ~ log2 £~ ne

P1PE>T P1PE>T n>x
° 1 1 1
< / 0 dt = - (70)
log2 Ja log2 (s —1)([z]) (Lz])
Consequently, if k = 1,2, ... K = {(mg )Tt J then (see (61) and (70))
1 1
bps(z) < C — <C —- (71)
(L='/*]) (=¥ ])
Therefore, (see (71)) we have
k' ’
(log z)* Ck' (logz)* CFE K
0< ) brs(z) < — = 7 (log )
kz:; k k" (Lxl/li) 1 1[ f(x)x(s—l)/k
= exp (—(s = 1)(1+ 0(1)) (log )T = o(1)
That is,
k,/
log z)*
3 bk,s(:p)% = o(1). (72)
k=1 )
Now, (see equations (21), (60), (61), (63), (65), (66), (68), (69), (72) and (67)), we have
- log x)* " log x)*
Fy.(z) = Z b o L > (aks(x) + bin(2)) p )
= k=1
(1 1
+ Z bks ng _Gls +Zbks ng
k=h'+1 ’
= (1 (1
+ Z bks ng _Gls +Zbks ng
k=h'+1 ! !
log:(: k ogzz] 1 logx - log:c )k
M SUNELL SN DL L S
k=k'+1 k=h'+1 k=|log z| '
= Gis(z)+0(1)+ O (logx) + o(l) = Gy () + O (log x)
= Gis(z)+o(F34(x)). (73)
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Besides,

Z lngl-'--.- +10gpk _ Z lgg(plpk)
(p1- -+ pk)*logpy - - - log py (p1---pr)*logpy - - - log pi

P1Pk P1Pk
1 <= logn
log2nz:1 ns ’

that is, the series converges. Hence, we have

Z logpi + - - - + log py,
(p

= Ck,s- (74)
Pk)s logp; - - -log pi

P1Pk

If p1 <--- < pg, we have

logpi + - - - +log py
he = D (p

it pr)*log py - - - log py,

o

_ Z Z logpy + - -+ logpr_1 + log g
(p1 -+~ Pr-1gi)® logpr - - - log pr—1log ¢;

i=k \DP1Pk—1%

N klog g;
SIS s
o\, P peagi)*logpy - - log e log g
< kbk—l,s - < kbk—l,s — < bk—l,s
; q; n>zqk n® s—1(qx— 1)1
Therefore,
. Ck,s
1 S 75
P D16 (75)

Consequently, if v > 0 there exists kg such that if £ > kg, then

b:: < a. Hence, (see (64))

v 1 o0 -1

lo a: lo :c
0 S GZ,S(x):ZCk,s( g SZ ks g )|
ko—1

_ o0 _ ko—1 k—1
B Z (log z)F! Z (log )"t Z (log )
- ak},S . I + (0% bk?—l,S . 1)' - ak},S (k - 1)'
k=1 k k=1

n i bs 1ogx

k=ko—1

That is, from a certain value of x we have (see (21) and (22))

GQ’S(‘T)
0 S FSS( )

and since « can be arbitrarily small, we find that

<o(l)+a <L 2

Gos(x) = 0 (F34(z)) - (76)
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Equations (59), (76) and (73) give F;(x) ~ Fjs.(x) and, consequently, (see (59), (18) and
Theorem 2.12) equation (57) is proved. Finally, equations (52) and (57) give (58). U

To finish, we establish the following question.

Question: Does equation (57) hold when s = 1?
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