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Abstract: By the basic properties of Pell equation and the theory of congruence, we investigate
the problem about the linear combination of two triangular numbers is a perfect square. First, we
show that if 2n is not a perfect square, the Diophantine equation

1 + n

(
y

2

)
= z2

has infinitely many positive integer solutions (y, z). Second, we prove that if m,n are some
special values, the Diophantine equation

m

(
x

2

)
+ n

(
y

2

)
= z2

has infinitely many positive integer solutions (x, y, z). At last, we raise some related questions.
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1 Introduction and main results

A triangular number is a positive integer of the form

tx−1 =

(
x

2

)
=
x(x− 1)

2
, x ≥ 2, x ∈ Z.
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Research on triangular numbers can be traced back to Pythagoras (570–501 B. C.). Many remark-
able properties of triangular numbers have been discovered by Fermat, Euler, Legendre, Gauss
and other great mathematicians [4]: Legendre proved that no triangular number, except 1, is a
cube or fourth power; Gauss showed that every natural number is a sum of at most three triangu-
lar numbers; Euler determined infinitely many triangular numbers which are perfect squares.

In 2005, Bencze [1] raised a problem: find out all positive integers n which make the form
1 + 9

2
n(n + 1) to be a perfect square. In 2007, Le [9] showed that all positive integers n of the

form 1 + 9
2
n(n+ 1) that are perfect squares are given by

n =
1

2

(1
6
(a2k+1 + b2k+1)− 1

)
,

where a = 3 +
√
8, b = 3−

√
8, and k ∈ Z+. In 2011, Guan [6] proved that all positive integers

n which are of the form 1 + 4n(n+1)s2

s2−1
that are perfect squares are given by

n =
1

2

( 1
2s

(a2k+1 + b2k+1)− 1
)
,

where s is a positive odd integer with s > 1, and k ∈ Z+. In 2013, Hu [7] considered the positive
integer solutions of the Diophantine equation

1 + n

(
y

2

)
= z2, (1.1)

where

n =



t2 ± 1

2
, t ≡ 1 (mod 2), t ≥ 3,

t2 ± 2

2
, t ≡ 0 (mod 2), t ≥ 2,

t(t− 1)

2
=

(
t

2

)
, t ≥ 2.

There are more related results in [2, 10, 12].
In this paper, by the theory of Pell equation, we have the following results.

Theorem 1.1. If 2n is not a perfect square, then Eq. (1.1) has infinitely many positive integer
solutions.

In order to illustrate Theorem 1.2, we give an integer solution of the Pell equation
x2 − d(t)y2 = 1 (t ≡ 0 (mod 2), t ≥ 2) in Table 1.

d(t) x(t), y(t)

t(s2t± 1), s ∈ Z+ (2s2t± 1, 2s)

t(s2t± 2), s ∈ Z+ (s2t± 1, s)

9t2 ± 8t+ 2 ((9t± 4)2 + 1, 3(9t± 4))

49t2 ± 20t+ 2 ((49t± 10)2 − 1, 7(49t± 10))

t(t3 ± 2) (t3 ± 1, t)

Table 1. An integer solution of the Pell equation x2 − d(t)y2 = 1
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Theorem 1.2. When n = d(t)
2

, then Eq. (1.1) has infinitely many positive integer solutions.

Notice that 1 =
(
2
2

)
, then 1 + n

(
y
2

)
= z2 can be written as

(
2
2

)
+ n

(
y
2

)
= z2. So we consider

the Diophantine equation

m

(
x

2

)
+ n

(
y

2

)
= z2, (1.2)

wherem,n ∈ Z+.More remarkable, in 2009, Sun [11] investigated the number of representations
of n by

a
x(x− 1)

2
+ b

y(y − 1)

2
,

where a ≥ 1, b ≥ 1.

