Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 25, 2019, No. 3, 1-12

DOI: 10.7546/nntdm.2019.25.3.1-12

The linear combination of two triangular numbers

is a perfect square

Junyao Peng'?

! Chongging Fuling No.15 Middle School
Chongqing, 400000, China
2 School of Mathematics and Statistics, Changsha University of Science and Technology
Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering
Changsha, 410114, China
e-mail: junyaopeng906@163.com

Received: 12 July 2018 Revised: 11 July 2019 Accepted: 14 July 2019

Abstract: By the basic properties of Pell equation and the theory of congruence, we investigate
the problem about the linear combination of two triangular numbers is a perfect square. First, we
show that if 2n is not a perfect square, the Diophantine equation

Yy 2
1 =
+n(2) A

has infinitely many positive integer solutions (v, z). Second, we prove that if m,n are some
special values, the Diophantine equation

()l

has infinitely many positive integer solutions (x, y, z). At last, we raise some related questions.
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1 Introduction and main results

A triangular number is a positive integer of the form

—1
t“:(g):@,xzz,m.
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Research on triangular numbers can be traced back to Pythagoras (570-501 B. C.). Many remark-
able properties of triangular numbers have been discovered by Fermat, Euler, Legendre, Gauss
and other great mathematicians [4]: Legendre proved that no triangular number, except 1, is a
cube or fourth power; Gauss showed that every natural number is a sum of at most three triangu-
lar numbers; Euler determined infinitely many triangular numbers which are perfect squares.

In 2005, Bencze [1] raised a problem: find out all positive integers n which make the form
1+ %n(n + 1) to be a perfect square. In 2007, Le [9] showed that all positive integers n of the
form 1 4+ §n(n + 1) that are perfect squares are given by

L1 opi 2k+1
= —(= bRty — 1
where a = 3 + \/g, b=3-— \/g, and k € Z*. In 2011, Guan [6] proved that all positive integers
4n(n41)s?

n which are of the form 1 + — 5=~ that are perfect squares are given by

Lol Cokin | goes1
=—(=— b —1
) (23 (™ + )1,
where s is a positive odd integer with s > 1, and k € Z*. In 2013, Hu [7] considered the positive

integer solutions of the Diophantine equation

1—|—n(y> — 22 (1.1)

2
where 2y
t 1
5 ,t=1 (mod 2),t > 3,
t*£2
n = 5 ,t=0 (mod 2),t > 2,
Ht—1) [t Y
| 2 2

There are more related results in [2, 10, 12].
In this paper, by the theory of Pell equation, we have the following results.

Theorem 1.1. If 2n is not a perfect square, then Eq. (1.1) has infinitely many positive integer

solutions.

In order to illustrate Theorem 1.2, we give an integer solution of the Pell equation
22 —d(t)y* =1 (t =0 (mod 2),t > 2) in Table 1.

d(t) (1), y(t)
t(s?t+1),se€Z" (2%t +1,25)
t(s’t £2),s€Z" (st +1,s)
0% £ 8t + 2 (9t £ 4)2 + 1,3(9¢ £ 4))
491 £20t +2 | ((49t = 10)% — 1, 7(49¢ = 10))
t(t3 +2) (13 +1,1)

Table 1. An integer solution of the Pell equation x? — d(t)y* = 1



Theorem 1.2. When n = @, then Eq. (1.1) has infinitely many positive integer solutions.

Notice that 1 = (3), then 1 + n(Y) = 2 can be written as (}) + n(%) = 2. So we consider

the Diophantine equation
m@) +n<g) — 22 (1.2)

where m, n € Z*. More remarkable, in 2009, Sun [11] investigated the number of representations
of n by

-1 -1
vz —1)  yly—1)

a Y
2 2

where a > 1,b > 1.
Whenm =n =1,lety = x + 1, Eq. (1.2) becomes

() (3=

i.e., z = z. In 1897, Fauquembergue [4] noticed that (3) + (J) = 2% equals

(22 — 1)+ 2y — 1)* = (22 + 1) + (22 — 1)?,
by Euler’s formula, if there exist a, b, ¢, d € Z* such that bc+ ad = ac — bd + 2, then all solutions
of the above equation are given by
2 — 1 = ac + bd,
2y — 1 =bc — ad,
2z +1=bc+ ad.

According to the condition of the quadratic equation with multiple roots, we have the following
theorem.

