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Abstract: For positive integers e ≥ 1 and b ≥ 2, let Se,b : N→ N be defined by

Se,b(x) = aek + aek−1 + · · ·+ ae1

if x = (akak−1
. . . a1)b = akb

k−1 + ak−1b
k−2 + · · ·+ a2b+ a1 is the expansion of x in base b. We

call Se,b an (e, b)-happy function. Let g be a composition of various (e, b)-happy functions. We
show that, for any given x ∈ N, the iteration sequence (g(n)(x))n≥0 either converges to a fixed
point or eventually becomes a cycle. Here g(0) is the identity function mapping x to x for all x
and g(n) is the n-fold composition of g. In addition, we prove that the number of all possible fixed
points and cycles is finite. Examples are also given.
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1 Introduction and main results

Let S2 : N → N be the function that takes a positive integer to the sum of the squares of
its decimal digits. Then, S2 is called the happy function and if S(n)

2 (x) = 1 for some n ≥ 1,
Then, x is called a happy number (see [1] and [5, Chapter E34]). For n ≥ 1 and a function
f : N → N, f (0) is the identity function and f (n) is the n-fold composition of f . For example,
the sequence (S(n)

2 (7))n≥0 is (7, 49, 97, 130, 10, 1, 1, . . .) which converges to the fixed point 1 and
the sequence (S

(n)
2 (2))n≥0 is (2, 4, 16, 37, 58, 89, 145, 42, 20, 4, . . .) which is eventually the cycle

(4, 16, . . . , 20). It is well-known (see [1] or [5]) that for any x ∈ N, (S(n)
2 (x))n≥0 either converges

to 1 or becomes the cycle (4, 16, . . . , 20). As usual, (a1, a2, . . . , ak) and any cyclic permutation
such as (ak−1, ak, a1, a2, . . . , ak−2) are considered the same cycle. By the above, we see that 7 is
happy but 2 is not. See also Sequence A007770 in OEIS [8] for a list of happy numbers and other
information. More generally, for positive integers e ≥ 1 and b ≥ 2, we define Se,b : N→ N by

Se,b(x) = aek + aek−1 + · · ·+ ae1, (1)

if x = (akak−1 . . . a1)b = akb
k−1 + ak−1b

k−2 + · · ·+ a2b+ a1 is the expansion of x in base b. We
call Se,b an (e, b)-happy function and if there exists n ≥ 1 such that S(n)

e,b (x) = 1, then x is said
to be an (e, b)-happy number (see [3] and [6]). For convenience, if we write a number without
specifying a base, it is always written in base 10. Grundman and Teeple [4] obtain a result which
implies that if x, e, b are given, then the sequence

(S
(n)
e,b (x))n≥0 converges to a fixed point or eventually becomes a cycle. (2)

In this article, we generalize (1) and (2) to the following form.

Definition 1.1. For each e = (e1, . . . , ek) and b = (b1, . . . , bk) with ei ≥ 1 and bi ≥ 2 for all
i = 1, 2, . . . , k, define Se,b : N→ N by

Se,b(x) = (Se1,b1 ◦ Se2,b2 ◦ · · · ◦ Sek,bk)(x) for all x ∈ N. (3)

If x ∈ N and S
(n)
e,b (x) = 1 for some n ≥ 1, then x is said to be (e, b)-happy.