When m = n = 1, let y = x+ 1, Eq. (1.2) becomes(
x

2

)
+

(
x+ 1

2

)
= x2,

i.e., z = x. In 1897, Fauquembergue [4] noticed that
(
x
2

)
+
(
y
2

)
= z2 equals

(2x− 1)2 + (2y − 1)2 = (2z + 1)2 + (2z − 1)2,

by Euler’s formula, if there exist a, b, c, d ∈ Z+ such that bc+ad = ac− bd+2, then all solutions
of the above equation are given by 

2x− 1 = ac+ bd,

2y − 1 = bc− ad,
2z + 1 = bc+ ad.

According to the condition of the quadratic equation with multiple roots, we have the following
theorem.

Theorem 1.3. When m(m+1)
2

= u2, n = 1, there exist infinitely many pairs (a, b) of positive
integer numbers such that Eq. (1.2) has integer parametric solutions (t, at+ b, u(ct+ d)), where
t is a positive integer greater than 1.

Moreover, we get

Theorem 1.4. If 2(m+ n) is not a perfect square, r ∈ Z, and the Pell equation

X2 − 2(m+ n)Z2 =
(m+ n

2

)2 − r2mn
has a positive integer solution satisfying

X0 − rn+
m+ n

2
≡ 0 (mod m+ n),

then Eq. (1.2) has infinitely many positive integer solutions.

In particular,

Theorem 1.5. Let u, v be integers with u >
√
2v, and u being a positive even integer. When

m = (u2 − 2v2)2, n = 8u2v2, then the Eq. (1.2) has infinitely many positive integer solutions.
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2 Preliminaries

In order to prove the above results, we need the following lemmas.

Lemma 2.1. [8] Let D be a positive integer which is not a perfect square, then the Pell equation
x2 −Dy2 = 1 has infinitely many positive integer solutions. If (U, V ) is the least positive integer
solution of the Pell equation x2 −Dy2 = 1, then all positive solutions are given by

xk + yk
√
D = (U + V

√
D)k,

where k is an arbitrary integer.

Lemma 2.2. [8] LetD be a positive integer which is not a perfect square,N be a nonzero integer,
and (U, V ) is the least positive integer solution of x2 −Dy2 = 1. If (x0, y0) is a positive integer
solution of x2 −Dy2 = N, all positive solutions are given by

xk + yk
√
D = (x0 + y0

√
D)(U + V

√
D)k,

where k is an arbitrary integer.

Lemma 2.3. [5] LetD be a positive integer which is not a perfect square, m be a positive integer,
and N be a nonzero integer. If the Pell equation x2 − Dy2 = N has a positive integer solution
satisfying

(u0, v0) ≡ (a, b) (mod m),

then it has infinitely many positive integer solutions satisfying

(u, v) ≡ (a, b) (mod m).

3 Proofs of the theorems

Proof of Theorem 1.1. Multiply Eq. (1.1) by 8, we have

(n(2y − 1))2 − 2n(2z)2 = n(n− 8).

Set Y = n(2y − 1), Z = 2z, we get the Pell equation

Y 2 − 2nZ2 = n(n− 8). (3.1)

By Lemma 2.1, if 2n is not a perfect square, the Pell equation Y 2 − 2nZ2 = 1 always has an
infinite number of integer solutions. And suppose (u, v) is the least positive integer solution of
Y 2 − 2nZ2 = 1. It is easy to note that (Y0, Z0) = (n, 2) is an integer solution of Eq. (3.1). By
Lemma 2.2, an infinity of positive integer solutions of Eq. (3.1) are given by

Yk + Zk

√
2n =

(
n+ 2

√
2n
)(
u+ v

√
2n
)k
, k ≥ 0.

Clearly, we have a solution (Y0, Z0) = (n, 2) of Eq. (3.1) satisfying

Y0 + n ≡ 0 (mod 2n), Z0 ≡ 0 (mod 2).
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Lemma 2.3 guarantees that Eq. (3.1) has infinitely many positive integer solutions (Y, Z) with
the above condition. Then there are infinitely many

y =
1

2

(
Y

n
+ 1

)
∈ Z+, z =

Z

2
∈ Z+.

Thus, if 2n is not a perfect square, Eq. (1.1) has infinitely many positive integer solutions (y, z).

