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Abstract: If the two axes of symmetry of a quadratic form in two variables have integer co-
efficients, the reflection across the axes defines a group action on the primitive solutions of the
Diophantine equation defined by the quadratic form. In this paper, we introduce quadratic forms
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primitive solutions up to the reflections.
Keywords: Parametrization of primitive solutions
2010 Mathematics Subject Classification: 11D09.

1 Introduction

A solution (a1, . . . , an) to a Diophantine equation given by a homogeneous polynomial in n

variables is called a primitive solution if gcd(a1, . . . , an) is 1. The equation x2 + y2 = z2 asserted
by the Pythagorean theorem has infinitely many primitive solutions such as (3, 4, 5). From a
geometric point of view, the task is to find all triangles that have integer side lengths and have
an inner angle θ = 90◦. Having an equilateral triangle in mind, we may ask ourselves a similar
question. How can we find all triangles that have integer side lengths and have an inner angle
θ = 60◦? Our work is motivated from this consideration, and in general, it is a problem of finding
integer solutions to x2 − 2xy cos θ + y2 = z2. The method of finding the integer solutions to
this equation is well-known, and uses the idea of Riemann stereographic projection [15, Chp 1],
[13, Chp 1], which will be reviewed in Section 4. For example, if θ is the larger acute angle
of the right triangle with lengths (3, 4, 5), then cos θ = 3/5, and the Diophantine equation is
5x2 − 6xy + 5y2 = 5z2, and the projection method yields three polynomials

x = 5(n2 −m2), y = 2n(3n− 5m), z = 5m2 − 6mn+ 5n2, (1)
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where gcd(m,n) = 1. If (m,n) = (−1, 3), then the values of the polynomials are (x, y, z) =

(40, 84, 68), and by cancelling out their common factor of 4, we obtain a primitive solution
(10, 21, 17) of the Diophantine equation. The method claims that all primitive solutions for the
Diophantine equation are obtained in this fashion.

Nevertheless, there are no values of (m,n) for which the values of the polynomials in (1)
match any of the six permutations of (10, 21, 17), and there are many more primitive solutions
that cannot be the values of the polynomials in (1), up to permutation. However when θ = 90◦,
the situation is different. The projection method yields three polynomials with integer coefficients
as described in (2) below:

x = n2 −m2, y = 2mn, z = m2 + n2. (2)

This is also known as Euclid’s parametrization, and different proofs are available in [9, 14]. First
of all, the projection method claims that all primitive solutions are obtained by cancelling out
their common factors of the triples (2). For example, when (m,n) = (1, 3), the values of the
polynomials in (2) are (x, y, z) = (8, 6, 10) where gcd(x, y, z) = 2, and after cancelling the
factors of 2 across the solution, we obtain a primitive solution (4, 3, 5). On the other hand, for
parameters (m,n) = (1, 2), the values of the polynomials are (3, 4, 5). In general, the polynomi-
als in (2) reach all primitive Pythagorean triples, up to transpose of the first two entries, precisely
with parameters (m,n) such that gcd(m,n) = 1 and m 6≡ n (mod 2). We call this property of
Euclid’s polynomials the restricted parametrization of symmetry classes of primitive solutions as
they parametrize (3, 4, 5) instead of (4, 3, 5), and certain input values such asm ≡ n (mod 2) are
not allowed. In Theorem 1.1, we shall introduce Diophantine equations Ax2 +Bxy+Cy2 = qz2

whose primitive solutions enjoy a similar parametrization property.
Let us begin with a few definitions, assumptions, and notations, which will be used through-

out the paper. Let k(x, y) be a nonsingular binary quadratic form Ax2 +Bxy+Cy2 with integer
coefficients, and let d be the absolute value of its discriminant −B2 + 4AC. Notice that d 6= 1,
and hence, d > 1. Our work concerns the primitive solutions (x, y, z) of Diophantine equations
k(x, y) = qz2 where q 6= 0. By definition, the trivial solution (0, 0, 0) is not a primitive solu-
tion, and we assume that it has a particular primitive solution (x0, y0, 1). Let kx and ky be the
values of the partial derivatives at (x0, y0) with respect to x and y, respectively, and define three
polynomials (f, g, k) as follows:

f(m,n) = x0k(m,n)−m(kxm+ kyn),

g(m,n) = y0k(m,n)− n(kxm+ kyn), z = k(m,n).
(3)

If (u, v) is a pair of rational variables, the equation k(u, v) = 1 defines a conic section in
the uv plane, and we assume that the axes of symmetry of the conic section are defined over
integer coefficients. Then, the reflection across the axes of symmetry defines a group action on
the rational solutions of the conic section, and the action can be lifted to all primitive solutions
of k(x, y) = qz2. Let us call the map (x, y, z) 7→ (−x,−y,−z) on the primitive solutions the
antipedal map. Then, the two reflections and the antipedal map define an action of the group
Z2 × Z2 × Z2 on the primitive solutions. We call the orbits of this action symmetry classes of
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primitive solutions. Our main result is formulated as follows, and examples are introduced in
Section 2.

Theorem 1.1. Let k(x, y) be a binary quadratic form Ax2 +Bxy+Cy2 with integer coefficients
such that the absolute value of its discriminant is an odd prime number d. Suppose that the
associated conic section k(u, v) = 1 has rational axes of symmetry, and let (α, β) and (−β, α)

in Z2 be direction vectors of the axes where gcd(α, β) = 1.
Let q be 1 or an odd prime different from d, and suppose that the Diophantine equation

k(x, y) = qz2 in (x, y, z) has a solution (x0, y0, 1). If q 6= 1 and α2 + β2 6≡ 0 (mod q), then the
polynomials of two variables in (3) make a parametrization of the symmetry classes of primitive
solutions of the Diophantine equation with restriction kxm+kyn 6≡ 0 mod d, and mod q if q 6= 1,
and so do they if q = 1.