So if e1 = e2 = · · · = ek = e and b1 = b2 = · · · = bk = b, then the iteration sequence
(S

(n)
e,b (x))n≥0 is a subsequence of (S(n)

e,b (x))n≥0 but if ei or bi are not all equal, then (S
(n)
e,b (x))n≥0

may be a totally different sequence. For instance, suppose e = (3, 2), b = (4, 10), and x = 7.
Then, Se,b(x) = (S3,4 ◦ S2,10)(7) = S3,4(S2,10(7)) = S3,4(7

2) = S3,4(49) = S3,4((301)4) =

33 + 03 + 13 = 28. Se,b(28) = (S3,4 ◦ S2,10)(28) = S3,4(2
2 + 82) = S3,4(68) = S3,4((1010)4) =

13 + 03 + 13 + 03 = 2. So the sequence (S
(n)
e,b (7))n≥0 is (7, 28, 2, 1, 1, . . .), and so 7 and 2 are

(e, b)-happy numbers. Our purpose is to show that (2) also holds when Se,b is replaced by Se,b.
The proof can be obtained from a general method as follows. For a function f : N → N, define
the following two conditions:

(A) There exists Nf ∈ N such that f(x) < x for all x ≥ Nf .

(B) For each x ∈ N, the sequence (f (n)(x))n≥0 converges to a fixed point of f or eventually
enters into a cycle. In addition, the number of all such fixed points and cycles is finite.
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Then, the generalization of (2) to Se,b follows from the following two theorems.

Theorem 1.2. If f : N→ N satisfies (A), then f satisfies (B).

Theorem 1.3. If f1, f2, . . . , fk : N→ N satisfy (A), then their composition f1 ◦ f2 ◦ · · · ◦ fk also
satisfies (A).

Remark that the idea of Theorem 1.2 is not new; for example, it is used in the proof of the
main result in [4] in the case f = Se,b. Nevertheless, Theorem 1.2 for a general function f seems
to be new, and as far as we are aware Theorem 1.3 is also new and it leads us to the following
theorem.

Theorem 1.4. The function Se,b defined by (3) satisfies (A) and (B).

For more details about happy numbers and happy functions, see for example [2, 7, 9–11] and
the references therein.

2 Proof of the main results

Proof of Theorem 1.2. For convenience, we write N instead of Nf and we assert that

for every y ∈ N, there exists n ∈ N such that f (n)(y) < N. (4)

Suppose that there exists y ∈ N such that f (n)(y) ≥ N for every n ∈ N. Since f(y) ≥ N ,
we obtain by (A) that f(f(y)) < f(y). Since f (2)(y) ≥ N , we apply (A) again and obtain
f (3)(y) < f (2)(y) < f(y). Let k ∈ N be any positive integer. Since f (n)(y) ≥ N for every
n ∈ N, we can repeat the above argument k times and obtain a strictly decreasing sequence of
positive integers f(y) > f (2)(y) > f (3)(y) > · · · > f (k)(y). Since these are integers, we have

f(y) ≥ f (2)(y) + 1 ≥ f (3)(y) + 2 ≥ · · · ≥ f (k)(y) + k − 1. (5)

Since (5) holds for any k, we can choose k = f(y)+1, and obtain f (k)(y) ≤ f(y)− (k− 1) = 0,
which is a contradiction. Hence, (4) is proved.

Now let x ∈ N and suppose that (f (n)(x))n≥0 does not converge to a fixed point of f . By
(4), there exists n1 ∈ N such that f (n1)(x) < N . Again by (4), there exists n2 ∈ N such that
f (n2)(f (n1)(x)) < N . Repeating this process N times, we obtain the set of positive integers

f (n1)(x), f (n1+n2)(x), . . . , f (n1+n2+···+nN )(x),

which are less than N . By the pigeonhole principle, some of them are the same, say

f (n1+n2+···+nj)(x) = f (n1+n2+···+nj+···+n`)(x) for some ` > j ≥ 1.