Theorem 1.3. When m(TZH) = u?,n = 1, there exist infinitely many pairs (a,b) of positive

integer numbers such that Eq. (1.2) has integer parametric solutions (t, at + b, u(ct + d)), where

t is a positive integer greater than 1.
Moreover, we get

Theorem 1.4. If 2(m + n) is not a perfect square, r € 7, and the Pell equation

m—l—n>2 )

X?—2(m+n)Z* = ( 5 —r“mn

has a positive integer solution satisfying

Xo—rn+m;—n50 (mod m + n),

then Eq. (1.2) has infinitely many positive integer solutions.
In particular,

Theorem 1.5. Let u, v be integers with w > \/2v, and u being a positive even integer. When
m = (u? — 2v%)%,n = 8u*v?, then the Eq. (1.2) has infinitely many positive integer solutions.



2 Preliminaries

In order to prove the above results, we need the following lemmas.

Lemma 2.1. /8] Let D be a positive integer which is not a perfect square, then the Pell equation
x? — Dy? = 1 has infinitely many positive integer solutions. If (U, V') is the least positive integer
solution of the Pell equation x> — Dy? = 1, then all positive solutions are given by

vk +yV'D = (U +VVD),
where k is an arbitrary integer.

Lemma 2.2. [8] Let D be a positive integer which is not a perfect square, N be a nonzero integer,
and (U, V) is the least positive integer solution of x> — Dy* = 1. If (xg,yo) is a positive integer
solution of v* — Dy? = N, all positive solutions are given by

i+ ypV'D = (20 + yoVD)(U + VVD)F,
where k is an arbitrary integer.

Lemma 2.3. [5] Let D be a positive integer which is not a perfect square, m be a positive integer,

and N be a nonzero integer. If the Pell equation x> — Dy?> = N has a positive integer solution

satisfying
(ug,v0) = (a,b) (mod m),

then it has infinitely many positive integer solutions satisfying

(u,v) = (a,b) (mod m).

3 Proofs of the theorems

Proof of Theorem 1.1. Multiply Eq. (1.1) by 8, we have
(n(2y — 1))* — 2n(22)* = n(n — 8).
SetY =n(2y — 1), Z = 2z, we get the Pell equation
Y2 —2nZ% = n(n — 8). (3.1)

By Lemma 2.1, if 2n is not a perfect square, the Pell equation Y2 — 2nZ? = 1 always has an
infinite number of integer solutions. And suppose (u, v) is the least positive integer solution of
Y? —2nZ? = 1. It is easy to note that (Y, Zy) = (n,2) is an integer solution of Eq. (3.1). By
Lemma 2.2, an infinity of positive integer solutions of Eq. (3.1) are given by

Yk—I—Z;C\/%: (n—i—?@) (u+v\/%)k,k > 0.

Clearly, we have a solution (Yy, Zy) = (n,2) of Eq. (3.1) satisfying
Yo+n=0 (mod2n), Zo=0 (mod 2).

4



Lemma 2.3 guarantees that Eq. (3.1) has infinitely many positive integer solutions (Y, Z) with
the above condition. Then there are infinitely many

1/Y A
y=—-(—+1|€Z", z2==¢€Z".
2\ n 2

Thus, if 2n is not a perfect square, Eq. (1.1) has infinitely many positive integer solutions (y, z).
[]

Example 3.1. When n = 10, 2n = 20 is not a perfect square, we have the Pell equation
Y? —202° = 20.

It is easy to see that (u,v) = (9,2) is the least positive integer solution of Y* — 20Z% = 1, and
(Yo, Zo) = (10,2) is a positive integer solution of Y — 2072 = 20. Then an infinity of positive
integer solutions of Y* — 20Z* = 20 are given by

Yy + Z5v/20 = (10 + 2v/20) (9 + 2v20)", k > 0.
Thus
Y = 18Yj 1 — Y2, Yo =10, Y3 = 170,
Ty =187 1 — Zp9, Zo =2, Z1 = 38.

From the above recurrence relations, we have
Y, +10=0 (mod 20), Z, =0 (mod 2),

then

1/Y, Zy,
=—(—=+1 /A =2 c7t.
Yk 2<10+ ) S , 2k 5 S

Therefore, when n = 10, Eq. (1.1) has infinitely many positive integer solutions (yx, ).