Introduced in [17] are results on (unrestricted) polynomial parametrizations of the solutions
of various Diophantine equations related to the determinant equation xy− zw = 1, and if we use
Theorem 13 of [17], we can prove that the symmetry classes of primitive solutions considered in
Theorem 1.1 are parametrized without restriction.

Corollary 1.2. Let k(x, y) = qz2 be the Diophantine equation considered in Theorem 1.1. Then,
the symmetry classes of primitive solutions of the Diophantine equation are parametrized by
polynomials in 98 variables.

Introduced in [6] is a general result on parametrizations of the solutions of Diophantine equa-
tions of genus 0 with integer-valued polynomials defined over Q such as 1

2
x(x+1). The main the-

orem of [6] implies that the (primitive and non-primitive) solutions of our equation k(x, y) = qz2

are parametrized by a single set of integer-valued polynomials. Introduced in [5, 17] are exam-
ples of Diophantine equations for which the solution sets are not parametrized by a single set of
polynomials defined over Z. Especially, in [5], it is proved that the set of (primitive and non-
primitive) Pythagorean triples does not admit an (unrestricted) polynomial parametrization with
integer coefficients, and their proof is immediately adapted for the statement that the set of prim-
itive Pythagorean triples does not admit a polynomial parametrization with integer coefficients.
We would like to note, though, that by our Corollary 1.2, its symmetry classes are parametrized.

In our opinion, if q or d in Theorem 1.1 is not prime, it is very unlikely that the polynomials
in (3) parametrize the primitive solutions. This is due to the fact that if (m,n) generates a non-
primitive solution, there are only three options for different pairs (m1, n1) that may generate its
primitive solution, as illustrated in Figure 2 in Section 5, and it is unlikely that the congruence
conditions required for having a primitive solution are satisfied for one of these three options.
Recall the equation 5x2 − 6xy + 5y2 = 5z2, and the polynomials given in (1). Its discriminant is
−26, and no primitive solutions in the symmetry class of the solution (10, 21, 17) are the values of
the polynomials. Nevertheless, it is still reasonable to ask if there is a different set of polynomials
that parametrizes the primitive solutions.

In Section 2, we introduce more examples of integer-sided triangles, and examples for which
the axes of symmetry are not given by x±y = 0. We discovered the very first six equations using
the unique factorization of the ring of integers associated with a Diophantine equation, which is
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different from the method on which Theorem 1.1 is based, and they are introduced in Section 3. In
Section 4, we introduce the idea of Riemann stereographic projection, which is the method used
in Theorem 1.1, and in Section 5 we prove the property of restricted parametrization of symmetry
classes of primitive solutions, and prove Corollary 1.2.

2 Examples

To demonstrate Theorem 1.1, let us consider the Diophantine equation x2− xy+ y2 = z2, which
is the law of cosines for integer-sided triangles with angle 60◦. The discriminant of the quadratic
form is 3, and it has a solution (x0, y0, 1) = (1, 0, 1). The direction vectors for the axes of
symmetry are (α, β) = (1, 1) and (−β, α) = (−1, 1), and the polynomials in (3) simplify to

x = (n2 −m2), y = n(n− 2m), z = m2 −mn+ n2, (4)

where the restrictions are gcd(m,n) = 1 and 2m 6≡ n (mod 3). Listed below are some examples
of primitive solutions and their corresponding parameters:

(x, y, z) (8, 3, 7) (−5,−8, 7) (21, 5, 19) (40, 7, 37)

(m,n) (1, 3) (3, 2) (2, 5) (3, 7)
·

More importantly, the primitive solutions that are not the values of these polynomials are
obtained by transposing the first two entries of, and changing the signs of (f, g, k) that are allowed
by the action of Z2 × Z2 × Z2. For example, a primitive solution (3,−5, 7) is obtained with
(m,n) = (4, 5) where 2m ≡ n (mod 3) after cancelling out the common factors of 3 across the
values of the polynomials (9,−15, 21), but (3,−5, 7) are not the values of the polynomials in (4).
On the other hand, if (m,n) = (2, 3), then the values of the polynomials are (5,−3, 7), which
belong to the same symmetry class of (3,−5, 7). This case of integer-sided triangles and the case
of θ = 120◦ are known in the literature as Eisenstein triples, and the name seems to be coined
in [2]. The methods of finding primitive Eisenstein triples are also found in [2, 7, 11, 12, 16].

Let us consider cases for which the direction vectors of axes of symmetry are not (1, 1) and
(−1, 1). The quadratic form k(u, v) is given by the matrix form

1
2

[
u v

] [2A B

B 2C

][
u

v

]
. (5)

We denote the 2× 2 matrix in (5) by W . The characteristic polynomial of the matrix W is

λ2 − (2A+ 2C)λ+ (4AC −B2). (6)

Notice that the nonsingular matrix W has rational eigenvectors if and only if the characteristic
polynomial (6) has rational zeros. Recall that d = ε(4AC − B2) is assumed to be prime where
ε = 1 if −B2 + 4AC > 0 and ε = −1 if −B2 + 4AC < 0. The following is a necessary and
sufficient condition for our requirements, and we leave the proof to the reader.

Lemma 2.1. The nonsingular symmetric matrix W has rational eigenvectors if and only if there
is δ = ±1 such that the following two conditions are satisfied
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1. (2A− δ)(2C − δ) = B2

2. δ(2A+ 2C)− ε = d.

