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1 Introduction

In a series of papers, published during the last 35 years, the authors introduced some new arith-
metic functions. One of them was called “Restrictive Factor” (see, [2, 3]). For each natural

number n =
k∏
i=1

pαi
i , where k, α1, α2, ..., αk ≥ 1 are natural numbers and p1, p2, ..., pk are differ-

ent prime numbers,

RF (n) =
k∏
i=1

pαi−1
i ,

RF (1) = 1.
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In the present paper, for each natural number n, having the above form, we will introduce a
new arithmetic function, in some sense, opposite to the restrictive factor.

In the text, we will use also the definitions of the following three well-known arithmetic
functions:

ϕ(n) =
k∏
i=1

pαi−1
i .(pi − 1), ϕ(1) = 1− Euler’s totient function,

ψ(n) =
k∏
i=1

pαi−1
i .(pi + 1), ψ(1) = 1− Dedekind’s function,

σ(n) =
k∏
i=1

pαi+1
i − 1

pi − 1
, σ(1) = 1

(see [4, 7]).
We will use also the arithmetic functions

mult(n) =
k∏
i=1

pi, mult(1) = 1,

B(n) =
k∑
i=1

αi.pi, B(1) = 1,

(see [1, 7]), and

δ(n) =
k∑
i=1

αip
α1
1 ...p

αi−1

i−1 p
αi−1
i p

αi+1

i+1 ...p
αk
k , δ(1) = 1.

(see [1]).

2 Main results

Here, we juxtapose to the natural number n the (natural) number

EF (n) =
k∏
i=1

pαi+1
i , EF (1) = 1

that we call Extension Factor.
Hence,

EF (n) = n.mult(n).

The first 40 values of EF are given in Table 1.
If (m,n) = 1, where for the natural numbers m,n, (m,n) is the Greatest Common Divisor

(GCD), then
EF (m.n) = EF (m).EF (n),

i.e., EF is a multiplicative function,

EF (n) =
k∏
i=1

EF (pαi
i ),
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n EF (n) n EF (n) n EF (n) n EF (n)

1 1 11 121 21 441 31 961
2 4 12 72 22 484 32 64
3 9 13 169 23 529 33 1089
4 8 14 196 24 144 34 1156
5 25 15 225 25 125 35 1225
6 36 16 32 26 676 36 216
7 49 17 289 27 81 37 1369
8 16 18 108 28 392 38 1444
9 27 19 361 29 841 39 15321

10 100 20 200 30 900 40 400

Table 1

and

EF (n) = EF

(
k∏
i=1

pαi
i

)
=

k∏
i=1

pαi+1
i ≤

k∏
i=1

p2αi
i = n2.

On the other hand, it can be seen that if for every i (1 ≤ i ≤ k) αi = 1, then

EF (n) = n2.

Therefore, for each prime number p:

EF (p) = p2.

Moreover, for every natural number n:

mult(n2) ≤ EF (n) ≤ n2.

From the definitions of functions RF and EF it follows the basic identity

EF (n).RF (n) = n2. (1)

Therefore, EF (n) = n2 if and only if RF (n) = 1, i.e. when n = mult(n), so when n is a
squarefree number.

Theorem 1. For every two natural numbers m and n:

EF (m).EF (n) = EF (m.n).mult((m.n)).

Proof. Let (m,n) = r ≥ 1 and let m = s.r, n = t.r. Then

EF (m).EF (n) = EF (s.r).EF (t.r) = (s.r.mult(s.r)).(t.r.mult(t.r))

= s.r2.t.mult(s).mult(r)2.mult(t) = (s.r2.t.mult(s).mult(r).mult(t)).mult(r)

= EF (m.n).mult(r) = EF (m.n).mult((m.n)).
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Theorem 1 follows also from the definitions, and the following property of the function mult:

mult(n).mult(m) = mult(mn).mult((m,n)).

Theorem 2. For every natural number n:

RF (EF (n)) = n ≥ EF (RF (n)).