Proof of Theorem 1.2. We consider only the case n = @ = t(52éi1), where s = 2,t = 0
(mod 2) and ¢ > 2. The other cases are dealt with similarly. Then Eq. (3.1) becomes
t4t£1) [t(4t £ 1
Y- t(4t£1)72% = ( 5 )(( 5 )—8>. (3.2)

Let us note that the pair (Yy, Zy) = (t(4t2i1) , 2) is a solution of Eq. (3.2). Moreover, the pair

(u,v) = (8¢ +1,4) solves the equation Y2 —¢(4¢ +1)Z? = 1. Then an infinity of positive integer
solutions of Eq. (3.2) are given by

Vi + Zi /4t £ 1) = (@ +2/t(4t £ 1)> (St +144y/t(4t + 1))k, k> 0.

Thus

Vi = 281 £ 1)Vis — Yoo, Yy — 15D y: _ t(4t1) ((8t:£1)+16)

2 2 )

Z =28t £ 1) 21 — Zin, Zo=2, Zy =2(8t £ 1) + 2t(4t + 1).
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Then

U =28t £ Dyp1 —yp2— Bt 1)+ 1, yo=1, y1 = wa

2, =28t £ 1)zpy — 252, 20 =1, 21 = (8t £ 1) + (4t £ 1).

dt) _ t(s*t£l)
2 — T 2

where s = 2,t = 0 (mod 2) and ¢ > 2, Eq. (1.1) has infinitely many positive integer solutions
(Y, 21)- O

From the above recurrence relations, we have 1y, 2, € Z*. Thus, when n =

Example 3.2. When n = @ = t(s?%l), where s = 2,t =0 (mod 2) and t > 2, we take t = 2,

thenn =7o0rn =29.

Whent = 2,n =7, Eq. (1.1) has infinitely many positive integer solutions
Ye = 30yk—1 — yr—2 — 14, yo = 1, y1 = 16,
2k = 3021 — 29, 20 =1, 21 = 29.

Whent = 2,n =9, Eq. (1.1) has infinitely many positive integer solutions

Yp = 34Yr—1 — Yp—2 — 16, yo = 1, y1 = 17,

2y = 3421 — Zx_9, 20 =1, z1 = 35.

Proof of Theorem 1.3. When w =u?,n=1,let

r=t, y=at+Db,
then Eq. (1.2) equals to

a>+m , 2ab—a—-—m_ bV —-b
t = z°. .
5 5 t— z (3.3)

Consider ) ; 2y
a+m o, 2ab—a—m —
t) = t t

as a quadratic polynomial of ¢, if g(¢) = 0 has multiple roots, the discriminant of ¢(t) is zero, i.e.,

1 1 1
—abm — b®>m + Za2 + §am +bm + 1m2 = 0.

It implies

a = 2bm —m £ 2y/m(m + 1)b(b — 1).
To find a € Z*, we take m(m + 1)b(b — 1) = v?, then

(20)* —m(m +1)(2b — 1)* = —m(m + 1).
Let X = 2v,Y = 20 — 1, we obtain the Pell equation

X2 —m(m+1)Y? = —m(m+1). (3.4)



It easy to see that the pair (Xo,Yy) = (2m(m + 1),2m + 1) is a solution of Eq. (3.4), and the
pair (U, V) = (2m + 1, 2) solves the equation X? — m(m + 1)Y2 = 1. So an infinity of positive
integer solutions of Eq. (3.4) are given by

Xe+Yiy/m(m+1) = (2m(m—|—1)+(2m—|—1) m(m + 1)) (2m+1+2\/m(m + 1)) k> 0.

Thus

X =202m+1)Xp_1 — Xj_9, Xo=2m(m+1), X; =4m(m +1)2m + 1),
V., =22m+ 1Y, 1 — Yo, Yo=2m+1, Y] =8m? +8m + 1.

According the above recurrence relations, we have

Y, +1
bk:L€Z+7

Y, +1 X

kT —mi27k:2mbk—mi2vk€Z+.

ap =2m
From X = 2v and X}, = 2(2m + 1) X1 — X}, we have
m(m+1) | v.

Let v = m(m + 1)w, then
bb—1) m(m+ 1)w2

2 2
Because of ¢(¢) = 0 has multiple roots, then Eq. (3.3) can be reformulated in the form

a?+m, 2ab—a—-m, b —b m(m+1)

t t+d)>.