For example, choose C = 1 and δ = 1. Then, 2A = B2 + 1, and d = B2 + 2 needs to be prime.
If B = 3, then d = 11 is prime, and A = 5. The quadratic form k(x, y) is 5x2 − 3xy + y2,
and the axes of symmetry are given by direction vectors (α, β) = (1, 3) and (−3, 1), which are
eigenvectors of W =

[
10 −3
−3 2

]
. Throughout the paper, we denote by (α, β) and (−β, α) two

eigenvectors in Z2 with gcd(α, β) = 1, which are linearly independent over Q, and they are
direction vectors of the two axes of symmetry of the conic section defined by k(u, v) = 1.

Now, let us consider the Diophantine equation 5x2−3xy+y2 = 23z2. Then, q = 23 is an odd
prime, and the equation has a particular solution (x0, y0, z) = (−1, 3, 1). Since α2 +β2 = 10 6≡ 0

(mod q), by Theorem 1.1 the symmetry classes of its primitive solutions are parametrized by

f = 14m2 − 6mn− n2, g = 15m2 + 10mn− 6n2, k = 5m2 − 3mn+ n2 (7)

with restrictions gcd(m,n) = 1, 8m 6≡ 9n (mod 1)1, and 19m 6≡ 9n (mod 2)3.
Let us consider the possibilities of odd primes q described in Theorem 1.1, namely, the set

of odd primes q that are represented by a nonsingular quadratic form k(x, y) since (x0, y0, 1) is a
particular solution, and that do not divide α2 + β2. The following lemma lists odd primes q that
are not allowed, and we leave the proof to the reader.

Lemma 2.2. If q 6= 1, and −d is not a quadratic residue mod q, then k(x, y) = q is not solvable
for integers (x, y).

The converse of this lemma does not have an easy answer. For example, for the case of
(A,B,C) = (1, 0, C) and C > 0, though ε(−B2 + 4AC) cannot be an odd prime for us, the
answers for the representability of odd primes by x2 + Cy2 involve the theory of complex mul-
tiplication of elliptic curves; see [1]. Nevertheless, if the ring of integers associated with k(x, y)

is a unique factorization domain, the converse of Lemma 2.2 may be true. For example, if the
Diophantine equation is x2 − xy + y2 = qz2, then the ring of integers associated with the binary
quadratic form is the Eisenstein integers Z[ω] where ω = (−1 +

√
−3)/2, and it is a unique

factorization domain. If −3 is a quadratic residue mod q, then the Diophantine equation has a
solution, and via the law of quadratic reciprocity, the residue condition is equivalent to q ≡ 1

(mod 3). We shall discuss more about the case of unique factorization domains in Section 3.
Let us discuss the reflection across the axes of symmetry. Given a direction vector (α, β) of

an axis of symmetry, the matrix of the reflection across the vector (α, β) for the conic section
k(u, v) = 1 is given by M̄ where

M =

[
α2 − β2 2αβ

2αβ β2 − α2

]
, M̄ = 1

α2+β2M. (8)

We define the induced reflection γ on the primitive solutions across the direction (α, β) as follows.

γ(x, y, z) = (γx/h, γy/h, (α
2 + β2)z/h), (9)
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where [ γxγy ] = M [ xy ] and h = gcd(γx, γy, (α
2 + β2)z). For the equation 5x2 − 3xy + y2 = 23z2,

the matrixM is [ −8 6
6 8 ]. The reflection across (−3, 1) is given by

[
8 −6
−6 8

]
. For example, consider a

primitive solution (29, 97, 15). Its reflections across the two axes are (7, 19, 3) and (−7,−19, 3),
and with further reflections across the two axes, we obtain (−29,−97, 15). Finally, applying the
antipedal map (x, y, z) 7→ (−x,−y,−z) we obtain all eight primitive solutions that make one
symmetry class. It turns out that the values of the polynomials (f, g, k) in (7) are never equal to
any solutions (a, b,±15) in the symmetry class for all (m,n) ∈ Z2, but when (m,n) = (1, 1), we
have (f, g, k) = (7, 19, 3).

Let us use the equation 5x2 − 3xy + y2 = 5z2 to demonstrate that the condition α2 + β2 6≡ 0

(mod q) in Theorem 1.1 is necessary for our result. Notice that the direction vectors are the same
as before, but we have a different particular solution (x0, y0, 1) = (1, 3, 1). The polynomials in
(3) simplify to

x = 4m2 − 6mn+ n2, y = 15m2 − 10mn, z = 5m2 − 3mn+ n2.

For example, the symmetry class of the primitive solution (4, 7, 3) contains (1, 8, 3) obtained by
reflecting (4, 7, 3) across (α, β) = (1, 3), and other solutions in the symmetry class are obtained
by changing the signs of these two solutions allowed by the action of Z2 × Z2 × Z2. However, it
turns out that none of the eight solutions are the values of the above polynomials. Nevertheless,
if (m,n) = (−1, 2), the values of the polynomials are (20, 35, 15), whose primitive version is
(4, 7, 3), and if (m,n) = (2, 1), the values of the polynomials are (5, 40, 15), whose primitive
version is (1, 8, 3).