Example 3.1. When n = 10, 2n = 20 is not a perfect square, we have the Pell equation

Y 2 − 20Z2 = 20.

It is easy to see that (u, v) = (9, 2) is the least positive integer solution of Y 2 − 20Z2 = 1, and
(Y0, Z0) = (10, 2) is a positive integer solution of Y 2 − 20Z2 = 20. Then an infinity of positive
integer solutions of Y 2 − 20Z2 = 20 are given by

Yk + Zk

√
20 =

(
10 + 2

√
20
)(
9 + 2

√
20
)k
, k ≥ 0.

Thus Yk = 18Yk−1 − Yk−2, Y0 = 10, Y1 = 170,

Zk = 18Zk−1 − Zk−2, Z0 = 2, Z1 = 38.

From the above recurrence relations, we have

Yk + 10 ≡ 0 (mod 20), Zk ≡ 0 (mod 2),

then

yk =
1

2

(
Yk
10

+ 1

)
∈ Z+, zk =

Zk

2
∈ Z+.

Therefore, when n = 10, Eq. (1.1) has infinitely many positive integer solutions (yk, zk).

Proof of Theorem 1.2. We consider only the case n = d(t)
2

= t(s2t±1)
2

, where s = 2, t ≡ 0

(mod 2) and t ≥ 2. The other cases are dealt with similarly. Then Eq. (3.1) becomes

Y 2 − t(4t± 1)Z2 =
t(4t± 1)

2

(
t(4t± 1)

2
− 8

)
. (3.2)

Let us note that the pair (Y0, Z0) =
( t(4t±1)

2
, 2
)

is a solution of Eq. (3.2). Moreover, the pair
(u, v) = (8t±1, 4) solves the equation Y 2− t(4t±1)Z2 = 1. Then an infinity of positive integer
solutions of Eq. (3.2) are given by

Yk + Zk

√
t(4t± 1) =

(
t(4t± 1)

2
+ 2
√
t(4t± 1)

)(
8t± 1 + 4

√
t(4t± 1)

)k

, k ≥ 0.

Thus Yk = 2(8t± 1)Yk−1 − Yk−2, Y0 =
t(4t±1)

2
, Y1 =

t(4t±1)
(
(8t±1)+16

)
2

,

Zk = 2(8t± 1)Zk−1 − Zk−2, Z0 = 2, Z1 = 2(8t± 1) + 2t(4t± 1).
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Then yk = 2(8t± 1)yk−1 − yk−2 − (8t± 1) + 1, y0 = 1, y1 =
(8t±1)+17

2
,

zk = 2(8t± 1)zk−1 − zk−2, z0 = 1, z1 = (8t± 1) + t(4t± 1).

From the above recurrence relations, we have yk, zk ∈ Z+. Thus, when n = d(t)
2

= t(s2t±1)
2

,

where s = 2, t ≡ 0 (mod 2) and t ≥ 2, Eq. (1.1) has infinitely many positive integer solutions
(yk, zk).

Example 3.2. When n = d(t)
2

= t(s2t±1)
2

, where s = 2, t ≡ 0 (mod 2) and t ≥ 2, we take t = 2,

then n = 7 or n = 9.

When t = 2, n = 7, Eq. (1.1) has infinitely many positive integer solutionsyk = 30yk−1 − yk−2 − 14, y0 = 1, y1 = 16,

zk = 30zk−1 − zk−2, z0 = 1, z1 = 29.

When t = 2, n = 9, Eq. (1.1) has infinitely many positive integer solutionsyk = 34yk−1 − yk−2 − 16, y0 = 1, y1 = 17,

zk = 34zk−1 − zk−2, z0 = 1, z1 = 35.

Proof of Theorem 1.3. When m(m+1)
2

= u2, n = 1, let

x = t, y = at+ b,

then Eq. (1.2) equals to

a2 +m

2
t2 +

2ab− a−m
2

t+
b2 − b
2

= z2. (3.3)

Consider

g(t) =
a2 +m

2
t2 +

2ab− a−m
2

t+
b2 − b
2

as a quadratic polynomial of t, if g(t) = 0 has multiple roots, the discriminant of g(t) is zero, i.e.,

−abm− b2m+
1

4
a2 +

1

2
am+ bm+

1

4
m2 = 0.