2 2 T3 g (d+d)

Thus there exist infinitely many positive pairs (ay, b;) such that m(5) + (4) = z* has positive
integer parametric solutions (¢, axt + by, u(cyt + dy)), where t > 1.t € Z. O
Example 3.3. When m = 1, w =12 n=1,we have ag = 7,by = 2 i.e., y = Tt + 2, then

Eq. (1.2) has positive integer parametric solutions (t, 7t + 2,5t + 1), where t > 1,1 € Z.

When m = 8, w = 62,n = 1, we take ay = 280,by = 9, i.e., y = 280t + 9, then Eq.

(1.2) has positive integer parametric solutions (t,280t + 9,6(33t + 1)), wheret > 1,t € Z.

Proof of Theorem 1.4. Lety = x +r,r € Z, Eq. (1.2) equals

2 2
((m+n)x+rn—m+n> —2(m+n)z* = (m+n> — r*mn.

2

Take X = (m +n)x +rn — 2, 7 = 2z, we get

2
X2 —2(m+n)Z2 = (m ;r ”> — rmn. (3.5)



By Lemma 2.1, if 2(m + n) is not a perfect square, the Pell equation
X2 —2m+n)Z* =1

has infinitely many positive integer solutions. By Lemma 2.2, if Eq. (3.5) has a positive integer
solution, it has infinitely many positive integer solutions. Assume that Eq. (3.5) has a positive
integer solution (X, Zy) satisfying

m-+n
X()—’I"n“_

=0 (mod m+n),

By Lemma 2.3, Eq. (3.5) has infinitely many positive integer solutions (X, Z) satisfying the
above condition, which leads to infinitely many x, 2 € Z". Then there are infinitely many y =
x +r € Z*. Hence, Eq. (1.2) has infinitely many positive integer solutions (x, y, 2). O

Example 3.4. Whenm = 1,7 = 2, i.e., y = x + 2, suppose that 2(n + 1) is not a perfect square,
where n is odd. We get

1 7 1
X? -2 1NZ%==n*>—-n+-.
(n+1) 2 T gt
And the above Pell equation has a solution (X, Zy) = (”T_?’, 1) satisfying
1
Xo—2n+ n =0 (modn+1),

where ans € Z.
When n = 5, we have
X? —127% = —11.

An infinity of positive integer solutions are given by

Xi+ ZV12 = (1+V12) (7 +2v12)" k> 0.

Thus
Xy =14X, 1 — Xpo, Xo =1, X; =31,
Te =147 1 — Tpgy Zo =1, 71 = 9.

It is easy to prove that
Xy —7=0 (mod 6),

then xy,, 2, € Z". Hence, we have

T = 14C(Zk_1 — Tp—o + 14, Ty = 4, To = 63,
yk:xk+27 n :67 y2:657

z =14z, 1 — 2p_9, 21 =9, 20 = 125.

Therefore, whenm = 1,n = 5, Eq. (1.2) has infinitely many positive integer solutions (T, i, 2k )-



Proof of Theorem 1.5. By Theorem 1.4, we need to find a positive integer solution (X, Zy)

satisfying
Xo—rn+ m;—n =0 (mod m+n).
Suppose that X, = ™, then Z, satisfying

2(m +n)Z3 = r*mn. (3.6)

™™m

> then it is sufficient to show that

From X, = (m + n)xo + rn — 2 we have zg = 1 —

rn
e 7.

m-+n

Take r = —t(m + n), where ¢t > 0, the condition (3.6) is equivalent to

2
r? =t*(m+n)* = Hm+n) Zs.
mn
Thus
7= t*mn(m + n)
2
mn(m+n)

In view of Z; is an integer, then is a perfect square. Let

2
n

m = a?,
where «, 3,7 € Z". Then we get a quadratic equation
o? 4262 = 2,

which has a solution

a=u?—20% B =2uv,y = u? + 207,

where u, v € Z*,u > v/2v, and u is a positive even integer. Hence,
m = (u* — 20%)%, n = 8u*?, Zy = afyt = 2uv(u* — '),

and ) o
X, = m+n (u® + 2v°) c 7
2 2
Notice that 2(m + n) = 272 is not a perfect square, by Lemma 2.1, the Pell equation
X? — 2(u* + 20%)2Z? = 1 has infinitely many positive integer solutions. Let (Up, Vj) be the
least positive integer solution of X? — 2(u? + 2v?)2Z? = 1, where Uy is odd. And let the Pell

equation

(u? + 20?)?