3 Gaussian triples

Recall that x2− 2xy cos θ+ y2 = z2 is the law of cosines for integer-sided triangles with angle θ.
In [2], it was pointed out that parametrization polynomials for x2 − xy + y2 = z2 where θ = 60◦

can be discovered easily if we use the unique factorization property of the Eisenstein integers Z[ω]

where ω = (−1 +
√
−3)/2, and our very first approach to the problem was to use the property

of unique factorization as well. The ring of integers associated with the law of cosines for an
angle θ are quadratic imaginary field extensions of Q, and Gauss conjectured that there are only
finitely many quadratic imaginary field extensions whose ring of integers is a unique factorization
domain. It was proved by a combined result of Hecke and Heilbronn [3, Chp 21]. Moreover we
have the complete list of such fields Q(

√
−d) where d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} from

the works of various independent contributors Heilbronn, Linfoot, Heegner, Baker, Stark, and
Deuring [3, Chp 21]. In our very first approach, we used six values of d ∈ {7, . . . , 163} to
find six more examples of θ for which the symmetry classes are parametrized by a set of three
polynomials, and in honor of Gauss’ work, we call the solutions of the following Diophantine
equations Gaussian triples:

qx2 ± (2q − 1)xy + qy2 = qz2,
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where cos θ = ±(2q − 1)/q, q = (d + 1)/4, and d ∈ {3, 7, . . . , 163}. For these values of d and
cos θ > 0, the parametrization polynomials are given by

x = m2 + 2(q − 1)mn− (2q − 1)n2, y = q(2mn− n2), z = m2 −mn+ qn2.

We shall use the example of d = 163 to demonstrate the method, in the proof of Theorem 3.1.
Let cos θ = 81/82. Then, q = 41 and d = 163, and the law of cosines for integer-sided triangles
with angle θ yields

41x2 − 81xy + 41y2 = 41z2. (10)

It has direction vectors (1, 1) and (−1, 1) for the axes of symmetry, and a particular solution
(x0, y0, 1) = (1, 0, 1).

Theorem 3.1. The symmetry classes of the primitive solutions of (10) are parametrized by

x = m2 + 80mn− 81n2, y = 41(2mn− n2), z = m2 −mn+ 41n2, (11)

with restriction gcd(m,n) = 1, 2m 6≡ n (mod 163), and m 6≡ n (mod 41).

Proof. To use the ring of integers Z[ω], we reduce the equation as follows. Since 41 is prime,
without loss of generality, the Diophantine equation is equivalent to x2 − 81xỹ + 412ỹ2 = z2,

where y = 41ỹ, and this corresponds to the reflection across (1, 1) that makes y divisible by 41.
We shall focus on the Diophantine equation

x2 − 81xỹ + 412ỹ2 = z2. (12)

Let d = 163 and ω = (−1 +
√
−d)/2. Notice that the Diophantine equation (12) is factored

as follows:
(x− 40ỹ + ỹω)(x− 40ỹ + ỹω̄) = z2, (13)

and the ring of integers is Z[ω] is a unique factorization domain.
Suppose that (x, ỹ, z) is a primitive solution of (12). Recall the factorization in (13), and we

consider the factorization of x − 40ỹ + ỹω into irreducibles in Z[ω]. The irreducibles ρ in Z[ω]

are classified into three kinds, depending on its Q-norm value N(ρ) = p, which must be prime in
Z since Z[ω] is a unique factorization domain.

1. Split primes: If p 6= d, and −d is a quadratic residue mod p, then p factors into two
irreducibles π and π̄ in Z[ω] such that π is not an associate of π̄, i.e., π̄ 6= ±π. Hence, ρ is
either ±π or ±π̄.

2. Inert primes: If p 6= d, and −d is a quadratic nonresidue mod p, then p is an irreducible in
Z[ω]. Hence, ρ = ±p.

3. Ramified primes: If p = 163, then ρ = ±(1 + 2ω), and −d = (1 + 2ω)2.

Let x− 40ỹ + ỹω = uβ
∏s

k=1 π
vk
k be a factorization into irreducibles, where β is the product

of inert primes in the above classification, and πk are irreducibles over split and ramified primes.
Let us write

∏s
k=1 π

vk
k = a+bω, where a, b ∈ Z. Since β ∈ Z, x−40ỹ+ ỹω = β(a+bω) implies
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that β must divide ỹ, and hence, each of x, ỹ, z. This contradicts gcd(x, ỹ, z) = 1. Therefore, we
conclude β = 1.

Let us use a similar argument to show that N(πk) 6= N(πj) for k 6= j. Suppose that N(πk) =

N(πj) = p for k 6= j, i.e., πkπ̄k = πjπ̄j = p. Then the unique factorization property implies
that π̄k = ±πj; otherwise, π̄k = ±π̄j , and hence, k = j. Thus, πkπj = ±p, and this implies that
x− 40ỹ+ ỹω is divisible by p. As in the case for β above, this implies that p divides gcd(x, ỹ, z),
but it is a contradiction to gcd(x, ỹ, z) = 1.

Thus, we conclude for each k = 1, . . . , s that if pk := N(πk) = πkπ̄k, then pk 6= pj for
all k 6= j. Since z2 = u

∏s
j=1 π

vj
j · u

∏̄s

j=1π̄
vj
j =

∏s
j=1 p

vj
j where u = ±1 and pj are distinct

primes, since the factorization z2 =
∏s

j=1 p
vj
j is taking place in Z, we have vj = 2`j . Thus

x− 40y + yω = u
(∏s

j=1 π
`j
j

)2
, and if m+ nω =

∏s
j=1 π

`j
j , then

x− 40ỹ + ỹω = u′(m+ nω)2, u′ = ±1. (14)

Notice that (m+ nω)2 = (m2− 41n2) + (2mn− n2)ω, and (14) implies that ỹ = u′(2mn− n2),
and hence, x = u′(m2 + 80mn − 81n2). On the other hand, z2 = N(x − 40ỹ + ỹω) implies
z2 = N(m+nω)2 = (m2−mn+ 41n2)2, and hence, z = ±(m2−mn+ 41n2). Since y = 41ỹ,
it proves that the polynomials reach all primitive solutions up to u′ = ±1 and the sign of z.