It implies
a = 2bm−m± 2

√
m(m+ 1)b(b− 1).

To find a ∈ Z+, we take m(m+ 1)b(b− 1) = v2, then

(2v)2 −m(m+ 1)(2b− 1)2 = −m(m+ 1).

Let X = 2v, Y = 2b− 1, we obtain the Pell equation

X2 −m(m+ 1)Y 2 = −m(m+ 1). (3.4)
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It easy to see that the pair (X0, Y0) = (2m(m + 1), 2m + 1) is a solution of Eq. (3.4), and the
pair (U, V ) = (2m+ 1, 2) solves the equation X2 −m(m+ 1)Y 2 = 1. So an infinity of positive
integer solutions of Eq. (3.4) are given by

Xk+Yk
√
m(m+ 1) =

(
2m(m+1)+(2m+1)

√
m(m+ 1)

)(
2m+1+2

√
m(m+ 1)

)k

, k ≥ 0.

ThusXk = 2(2m+ 1)Xk−1 −Xk−2, X0 = 2m(m+ 1), X1 = 4m(m+ 1)(2m+ 1),

Yk = 2(2m+ 1)Yk−1 − Yk−2, Y0 = 2m+ 1, Y1 = 8m2 + 8m+ 1.

According the above recurrence relations, we have

bk =
Yk + 1

2
∈ Z+,

ak =2m
Yk + 1

2
−m± 2

Xk

2
= 2mbk −m± 2vk ∈ Z+.

From X = 2v and Xk = 2(2m+ 1)Xk−1 −Xk−2, we have

m(m+ 1) | v.

Let v = m(m+ 1)w, then
b(b− 1)

2
=
m(m+ 1)

2
w2.

Because of g(t) = 0 has multiple roots, then Eq. (3.3) can be reformulated in the form

a2 +m

2
t2 +

2ab− a−m
2

t+
b2 − b
2

=
m(m+ 1)

2
(ct+ d)2.

Thus there exist infinitely many positive pairs (ak, bk) such that m
(
x
2

)
+
(
y
2

)
= z2 has positive

integer parametric solutions
(
t, akt+ bk, u(ckt+ dk)

)
, where t > 1, t ∈ Z.

Example 3.3. When m = 1, m(m+1)
2

= 12, n = 1, we have a0 = 7, b0 = 2 i.e., y = 7t + 2, then
Eq. (1.2) has positive integer parametric solutions (t, 7t+ 2, 5t+ 1), where t > 1, t ∈ Z.

When m = 8, m(m+1)
2

= 62, n = 1, we take a0 = 280, b0 = 9, i.e., y = 280t + 9, then Eq.
(1.2) has positive integer parametric solutions (t, 280t+ 9, 6(33t+ 1)), where t > 1, t ∈ Z.

Proof of Theorem 1.4. Let y = x+ r, r ∈ Z, Eq. (1.2) equals(
(m+ n)x+ rn− m+ n

2

)2

− 2(m+ n)z2 =

(
m+ n

2

)2

− r2mn.

Take X = (m+ n)x+ rn− m+n
2
, Z = z, we get

X2 − 2(m+ n)Z2 =

(
m+ n

2

)2

− r2mn. (3.5)
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By Lemma 2.1, if 2(m+ n) is not a perfect square, the Pell equation

X2 − 2(m+ n)Z2 = 1

has infinitely many positive integer solutions. By Lemma 2.2, if Eq. (3.5) has a positive integer
solution, it has infinitely many positive integer solutions. Assume that Eq. (3.5) has a positive
integer solution (X0, Z0) satisfying

X0 − rn+
m+ n

2
≡ 0 (mod m+ n),

By Lemma 2.3, Eq. (3.5) has infinitely many positive integer solutions (X,Z) satisfying the
above condition, which leads to infinitely many x, z ∈ Z+. Then there are infinitely many y =

x+ r ∈ Z+. Hence, Eq. (1.2) has infinitely many positive integer solutions (x, y, z).