Proof. For n = 1, the statement is true. Let n =
k∏
i=1

pαi
i and let for each real number x

sg(x) =

1, if x > 0

0, if x ≤ 0

Then

RF (EF (n)) = RF

(
k∏
i=1

pαi+1
i

)

=
k∏
i=1

pαi
i = n ≥

k∏
i=1

p
αi.sg(αi−1)
i

(so, we eliminate the prime numbers with power 1)

= EF

(
k∏
i=1

pαi−1
i

)
= EF (RF (n)).

Another proof of Theorem 2 follows from:

mult(n.mult(n)) = n (2)

and

mult
(

n

mult(n)

)
≤ n. (3)

(2) follows from the fact that n and mult(n) have the same prime factors, while (3) from the
fact that the prime factors of n

mult(n) are among the prime factors of n .
There is equality in (3) only when n > 1 is squarefull number (i.e. when from each prime

power divisor pa of n one has a ≥ 2). Thus one has

mult(RF (n)) ≤ mult(n)

and
mult(EF (n)) = n

and the result follows.
It could be mentioned that there is equality in Theorem 2 only when n is squarefull.

Theorem 3. For every natural number n:

(a) ϕ(EF (n)) = ϕ(n).mult(n),
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(b) ψ(EF (n)) = ψ(n).mult(n),

(c) σ(EF (n)) ≥ σ(n).mult(n).

Proof. The statement is obviously true for n = 1. Let n > 1 be a natural number. Then

ϕ(EF (n)) = ϕ

(
k∏
i=1

pαi+1
i

)
=

k∏
i=1

pαi
i (pi − 1) = ϕ(n).mult(n),

i.e., (a) is valid. (b) is proved analogously, while the proof of (c) is the following.

σ(EF (n)) = σ

(
k∏
i=1

pαi+1
i

)
=

k∏
i=1

pαi+2
i − 1

pi − 1
= σ(n).

k∏
i=1

pαi+2
i − 1

pαi+1
1 − 1

≥ σ(n).mult(n).

Another proof of inequality (c) of Theorem 3 is based on the known inequality σ(a.b) ≥
a.σ(b), with equality only for a = 1. Let a = mult(n), b = n, and the result follows.

When a = n, b = mult(n), one obtains another inequality:

σ(EF (n)) ≥ n.σ(mult(n)) = n.(p1 + 1)...(pk + 1),

where p1, ..., pk are the distinct prime factors of n. Since

(p1 + 1)...(pk + 1) =
ψ(n)

RF (n)
,

we get the inequality:

σ(EF (n)) ≥ nψ(n)

RF (n)
.

Another result of this type is the following

Theorem 4. For every natural number n:

σ(EF (n)) ≤ σ(n).ψ(n)

RF (n)
.

Proof. For n = 1, the statement is obviously true. Applying the known inequality σ(ab) ≤
σ(a).σ(b) for a = n and b = mult(n), and assuming the distinct prime factors of n to be p1, ..., pk,
note that one has

σ(mult(n)) = (p1 + 1)...(pr + 1) =
ψ(n)

RF (n)
.

The result follows by the definitions.

Theorem 5. For every natural number n > 1:

EF (n) > σ(n).

Proof. Let n > 1 be a natural number. Then

EF (n) =
k∏
i=1

pαi+1
i >

k∏
i=1

pαi+1
i − 1

pi − 1
= σ(n).
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The inequality of Theorem 5 can be improved when n is odd.

Theorem 6. When n > 1 is odd number, then

EF (n) > σ(n) + n.

Proof. Apply the known inequality σ(n).φ(n) < n2 (see e.g. [4, 7]). Thus, σ(n) < n2

φ(n)
. Since

n
φ(n)

= p1...pk
(p1−1)...(pk−1)

, and EF (n)− n = n(p1...pk − 1), it will be sufficient to prove that:

p1...pk
(p1 − 1)...(pk − 1)

≤ p1...pk − 1.