It is straightforward to prove that the values of polynomials will have common factors of 41

or 163 if the modular congruence relations in Theorem 3.1 are not satisfied, and to prove the part
of the converse that the polynomials satisfy the Diophantine equation. We leave that part of the
proof to the reader, but prove here that if a prime p divides the values of the polynomial, then
it must be 41 or 163. Suppose that p divides the values of the polynomials, but different from
41 and 163. It follows from y ≡ 0 (mod p) that 2m ≡ n or n ≡ 0 (mod p). If n ≡ 0, then
x ≡ 0 implies m ≡ 0 (mod p), which is a contradiction to gcd(m,n) = 1. If 2m ≡ n, then
x ≡ 0 implies 0 ≡ m2 + 80m(2m) − 81(2m)2 = −163m2, and hence, m ≡ 0 (mod p). Again
0 ≡ 2m ≡ 0 (mod p) implies gcd(m,n) 6= 1.

Our second approach was to exploit the idea of Riemann stereographic projection, by which
Theorem 1.1 is established. In that approach, we discovered far more angles θ, and the list
includes the ones obtained with the property of unique factorization. However, the infinitude of
the larger list of θ seems to remain conjectural. The law of cosines reduces to qx2 +Bxy+ qy2 =

qz2, and, as required in Theorem 1.1, if d = −B2 + 4q2 and q are distinct odd primes, then
d = 4q − 1, and the existence of infinitely many prime pairs (q, 4q − 1) will imply that there are
infinitely many angles θ for which the symmetry classes will admit a restricted parametrization.
The following are the first twenty prime numbers d for which (d+ 1)/4 is also prime:

3, 7, 11, 19, 43, 67, 163, 211, 283, 331, 523, 547, 691, 787, 907, 1051, 1123, 1171, 1531, 1723.

In [4] a general problem of computing the asymptotic formulas for the number of prime tuples
such as ours (n, 4n − 1) is introduced, and in the celebrated result [8] the authors point out that
the cases such as the twin primes (n, n + 2), the Sophie Germain primes (n, 2n + 1), and ours
(n, 4n− 1) remain as the most difficult cases.
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4 Riemann stereographic projection

The method of using Riemann stereographic projection is a well-known ancient idea in number
theory, but to these days it stands as one of the most inspiring ideas in the area of solving Dio-
phantine equations. Let us explain the idea below. If a quadratic polynomial in two variables has
rational coefficients, and it has one pair of rational solutions (x0, y0), then a line L with slope `
passing through (x0, y0) with rational coefficients must intersect the graph of the quadratic poly-
nomial at rational coordinates (u, v). Let the y-intercept of the line L to be the projection of a
rational solution (u, v), and this is called a Riemann stereographic projection; see Figure 1.

Let ũ = u−x0 and ṽ = v−y0, and recall that kx and ky are the values of the partial derivatives
of k(x, y) at (x0, y0). Then, by the Taylor series of k(x, y) at (x0, y0) we have

k(u, v)− q = kxũ+ kyṽ + Aũ2 +Bũṽ + Cṽ2.

For the intersection point with L, let ṽ = `ũ. If ũ 6= 0, the above expansion implies that

0 = kx + ky`+ ũ(A+B`+ C`2).

Let ` = n/m where gcd(m,n) = 1, dehomogenize the equation for m and n, and solve for
ũ = u− x0. Then we have

u− x0 = −m(kxm+ kyn)

k(m,n)
⇒ u =

x0k(m,n)−m(kxm+ kyn)

k(m,n)
,

v − y0 = `(u− x0)⇒ v =
y0k(m,n)− n(kxm+ kyn)

k(m,n)
.

If (a, b, c) is a primitive solution of k(x, y) = qz2 such that (a/c, b/c) = (u, v), then there must
be h such that (ah, bh, ch) = (x, y, z) where (x, y, z) is given in (3).

Lemma 4.1 below is useful throughout our work.

Lemma 4.1. If gcd(m,n) = 1, and

kxm+ kyn ≡ 0 (mod p)e (15)

for e ≥ 1, then k(m,n) ≡ (−B2 + 4AC)q (mod p)e.

(x0,y0)L(u,v)

y

Figure 1. Riemann stereographic projection
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Proof. For e = 1 we have m ≡ t1ky and n ≡ −t1kx (mod p) for some integer t1 6≡ 0 (mod p).
Applying the method of lifting solutions to mod pe+1 inductively, we obtain that (15) implies
m ≡ teky and n ≡ −tekx (mod p)e for some integer te 6≡ 0 (mod p). Thus,

• k(m,n) ≡ t2e
(
Ak2y −Bkykx + Ck2x

)
(mod p)e

• ky = Bx0 + 2Cy0, kx = 2Ax0 +By0 ⇒
Ak2y −Bkykx + Ck2x

= (−B2 + 4AC)(Ax20 +Bx0y0 + Cy20) = (−B2 + 4AC)q.

The following theorem is an immediate consequence of Lemma 4.1 and the formulas in (3).

Theorem 4.2. Let (x0, y0, 1) be a solution to Ax2 + Bxy + Cy2 = qz2, let (f, g, k) be the
polynomials defined in (3), and let h = gcd(f(m,n), g(m,n), k(m,n)) for some (m,n) ∈ Z2

with gcd(m,n) = 1. Then, h ≡ 0 (mod p)e if and only if

kxm+ kyn ≡ 0 (mod p)e, and q(4AC −B2) ≡ 0 (mod p)e.

In particular, h divides q(4AC −B2).