Let y = f (n1+n2+···+nj)(x). Then, the tail of the sequence (f (n)(x))n≥0 eventually becomes

(y, f(y), f (2)(y), . . . , f (nj+1+nj+2+···+n`−1)(y), y, . . .),
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which is a cycle. This proves the first part of (B). Next, we show that the set Uf of fixed points
and cycles is finite. More precisely, we will show that

Uf := {x ∈ N | ∃n ∈ N, f (n)(x) = x} ⊆ [1,M ], (6)

where M = max{N, f(1), f(2), . . . , f(N)}. First of all, by (A), if x is a fixed point of f , then
x < N and so x ∈ [1,M ]. Suppose that x is an element in a cycle arising from the iteration
(f (n)(y))n≥0 for some y ∈ N. If x < N , then x ∈ [1,M ] and we are done. So suppose x ≥ N .
By (4), there exists n ∈ N such that f (n)(x) < N . Since x is in a cycle, after some iterations,
it must come back to x. That is, there exists k ∈ N such that f (k)(f (n)(x)) = x. If k = 1 or
f (n+k−1)(x) ≤ N , then x = f(f (n+k−1)(x)) ≤ M and we are done. So suppose k ≥ 2 and
f (n+k−1)(x) > N . Let ` be the smallest positive integer such that f (n+k−`)(x) < N . Then, ` > 1

and for each 1 ≤ i < `, f (n+k−i)(x) ≥ N . So

f (n+k−`+1)(x) > f (n+k−`+2)(x) > · · · > f (n+k−1)(x) > f (n+k)(x) = x.

So x < f (n+k−`+1)(x) = f(f (n+k−`)(x)) ≤ M . Therefore, (6) is verified and the proof is
complete.

Proof of Theorem 1.3. We prove this by induction on k. When k = 1, the result is obvious.
Assume that k ∈ N and the result holds for k. Suppose that f1, f2, . . . , fk+1 : N→ N satisfy (A).
Let f = f1 ◦ f2 ◦ · · · ◦ fk+1 and g = f1 ◦ f2 ◦ · · · ◦ fk. Then, there are m1, m2 ∈ N such that

g(x) < x for all x ≥ m1, and fk+1(x) < x for all x ≥ m2. (7)

Let m3 = max{g(x) | 1 ≤ x < m1} and m = max{m1,m2,m3}+ 1. Let x ≥ m. We will show
that f(x) < x. If fk+1(x) ≥ m1, then we obtain by (7) that

f(x) = g(fk+1(x)) < fk+1(x) < x.

On the other hand, if fk+1(x) < m1, then f(x) = g(fk+1(x)) ≤ m3 < m ≤ x. This completes
the proof.

Proof of Theorem 1.4. Grundman and Teeple [4, Theorem 1] show that if x ≥ be+1, then
Se,b(x) < x. That is, Se,b has property (A) for every e ≥ 1 and b ≥ 2. By Theorem 1.3,
Se,b also satisfies (A). Then, by Theorem 1.2, we obtain that Se,b satisfies (B), as desired.

We remind the reader again that if we write a number without specifying a base, it is always
written in base 10. We show some explicit calculations in the following examples.

Suppose e = (e1, e2, . . . , ek), b = (b1, b2, . . . , bk), and f = Se,b. By Theorem 1.4, f satisfies
(A), that is, there exists N ∈ N such that f(x) < x for all x ≥ N . We can find such N by the
argument given in the proof of Theorems 1.2, 1.3, and 1.4.

Example 2.1. Consider f = S4,6 ◦S2,5 ◦S3,4 ◦S5,3, which is the last line of Table 1. By the proof
of Theorem 1.4, we know that

S4,6(x) < x for x ≥ 65 and S2,5(x) < x for x ≥ 53.
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In the proof of Theorem 1.3, we let m1 = 65, m2 = 53, m3 = max{S4,6(x) | 1 ≤ x < 65} = 55,
and m = max{m1,m2,m3}+ 1 = 65 + 1. Then

(S4,6 ◦ S2,5)(x) < x for x ≥ 65 + 1.