X? =2 +0%)%2% = ( 5

2
) — 8uv?(ut — 4v*) (u? + 20H)%* (3.7)

have a positive integer solution (X, Z) = (w, 2uv(ut — 4v4)t) . It is easy to prove that

(u? + 20%)?2

Xo — 8u*v? (u? + 20%)%t + 5

=0 (mod (u*+ 2v%)?).

9



By Lemma 2.2, an infinity of positive integer solutions are given by

(u? + 20v?)?
2

k
(Ug + Vov/2(u? + 21}2)2) k> 0.

X + Zi/2(u? + 202)? :( + 2uv(ut — 4v*)t\/2(u? + 21}2)2)

Thus
. w2+ 202)2
Xy =2UpXp—1 — Xg2, Xo= %,
21 9,,2)2
) X = 4Vouvt(u® + 20?)? (u — 40*) + UO(U—FTU),
Zk == 2U02k_1 - Zk_g, Zo == 2uvt(u4 — 41}4),
2 1 9,22
7y = 2Uguvt(u* — 40*) + ng.
Then
x = 2Upzp_1 — Tp_o — (Uy — 1)(16tu?v? + 1),
yr = x) — t(u? + 20%)?,
2, = 2U02k—1 — Zk—2,
where

1
zo =1 + 8tuv?, x; = 4Vouvt (u* — 4v*) + Stu*v? + §(U0 + 1),

1
yo =1 — (u® — 20°)°t, y1 = (u® — 20°)t (4Vouo(u? + 20%) — (u® — 20%)) + §(U0 +1),
(u? + 20%)?

2o =2uvt(ut — 4vt), 2 = 20uvt (u* — 40*) +Vj 5

When u,v € Z*t,u > +/2v, and u is a positive even integer, for any £ > 1, we deduce that
Tk, Yk, 2 are positive integers greater than 1. Thus Eq. (1.2) has infinitely many positive integer
solutions (g, Yx, 2k)- O

Example 3.5. When v = 2,v = 1, then m = 4,n = 32,r = —36t, and 2(m + n) = 72 is not a
perfect square. We have
X? - 7277 = 182 — 72(48t)%.

An infinity of positive integer solutions are given by
X+ ZpV72 = (18 + 48tV72) (17 + 2vV72)% k> 0.

Thus
X =34X_1 — Xp_o, Xo =18, X; = 6912t + 300,

Zp =347, 1 — Zyo, Zo = 48t, 7, = 816t + 36.

It is easy to prove that
Xi + 1152t + 18 =0 (mod 36),

10



then xy,, 2, € Z". Hence, we have

T = 34x,_1 — xp_o — 1024t — 16, 11 = 2241 + 9, x5 = 6560t + 289,
Y = T — 36t, y1 = 188t + 9, yo = 6524t + 289,
2 = 34z, 1 — 2p_9, 21 = 816t 4 36, 2o = 27696t + 1224.

Therefore, whenm = 4, n = 32, Eq. (1.2) has infinitely many positive integer solutions (T, Y, 2)-

4 Some related questions

In this paper, we have investigated the problem about the linear combination of two triangular
numbers is a perfect square. Similarly, we can ask

Question 4.1. Are there positive integer solutions of the Diophantine equation
mPy(z) + nP(y) = 2%,

where Py (x) = w is a polygonal number, and k > 4?2 If it has, are they infinitely

many?
When k = 4, Py(x) = 2? is a square number. H. Cohen [3, Corollary 6.3.6.] gave the general
solutions of the Diophantine equation

Az? + By? = C22,

i.e., “Assume that ABC # 0, let (o, yo, 20) be a particular nontrivial solution of Az? + By? =
C'z?, and assume that zy # 0. The general solution in rational numbers to the equation is given
by

x = d(zo(As? — Bt?) + 2y Bst),

Yy = d(23:0Ast — yo(As* — Bt2)),

z = dzg(As* + Bt?),

where d € Q, s,t € Z, and gcd(s,t) = 1.7
Question 4.2. Are there positive integer solutions of the Diophantine equation
Z Y 2
m +n = z°,
() ()

where (z) = (mf—kf),k, is a binomial coefficient, where k > 3? If it has, are they infinitely many?
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