5 Parametrization

We prove Theorem 1.1 in this section. Recall that d := ε(−B2 + 4AC) and q are distinct odd
primes or 1 where ε = ±1. Let (a, b, c) = (f(m,n), g(m,n), k(m,n)) for some (m,n) ∈ Z2

with gcd(m,n) = 1, and (a0, b0, c0) = (a/h, b/h, c/h) where h = gcd(a, b, c).
Let us say that (x, y) is orthogonal to (s, t) mod p if p is prime, xs + yt ≡ 0 (mod p), and

(x, y) and (s, t) 6≡ (0, 0) (mod p). Then, (x1, y1) and (x2, y2) are orthogonal to (s, t) mod p if
and only if (x1, y1) and (x2, y2) are scalar multiples to each other mod p.

Proposition 5.1. Under mod q and d, the column vectors [ x0y0 ] and
[
kx
ky

]
are 6≡ [ 00 ].

There is u 6≡ 0 (mod d) such that k(x, y) ≡ u(kxx + kyy)2. There are integers δx and δy
such that k(x, y) ≡ (kxx+ kyy)(δxx+ δyy) and det

[
kx ky
δx δy

]
6≡ 0(mod q).

Proof. If x0 ≡ y0 ≡ 0 (mod q), then k(x0, y0) ≡ 0 (mod q)2 while k(x0, y0) = q. Notice that[
kx
ky

]
= [ 2A B

B 2C ] [ x0y0 ], and [ x0y0 ] 6≡ [ 00 ] (mod q). Since det [ 2A B
B 2C ] 6≡ 0,

[
kx
ky

]
6≡ [ 00 ](mod q).

Notice that k(x0, y0) 6≡ 0 (mod d), and this implies that [ x0y0 ] 6≡ [ 00 ] (mod d). Also

k(x0, y0) = 1
2

[ x0 y0 ] [ 2A B
B 2C ] [ x0y0 ] = 1

2
[ x0 y0 ]

[
kx
ky

]
6≡ 0 (mod d),

and this implies that (kx, ky) 6≡ (0, 0) (mod d).
Since the discriminant of k(x, y) is d, we have k(x, y) ≡ u′(sx + ty)2 for some u′, s, t ∈ Z.

If (m,n) = (−ky, kx), then kxm + kyn = 0 and (m,n) 6≡ 0 (mod d). Thus, by Lemma 4.1,
k(m,n) ≡ 0, and it follows that (m,n) is orthogonal to (kx, ky) and (s, t) mod d. Therefore,
(kx, ky) is a scalar multiple of (s, t) mod d, and hence, u′(sx+ ty)2 ≡ u(kxx+ kyy)2 (mod d).
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Notice that, by Lemma 4.1, k(m,n) ≡ 0 (mod q) if (m,n) = (−ky, kx) (mod q). Since
the discriminant of k(x, y) is not divisible by q, the polynomial factors into two distinct linear
polynomials, up to constant multiplication, and one of them must be (kxx+ kyy).

Since (kx, ky) 6≡ (0, 0) (mod q), this proves the assertion about the determinant as well.

Lemma 5.2. c0 6≡ 0 (mod d).

Proof. Suppose that kxm + kyn 6≡ 0 (mod d). Then, by Proposition 5.1, c = k(m,n) 6≡ 0

(mod d), and hence, c0 6≡ 0 (mod d).
Suppose that kxm+kyn ≡ 0 (mod d), i.e., h ≡ 0 (mod d). Notice that d = ε(−B2 + 4AC)

implies that A 6≡ 0 or C 6≡ 0 (mod d); otherwise, −B2 + 4AC is divisible by d2. Notice that c
can be written in two ways depending on the case A 6≡ 0 or C 6≡ 0 (mod d):

c =
1

4A
(2Am+Bn)2 +

εd

4A
n2 =

εd

4C
m2 +

1

4C
(Bm+ 2Cn)2. (16)

Since c = k(m,n) = Am2 + Bmn + Cn2 ≡ 0 (mod d) and gcd(m,n) = 1, it follows that if
A 6≡ 0, then n 6≡ 0 (mod d), and that if C 6≡ 0, then m 6≡ 0 (mod d).

For the case of A 6≡ 0, we have 2Am + Bn ≡ 0 (mod d), and the first version in (16) and
n 6≡ 0 imply that c0 = c/h 6≡ 0 (mod d). For the case of B 6≡ 0, the argument is similar, and we
conclude c0 6≡ 0 (mod d) as well.

Lemma 5.3. a0 6≡ 0 or b0 6≡ 0 (mod q).

Proof. Suppose that a0 ≡ 0 and b0 ≡ 0 (mod q). Then, Aa20 + Ba0b0 + Cb20 = qc20 implies that
qc20 ≡ 0 (mod q)2, and hence, c0 ≡ 0 (mod q).

Recall that (α, β) is a direction vector of an axis of symmetry of the conic section k(u, v) = 1,
and that it is an eigenvector of the matrix W , whose characteristic equation is given in (6).

Lemma 5.4. α2 + β2 ≡ 0 (mod q) if and only if k(α, β) ≡ 0 (mod q).

Proof. Recall the matrix W = [ 2A B
B 2C ]. Then, k(α, β) = 1

2
[ α β ]W [ αβ ] = 1

2
[ α β ]

[
λα
λβ

]
=

λ
2
(α2 + β2) where λ = ±1 or ±d.

In Theorem 1.1 we assumed that α2 + β2 6≡ 0 (mod q), so by Lemma 5.4, k(α, β) 6≡ 0

(mod q).

Lemma 5.5. α2 + β2 6≡ 0 (mod d).