Again by the proof of Theorem 1.4, we have S3,4(x) < x for x ≥ 44. By the proof of Theorem 1.3,
we let m1 = 65 + 1, m2 = 44,

m3 = max{(S4,6 ◦ S2,5)(x) | 1 ≤ x < 65 + 1}
≤ max{S4,6(x) | 1 ≤ x ≤ 96}
< S4,6((255)6) = 1266,

and m = max{m1,m2,m3} + 1 = 65 + 2. Then, (S4,6 ◦ S2,5 ◦ S3,4)(x) < x for x ≥ 65 + 2.
Finally, we know that S5,3(x) < x for x ≥ 36, so we let m1 = 65 + 2, m2 = 36,

m3 = max{(S4,6 ◦ S2,5 ◦ S3,4)(x) | 1 ≤ x < 65 + 2}
≤ max{(S4,6 ◦ S2,5)(x) | 1 ≤ x ≤ 189}
≤ max{(S4,6(x)) | 1 ≤ x ≤ 49}
≤ S4,6((155)6) = 1251,

and m = max{m1,m2,m3}+ 1 = 65 + 3. Hence

f(x) = (S4,6 ◦ S2,5 ◦ S3,4 ◦ S5,3)(x) < x for all x ≥ 65 + 3.

This shows an algorithm to obtain an N satisfying the condition (A). This choice of N may
not be optimal but if it is necessary, we can find the minimal N by checking if f(x) < x for
x = N − 1, N − 2, N − 3, . . . and then we stop when we get the first x such that f(x) ≥ x. Then,
we use a computer to find all fixed points and cycles of f by checking the sequence (f (n)(x))n≥0
where x = 1, 2, 3, . . . , N .

We give two more examples to illustrate alternative calculations.

Example 2.2. Let e = (3, 2), b = (10, 10), and f = Se,b. That is, f = S3,10 ◦ S2,10. Then, for
each x ∈ N, the sequence (f (n)(x))n≥0 contains either 1 or 27. Moreover, 1 is the only fixed point
of f and if the sequence (f (n)(x))n≥0 does not contain 1, then it eventually becomes the cycle
(27, 152).

Proof. We first show that
f(x) < x for all x ≥ 1467. (8)

Let x ∈ [1467, 9999] ∩ N. Then, x = (abcd)10 for some a, b, c, d ∈ {0, 1, 2, . . . , 9} and a 6= 0.
Therefore, f(x) = S3,10(S2,10(x)) = S3,10(a

2+b2+c2+d2). Since a2+b2+c2+d2 ≤ 4·92 = 324,
we see that f(x) ≤ max{S3,10(x) | 1 ≤ x ≤ 324} = S3,10(299) = 23 + 93 + 93 = 1466 < x.
Next suppose that x ≥ 104 and write x = (akak−1 . . . a1)10 with ak 6= 0. So k ≥ 5 and f(x) =
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S3,10(a
2
k + a2k−1 + · · ·+ a21). We have a2k + a2k−1 + · · ·+ a21 ≤ 92 + 92 + · · ·+ 92 = 81k and it is

easy to prove by induction on k that 81k < 10k−1 for k ≥ 5. Therefore,

f(x) ≤ max{S3,10(x) | 1 ≤ x < 10k−1} = S3,10( 99 . . . 9︸ ︷︷ ︸
k − 1 digits

) = 93 + 93 + · · ·+ 93 = 729(k − 1).

It is also easy to prove by induction that 729(k − 1) < 10k−1 for all k ≥ 5. So we obtain
f(x) < 10k−1 ≤ ak10

k−1 ≤ x, as required. Hence (8) is verified. So we only need to check, for
each x ≤ 1466, whether the sequence (f (n)(x))n≥0 converges to a fixed point or becomes a cycle.
This can be done using a computer. We find that for each positive integer x ≤ 1466, the sequence
(f (n)(x))n≥0 converges to 1 or eventually becomes the cycle (27, 152).

Example 2.3. Let f = S3,7◦S2,5. Then, for each x ∈ N, the sequence (f (n)(x))n≥0 contains either
1, 28 or 216. Moreover, 1 and 28 are the only fixed points of f and if the sequence (f (n)(x))n≥0
does not contain 1 or 28, then it eventually enters into the cycle (216, 224).

