Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 25, 2019, No. 3, 36-43

DOI: 10.7546/nntdm.2019.25.3.36-43

Extension factor: Definition, properties
and problems. Part 1

Krassimir T. Atanassov' and Jozsef Sandor?

! Department of Bioinformatics and Mathematical Modelling
IBPhBME — Bulgarian Academy of Sciences,
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
e-mail: krat@bas.bg

2 Babes-Bolyai University of Cluj, Romania

e-mail: jjsandor@hotmail.com, jsandor@math.ubbcluj.ro

Received: 12 March 2019 Accepted: 30 June 2019

Abstract: A new arithmetic function, called “Extension Factor” is introduced and some of its
properties are studied.

Keywords: Arithmetic function, Extension factor.

2010 Mathematics Subject Classification: 11A25.

1 Introduction

In a series of papers, published during the last 35 years, the authors introduced some new arith-
metic functions. One of them was called “Restrictive Factor” (see, [2, 3]). For each natural

k
number n = [] p;, where k, a1, @, ..., ag, > 1 are natural numbers and p, po, ..., px, are differ-

i=1
ent prime numbers,

k
RF(n)= ]I p{"",
i=1

RF(1) = 1.
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In the present paper, for each natural number n, having the above form, we will introduce a
new arithmetic function, in some sense, opposite to the restrictive factor.
In the text, we will use also the definitions of the following three well-known arithmetic

functions:
H P& (p; — 1), (1) = 1 — Euler’s totient function,
Hp (p; + 1), ¥(1) = 1 — Dedekind’s function,
k a;+1
D 1
= 1)=1
oo =175 o)

(see [4, 7).

We will use also the arithmetic functions

mult(n H pi, mult(1) =1,

k
i=1
(see [1,7]), and
=D apit i T i e, (1) = 1.

(see [1)]).

2 Main results

Here, we juxtapose to the natural number n the (natural) number

Hpa i+1 -1

that we call Extension Factor.
Hence,
EF(n) = n.mult(n).

The first 40 values of E'F’ are given in Table 1.
If (m,n) = 1, where for the natural numbers m, n, (m,n) is the Greatest Common Divisor
(GCD), then
EF(mmn) = EF(m).EF(n),

i.e., F'F' is a multiplicative function,

k
= [[EF®
=1
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1 1|11 121 | 21 441 | 31 961
2 4112 72 | 22 484 | 32 64
3 9113 169 | 23 529 | 33 1089
4 8114 196 | 24 144 | 34 1156
5 25 | 15 225 125 125 | 35 1225
6 36 | 16 32| 26 676 | 36 216
7 49 | 17 289 | 27 81 | 37 1369
8 16 | 18 108 | 28 392 | 38 1444
9 27| 19 361 | 29 841 | 39 | 15321
10 100 | 20 200 | 30 900 | 40 400

Table 1

and
k k k
EF(n)=FEF (Hp;%) = pr‘iﬂ < Hp?ai =n?
i=1 i=1 i=1
On the other hand, it can be seen that if for every i (1 < i < k) o; = 1, then
EF(n) = n?
Therefore, for each prime number p:
EF(p) = p*.
Moreover, for every natural number n:
mult(n?) < EF(n) < n?
From the definitions of functions RF" and E'F' it follows the basic identity
EF(n).RF(n) = n”. (1)

Therefore, EF(n) = n? if and only if RF(n) = 1, i.e. when n = mult(n), so when n is a
squarefree number.

Theorem 1. For every two natural numbers m and n:
Proof. Let (m,n) =r > 1andletm = s.r,n = t.r. Then
EF(m).EF(n) = EF(s.r).EF(t.r) = (s.r.mult(s.r)).(t.r.mult(¢.r))

= s.r?.t.mult(s).mult(r)*.mult(¢) = (s.7*.t.mult(s).mult(r).mult(¢)).mult(r)

= EF(m.mn).mult(r) = EF(m.n).mult((m.n)). O
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Theorem 1 follows also from the definitions, and the following property of the function mult:
mult(n).mult(m) = mult(mn).mult((m,n)).
Theorem 2. For every natural number n:

RF(EF(n)) =n > EF(RF(n)).

k

Proof. Forn = 1, the statement is true. Let n = [] p"* and let for each real number «
i=1

1, ifz>0

sg(x) =
(@) 0, ifx<0

Then i
RF(EF(n)) = RF (H p;“‘“)

k

k
- szal =n> Hpiai.sg(ai,l)
i=1

i=1

(so, we eliminate the prime numbers with power 1)

= EF (ﬁp?i_l) = EF(RF(n)). O

i=1

Another proof of Theorem 2 follows from:
mult(n.mult(n)) =n (2)

and

mut (i) <7 @)

(2) follows from the fact that n and mult(n) have the same prime factors, while (3) from the

—_n__
mult(n)

There is equality in (3) only when n > 1 is squarefull number (i.e. when from each prime

fact that the prime factors of are among the prime factors of n .

power divisor p® of n one has a > 2). Thus one has
mult(RF(n)) < mult(n)

and
mult(EF(n) = n

and the result follows.
It could be mentioned that there is equality in Theorem 2 only when 7 is squarefull.

Theorem 3. For every natural number n:
(@) o(EF(n)) = ¢(n).mult(n),
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(b) Y(EF(n)) = (n).mult(n),
(¢) o(EF(n)) > o(n).mult(n).