Proof. Suppose that α2 + β2 ≡ 0 (mod d). Since d is prime, the equation (6) implies that the
eigenvalue must be ±1 or ±d, we let (α̃, β̃) be either of (α, β) and (−β, α), whose eigenvalue
is ±1. Since gcd(α, β) = 1, both α̃ and β̃ are 6≡ 0 (mod d). Then, α̃2 + β̃2 ≡ 0 (mod d), and
there must be an integer i such that i2 ≡ −1 and β̃ ≡ iα̃. Notice that if d = −B2 + 4AC, then
d ≡ 3 (mod 4), and there is no such i in Z. If d = B2− 4AC, there will be such an i in Z. Since
(α̃, β̃) is an eigenvector of [ 2A B

B 2C ] with eigenvalue ±1, k(α̃, β̃) = ±1
2

(α̃2 + β̃2) ≡ 0 (mod d).
On the other hand, 0 ≡ k(α̃, β̃) = Aα̃2 +Bα̃β̃+Cβ̃2 ≡ α̃2(A+Bi−C). Since α̃ 6≡ 0, we have
Bi ≡ C − A. Then, −B2 ≡ A2 + C2 − 2AC, and −B2 ≡ −4AC implies that (A + C)2 ≡ 0.
By Lemma 2.1, d = ±2(A+ C)± 1, and hence, A+ C 6≡ 0 (mod d).
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Since k(x0, y0) ≡ 0 (mod q), by Proposition 5.1, (x0, y0) is orthogonal to either (kx, ky) or
(δx, δy) mod q, but not both. In Lemma 5.6 below we show that the reflection γ reduces to a
nontrivial action on the set of the two orthogonal complements mod q, and would like to note
that the hypothesis α2 + β2 6≡ 0 (mod q) is necessary for this action to be nontrivial.

Lemma 5.6. Let (a0, b0, c0) be a primitive solution, and (a1, b1, c1) = γ(a0, b0, c0). If (a0, b0) is
orthogonal to (kx, ky) mod q, then (a1, b1) is orthogonal to (δx, δy) mod q. If (a0, b0) is orthogo-
nal to (δx, δy) mod q, then (a1, b1) is orhtogonal to (kx, ky) mod q.

Proof. Notice that det(M) ≡ −(α2 + β2)2 6≡ 0 (mod q). Then, M is nonsingular mod q, and
(a1, b1) 6≡ (0, 0) (mod q) by Lemma 5.3.

Suppose that (a0, b0) is orthogonal to (kx, ky) mod q. If (a1, b1) is orthogonal to (kx, ky) mod
q, then (a1, b1) is a scalar multiple of (a0, b0) mod q, and hence, (a0, b0) is an eigenvector of M
mod q. Since α2 + β2 6≡ 0 (mod q), the two vectors (α, β) and (−β, α) remain as two linearly
independent eigenvectors of M mod q, and (a0, b0) must be a scalar multiple of (α, β) or (−β, α)

mod q. However, by Lemma 5.4 and Proposition 5.1, the eigenvectors (α, β) and (−β, α) are
not orthogonal to any of (kx, ky) and (δx, δy) mod q. Therefore, (a1, b1) must be orthogonal to
(δx, δy) mod q. The proof of the case that (a0, b0) is orthogonal to (δx, δy) is similar, and we leave
it to the reader.

Our goal is to find a primitive solution in a symmetry class that is the values of the polynomials
defined in (3), and in Definition 5.7 below, depending on which orthogonal complement mod q the
solution (x0, y0) belongs to, we shall consider the reflection of the primitive solution (a0, b0, c0)

by M defined in (8) and (9); see Figure 2.

Definition 5.7. We define the following under mod q. Suppose that (x0, y0) is orthogonal to
(kx, ky) and c0 6≡ 0. If (a0, b0) is orthogonal to (kx, ky), then define (a1, b1, c1) = γ(a0, b0, c0),
and if (a0, b0) is orthogonal to (δx, δy), then define (a1, b1, c1) = (a0, b0, c0).

Suppose that (x0, y0) is orthogonal to (δx, δy) and c0 6≡ 0 (mod q). If (a0, b0) is orthogonal
to (δx, δy), then define (a1, b1, c1) = γ(a0, b0, c0), and if (a0, b0) is orthogonal to (kx, ky), then
define (a1, b1, c1) = (a0, b0, c0).

Suppose that c0 ≡ 0 (mod q). If (a0, b0) is orthogonal to (kx, ky), then define (a1, b1, c1) =

γ(a0, b0, c0), and if (a0, b0) is orthogonal to (δx, δy), then define (a1, b1, c1) = (a0, b0, c0).

(u,v)

(-u,-v)~ ~
(x0,y0)

(-u,-v)

(u,v)~ ~~ ~

Figure 2. A symmetry class
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Lemma 5.8. Let (a1, b1, c1) be as defined in Definition 5.7. Let t = ±1, and let n/m be the slope
of (ta1/c1, tb1/c1) and (x0, y0) where gcd(m,n) = 1. Then, the gcd of (f(m,n), g(m,n), k(m,n))

is 6≡ 0 (mod q) for both t = ±1.

Proof. Notice that

n

m
=
tb1 − y0c1
ta1 − x0c1

⇒ ns = tb1 − y0c1, ms = ta1 − x0c1

⇒ s(kxm+ kyn) = t(kxa1 + kyb1)− (kxx0 + kyy0)c1.

Notice that c1 = (α2 + β2)c0 and α2 + β2 6≡ 0 (mod q). If c0 ≡ 0 (mod q), then c1 ≡ 0, and by
Definition 5.7 and Lemma 5.6, s(kxm+kyn) 6≡ 0 (mod q). If c0 6≡ 0 (mod q), then c1 6≡ 0, and
again Definition 5.7 and Lemma 5.6 guarantee that s(kxm+ kyn) 6≡ 0 (mod q) for both cases of
kxx0 + kyy0 ≡ or 6≡ 0 mod q. Hence, kxm + kyn 6≡ 0 (mod q), and by Theorem 4.2, the gcd is
6≡ 0 (mod q) for both slopes.