Proof. In this example, the bases are different (one of them is 5 and the other is 7). So the
calculation is slightly different from the previous example. We give two solutions to this problem.
We first show that

f(x) < x for all x ≥ 74. (9)

Let x ∈ N and x ≥ 74. Since x ≥ 54, we can write x = (akak−1 . . . a1)5 where k ≥ 5, ak 6= 0,
and ai ∈ {0, 1, . . . , 4} for every i. Then, f(x) = S3,7(S2,5(x)) = S3,7(a

2
k + a2k−1 + · · ·+ a21). We

have a2k + a2k−1 + · · ·+ a21 ≤ 42 + 42 + · · ·+ 42 = 16k and it is easy to prove by induction on k

that 16k < 5k−1 < 7k−1 for k ≥ 5. Now there are two ways we can proceed.
Method 1. Since 16k < 5k−1 ≤ ak5

k−1 ≤ x, we see that f(x) ≤ max{S3,7(y) | 1 ≤ y < x}.
Let ` ∈ N be such that x = (a′`a

′
`−1 . . . a

′
1)7, a

′
`, a
′
`−1, . . . , a

′
1 ∈ {0, 1, . . . , 6}, and a′` 6= 0. Since

x ≥ 74, ` ≥ 5 and 7`−1 ≤ x < 7`. Therefore,

f(x) ≤ max{S3,7(y) | 1 ≤ y < 7`} = S3,7((66 . . . 6︸ ︷︷ ︸
` digits

)7) = 63 + 63 + · · ·+ 63 = 216`.

Here we remind the reader again that 216` is the product of the numbers 216 and ` where 216 =

(216)10. It is also easy to prove by induction that 216` < 7`−1 for all ` ≥ 5. So we obtain
f(x) < 7`−1 ≤ x, as required.
Method 2. We know that 16k < 7k−1, and so

f(x) ≤ max{S3,7(y) | 1 ≤ y < 7k−1} = S3,7(( 66 . . . 6︸ ︷︷ ︸
k − 1 digits

)7) = 216(k − 1).

Since 5k−1 ≤ ak5
k−1 ≤ x, we obtain k − 1 ≤ log x

log 5
. Therefore,

f(x) ≤ 216(k − 1) ≤ 216 log x

log 5
=

(
216

log 5

)(
log x

x

)
x ≤

(
216

log 5

)(
log 74

74

)
x < x,

where we have used the fact that x ≥ 74 and that the function y → log y
y

is decreasing on [3,∞).
Hence (9) is verified. Similar to Example 2.2, the rest can be verified using a computer.
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e b Fixed points of Se,b or cycles in (S
(n)
e,b (x))n≥1

(3, 2) (10, 10) 1, (27, 152)
(2, 3) (10, 10) 1, (30, 53)
(3, 2) (7, 5) 1, 28, (216, 244)
(3, 4, 2) (5, 6, 4) 1, 35, (17, 28)
(2, 3, 5) (6, 5, 7) 1, (10, 20, 17), (11, 41)
(2, 5, 4) (5, 6, 8) 1, 16, 19, (4, 12, 5, 14), (7, 13, 27, 17)
(4, 3, 5, 2) (4, 3, 5, 6) 1, 2, (98, 32)
(2, 3, 5, 4) (8, 7, 5, 3) 1, 4, 75, 98
(4, 2, 3, 5) (6, 5, 4, 3) 1, 641, (257, 625)

Table 1. Fixed points of Se,b or cycles in (S
(n)
e,b (x))n≥1

Comments: The origin of this problem is unclear but it appears in Guy’s book [5, Chapter E34].
A list of fixed points and cycles of some Se,b is given in Table 1. We also plan to put more data
in the third author’s ResearchGate account, so the interested reader can freely download it in the
future.
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