Put pi − 1 = xi. Since n is odd, one has xi ≥ 2 for all i = 1, 2, ..., k. We have to prove the
inequality

x1...xk ≤ (x1 + 1)...(xk + 1)(x1...xk − 1),

or
x1...xk + (x1 + 1)...(xk + 1) ≤ x1...xk(x1 + 1)...(xk + 1).

Put x1...xk = a, (x1 + 1)...(xk + 1) = b. Then we have to prove that a+ b ≤ a.b, or, this can
be written also as (a− 1)(b− 1) ≥ 1. This is true, as a− 1 ≥ x1 − 1 ≥ 1, and b ≥ x1 + 1 ≥ 3.

The inequality is strict.

Now, we will formulate and prove the following common refinement of the last two theorems.

Theorem 7.

a) For any natural n > 1 one has

σ(n) < n(ω(n) + 1) ≤ EF (n) (4)

b) For any odd n > 1 one has

σ(n) < n(ω(n) + 1) ≤ EF (n)− n, (5)

where ω(n) denotes the number of distinct prime factors of n.

Proof. The first inequalities of both a) and b), namely

σ(n) < (ω(n) + 1).n

appeared for the first time in paper [5] from 1989. A proof is included also in paper [6] from
2010.

Now, to prove the second inequality of (4), note that

mult(n) = p1...pk ≥ 2k,

where p1, ..., pk are the prime divisors of n, and k = ω(n). Now, 2k ≥ k + 1 holds true for any
k ≥ 1. Thus (4) follows, as EF (n) = n.mult(n).

For the proof of second inequality of b), note that when n > 1 is odd, then mult(n) ≥ 3k, as
p1, ..., pk ≥ 3. Now, the inequality 3k ≥ k + 2 for k ≥ 1 follows at once, e.g., by mathematical
induction. This proves mult(n) ≥ k + 2, so (5) follows.
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Theorem 8. For every natural number n:

EF (n) +RF (n) ≥ 2n,

with equality only for n = 1.

Proof. This follows from the classical inequality x + y ≥= 2
√
xy applied for x = EF (n), y =

RF (n), and using the basic identity (1).

Another simple related inequality is the following.

Theorem 9. For every natural number n > 1:

n2 ≥ EF (n)

RF (n)
≥ 4ω(n),

where ω(n) is the number of distinct prime factors of n.

Proof. There is equality on the right only when n has a single prime factor, i.e., when ω(n) = 1,
and on the left, when n is squarefree number. This follows from

EF (n)

RF (n)
= (mult(n))2.

Now, from mult(n) ≤ n, the left side inequality follows. For the right side, note that
mult(n) ≥ 2k as any prime divisor is greater or equal to 2.

Theorem 10. For every natural number n > 1:

B(EF (n)) = B(n) +B(mult(n)).

Proof. Let n > 1 be a natural number. Then

B(EF (n)) = B(
k∏
i=1

pαi+1
i ) =

k∑
i=1

(αi + 1).pi =
k∑
i=1

(αi).pi +
k∑
i=1

pi

= B(n) +B(mult(n)).

Theorem 11. For every natural number n > 1:

δ(EF (n)) = δ(n)mult(n) + nδ(mult(n)).

Proof. Let n > 1 be a natural number. Then

δ(EF (n)) = δ

(
k∏
i=1

pαi+1
i

)
=

k∑
i=1

(αi + 1)pα1+1
1 ...p

αi−1+1
i−1 pαi

i p
αi+1+1
i+1 ...pαk+1

k

=
k∑
i=1

αip
α1+1
1 ...p

αi−1+1
i−1 pαi

i p
αi+1+1
i+1 ...pαk+1

k +
k∑
i=1

pα1+1
1 ...p

αi−1+1
i−1 pαi

i p
αi+1+1
i+1 ...pαk+1

k

= δ(n)mult(n) + nδ(mult(n)).
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3 Conclusion

In conclusion, we will mention, that in the second part we will study the following problems.

Problem 1. To find other equalities and inequalities related to function EF .

Problem 2. To generalize the function EF to EFs, so that for each natural number n :

EF1(n) = EF (n).

Problem 3. To study the properties of EFs.
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