Proof. The statement is obviously true for n = 1. Let n > 1 be a natural number. Then

p(EF (Hp"l“) = Hpi-” (pi — 1) = ¢(n).mult(n),

i.e., (a) is valid. (b) is proved analogously, while the proof of (c) is the following.
k pai+2 poz i+2
az+1 _ [ K3
o(EF —U(Hp ) L. 1—p¢—1 lelﬂ > o(n).mult(n). O

Another proof of inequality (c) of Theorem 3 is based on the known inequality o(a.b) >
a.o(b), with equality only for a = 1. Let @ = mult(n), b = n, and the result follows.
When a = n, b = mult(n), one obtains another inequality:

o(EF(n)) > n.o(mult(n)) = n.(py + 1)...(px + 1),

where p1, ..., pi are the distinct prime factors of n. Since

(p1+1D.(pe+1) =

we get the inequality:
o(EF(n)) >

Another result of this type is the following

Theorem 4. For every natural number n:
o(n).4(n)
EF < -7
o(EF() < Zpres

Proof. For n = 1, the statement is obviously true. Applying the known inequality o(ab) <
o(a).o(b) for a = n and b = mult(n), and assuming the distinct prime factors of n to be py, ..., p,
note that one has

o(mult(n)) = (pr +1)...(pr + 1) =
The result follows by the definitions. O]
Theorem S. For every natural number n > 1:
EF(n) > o(n).
Proof. Letn > 1 be a natural number. Then

a;+1

le aitl sz =o(n). O
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The inequality of Theorem 5 can be improved when n is odd.

Theorem 6. When n > 1 is odd number, then
EF(n) > o(n) + n.

Proof. Apply the known inequality o(n).¢(n) < n? (see e.g. [4, 7]). Thus, o(n) < #Z) Since

30 = %, and EF(n) —n = n(p;...px — 1), it will be sufficient to prove that:
D1---Pk
(pr—1)-.(pr — 1

Put p; — 1 = ;. Since n is odd, one has z; > 2 forall « = 1,2, ..., k. We have to prove the

] <pi.pr — L

inequality
1wy < (x4 1) (2 + 1) (2100w, — 1),

or
r1..xp+ (r1+ 1) (xp + 1) <zpoap(e + 1) (xp + 1),

Put x1...x; = a, (x1 + 1)...(zx + 1) = b. Then we have to prove that a + b < a.b, or, this can
be written also as (a — 1)(b— 1) > 1. Thisis true,asa — 1 >z — 1> 1,andb > z; + 1 > 3.
The inequality is strict. []

Now, we will formulate and prove the following common refinement of the last two theorems.
Theorem 7.

a) For any natural n > 1 one has

o(n) <n(w(n)+1) < EF(n) (4)

b) For any odd n > 1 one has

o(n) <n(wn)+1) < EF(n) —n, (5)

where w(n) denotes the number of distinct prime factors of n.
Proof. The first inequalities of both a) and b), namely
o(n) < (w(n)+1).n

appeared for the first time in paper [5] from 1989. A proof is included also in paper [6] from
2010.
Now, to prove the second inequality of (4), note that

mult(n) = py...pp > 2%,

where py, ..., pr are the prime divisors of n, and k£ = w(n). Now, 2k > I + 1 holds true for any
k > 1. Thus (4) follows, as FF'(n) = n.mult(n).

For the proof of second inequality of b), note that when n > 1 is odd, then mult(n) > 3, as
P1, .-y Dk > 3. Now, the inequality 3¥ > k + 2 for k > 1 follows at once, e.g., by mathematical
induction. This proves mult(n) > k + 2, so (5) follows. [l

41



Theorem 8. For every natural number n:
EF(n)+ RF(n) > 2n,
with equality only for n = 1.

Proof. This follows from the classical inequality x + y >= 2,/xy applied for x = EF(n),y =
RF(n), and using the basic identity (1). O

Another simple related inequality is the following.

Theorem 9. For every natural number n > 1:

&

F(n)
" EREM) ST

where w(n) is the number of distinct prime factors of n.

Proof. There is equality on the right only when 7 has a single prime factor, i.e., when w(n) = 1,
and on the left, when n is squarefree number. This follows from

RF(n)

= (mult(n))*.

Now, from mult(n) < n, the left side inequality follows. For the right side, note that
mult(n) > 2* as any prime divisor is greater or equal to 2. U

Theorem 10. For every natural number n > 1:
B(EF(n)) = B(n) + B(mult(n)).

Proof. Letn > 1 be a natural number. Then

k k k k
B(EF(n)) = B(Hp?iﬂ) = Z(ai +1).p = Z(Ofi)-pi + Zpi
i=1 i=1 i=1 i=1
= B(n) + B(mult(n)). O
Theorem 11. For every natural number n > 1:

S(EF(n)) = d(n)mult(n) + nd(mult(n)).

Proof. Letn > 1 be a natural number. Then

k k
(e} e O — 1 o O 1 e
6(EF(n)) =0 <sz H) N Z(ai + Dpi e
i=1

i=1
k k
ey i1+l o 1 @ o o141 oy oy 1
- Zaipllﬂ---piqﬁr D; piJrJ{H_ AR Zplﬁl“'piflﬂr P pi++11+ o
i=1 i=1
= d(n)mult(n) + nd(mult(n)). O
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Conclusion

In conclusion, we will mention, that in the second part we will study the following problems.

Problem 1. To find other equalities and inequalities related to function £ F'.

Problem 2. To generalize the function EF' to EFy, so that for each natural number n :
EFi(n) = EF(n).

Problem 3. To study the properties of EFj.
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