The following proposition concludes the proof of Theorem 1.1.

Proposition 5.9. Let (a1, b1, c1) be as defined in Definition 5.7. For at least one value of t = ±1,
(ta1, tb1, c1) is the value of (uf, ug, uk) where u = ±1.

Proof. Write the slopes of (ta1/c1, tb1/c1) and (x0, y0) for both t = ±1 in lowest terms;

nt
mt

=
y0c1 − tb1
x0c1 − ta1

⇒

mtst = x0c1 − ta1
ntst = y0c1 − tb1,

gcd(mt, nt) = 1

Suppose that kxmt + kynt ≡ 0 (mod d) for both t = ±1, and let t1 = 1 and t2 = −1. Then,

0 ≡ (kxmt1 + kynt1)st1 = (kxx0 + kyy0)c1 − t1(kxa1 + kyb1)

0 ≡ (kxmt2 + kynt2)st2 = (kxx0 + kyy0)c1 − t2(kxa1 + kyb1).

By adding the two equations, we obtain 2(kxx0 + kyy0)c1 ≡ 0 (mod d).
Since c1 = (α2 + β2)wc0 6≡ 0 (mod d) by Lemma 5.2 and 5.5 where w = 0, 1, we conclude

that kxx0 + kyy0 ≡ 0 (mod d), and by Lemma 4.1, k(x0, y0) ≡ 0. However, k(x0, y0) = q 6≡ 0

(mod d).
Therefore, kxmt∗ + kynt∗ 6≡ 0 (mod d) for some t∗ = ±1. Then, by Lemma 5.8 and The-

orem 4.2, we conclude that the only common divisors of the value of (f, g, k) at (mt∗ , nt∗) are
±1.

Recall the restrictions on the parameters (m,n) in Theorem 1.1, and that the symmetry classes
can be parametrized without restrictions, according to Corollary 1.2, if more parameters are used.
We use Lemma 5.10 below to accomplish this, and it is a corollary of Theorem 13 of [17].
Lemma 5.10 does not appear in [17], and we introduce Professor Vaserstein’s proof, which was
communicated to us. First of all, notice that gcd(m,n) = 1 if and only if mx − ny = 1 for
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(x, y) ∈ Z2, which is equivalent to [m n
y x ] ∈ SL2(Z). The congruence conditions on m and n will

be parametrized in the context of the following standard short exact sequence:

1→ SL2(NZ)→ SL2(Z)→ SL2(Z/NZ)→ 1 (17)

where SL2(NZ) := {[ m n
−x y ] ∈ SL2(Z) : m ≡ y ≡ 1, n ≡ x ≡ 0 (mod N)}. Lemma 5.10

below is in fact valid for an arbitrary positive m rather than dq, but we prove the case of m being
the product of two distinct primes.

Lemma 5.10 (Vaserstein). LetX be a finite subset of SL2(Z). The following subset is parametrized
by polynomials with 98 variables:

X SL2(dqZ) := {δτ : δ ∈ X, τ ∈ SL2(dqZ)}. (18)

Proof. Suppose that X has r matrices δ1, . . . , δr, and let p be d or q. Let us denote by X mod p

the image of X in SL2(Z/pZ) as defined in (17). Then, by the method of Lagrange Interpola-
tion we can construct four polynomials (P,Q,R, S) with integer coefficients in four variables
(v1, v2, v3, v4) such that

[
P Q
R S

]
parametrizes X mod p as the four variables vk vary from 0 to

p−1. This is possible since r is smaller than the number of elements in the domain (Z/pZ)4. For
example, there are integers µw for each w ∈ (Z/pZ)4 such that the polynomial P is given by∑

w∈(Z/pZ)4
µw

∏4
j=1

∏p−1
e=0(vj − e)∏4

j=1(vj − wj)

where wj are the entries of w, i.e., w = (w1, w2, w3, w4). Thus, we have constructed a surjective
map from (Z/pZ)4 toX (mod p), and Chinese Remainder Theorem applied to two distinct prime
modulus d and q implies that there are four polynomials (P,Q,R, S) with integer coefficients that
induce a surjective map from (Z/dqZ)4 to X (mod d)q.

By the short exact sequence (17) with N = dq, we have
[
P Q
R S

]
= δjγ for 1 ≤ j ≤ r and

γ ∈ SL2(dqZ), and hence, the set of matrices
[
P Q
R S

]
γ′ where γ′ ∈ SL2(dqZ) is equal to the one

in (18). By Theorem 13 of [17], SL2(dqZ) is parametrized by 94 variables, and hence, the subset
in (18) is parametrized by 98 variables.

For the proof of Corollary 1.2, we choose X to be the subset of [ m n
−x y ] ∈ SL2(Z) such that

0 ≤ m,n, x, y < dq, kxm + kyn 6≡ 0 (mod d), and kxm + kyn 6≡ 0 (mod q). Then, by the
sequence (17), the set of all pairs (m,n) ∈ Z2 considered in Theorem 1.1 is equal to the projection
of X SL2(pqZ) onto the first row. Therefore, this proves Corollary 1.2.

6 Future work

Recall the example 5x2 − 6xy + 5y2 = 5z2 in Section 1, and that our polynomials in (3) were
proved to not parametrize the symmetry classes of the primitive solutions. However, we do not
know if there is a different set of polynomials that may parametrize the symmetry classes. We
hope to be able to develop a method by which we can determine whether there cannot be a
restricted polynomial parametrization of symmetry classes, and also hope to find examples for
which the polynomials in (3) do not make a parametrization, but there is a different set of poly-
nomials that does parametrize the symmetry classes.
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