Example 3.4. When m = 1, r = 2, i.e., y = x+ 2, suppose that 2(n+ 1) is not a perfect square,
where n is odd. We get

X2 − 2(n+ 1)Z2 =
1

4
n2 − 7

2
n+

1

4
.

And the above Pell equation has a solution (X0, Z0) =
(
n−3
2
, 1
)

satisfying

X0 − 2n+
n+ 1

2
≡ 0 (mod n+ 1),

where n−3
2
∈ Z.

When n = 5, we have
X2 − 12Z2 = −11.

An infinity of positive integer solutions are given by

Xk + Zk

√
12 =

(
1 +
√
12
)(
7 + 2

√
12
)k
, k ≥ 0.

Thus Xk = 14Xk−1 −Xk−2, X0 = 1, X1 = 31,

Zk = 14Zk−1 − Zk−2, Z0 = 1, Z1 = 9.

It is easy to prove that
Xk − 7 ≡ 0 (mod 6),

then xk, zk ∈ Z+. Hence, we have
xk = 14xk−1 − xk−2 + 14, x1 = 4, x2 = 63,

yk = xk + 2, y1 = 6, y2 = 65,

zk = 14zk−1 − zk−2, z1 = 9, z2 = 125.

Therefore, whenm = 1, n = 5, Eq. (1.2) has infinitely many positive integer solutions (xk, yk, zk).
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Proof of Theorem 1.5. By Theorem 1.4, we need to find a positive integer solution (X0, Z0)

satisfying

X0 − rn+
m+ n

2
≡ 0 (mod m+ n).

Suppose that X0 =
m+n
2
, then Z0 satisfying

2(m+ n)Z2
0 = r2mn. (3.6)

From X0 = (m+ n)x0 + rn− m+n
2
, we have x0 = 1− rn

m+n
, then it is sufficient to show that

rn

m+ n
∈ Z.

Take r = −t(m+ n), where t > 0, the condition (3.6) is equivalent to

r2 = t2(m+ n)2 =
2(m+ n)

mn
Z2

0 .

Thus

Z2
0 =

t2mn(m+ n)

2
.

In view of Z0 is an integer, then mn(m+n)
2

is a perfect square. Let

m = α2,
n

2
= β2,m+ n = γ2,

where α, β, γ ∈ Z+. Then we get a quadratic equation

α2 + 2β2 = γ2,

which has a solution
α = u2 − 2v2, β = 2uv, γ = u2 + 2v2,

where u, v ∈ Z+, u >
√
2v, and u is a positive even integer. Hence,

m = (u2 − 2v2)2, n = 8u2v2, Z0 = αβγt = 2uv(u4 − 4v4)t,

and

X0 =
m+ n

2
=

(u2 + 2v2)2

2
∈ Z+.

Notice that 2(m + n) = 2γ2 is not a perfect square, by Lemma 2.1, the Pell equation
X2 − 2(u2 + 2v2)2Z2 = 1 has infinitely many positive integer solutions. Let (U0, V0) be the
least positive integer solution of X2 − 2(u2 + 2v2)2Z2 = 1, where U0 is odd. And let the Pell
equation

X2 − 2(u2 + 2v2)2Z2 =

(
(u2 + 2v2)2

2

)2

− 8u2v2(u4 − 4v4)2(u2 + 2v2)2t2 (3.7)

have a positive integer solution (X0, Z0) =

(
(u2+2v2)2

2
, 2uv(u4 − 4v4)t

)
. It is easy to prove that

X0 − 8u2v2(u2 + 2v2)2t+
(u2 + 2v2)2

2
≡ 0 (mod (u2 + 2v2)2).
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By Lemma 2.2, an infinity of positive integer solutions are given by

Xk + Zk

√
2(u2 + 2v2)2 =

(
(u2 + 2v2)2

2
+ 2uv(u4 − 4v4)t

√
2(u2 + 2v2)2

)
(
U0 + V0

√
2(u2 + 2v2)2

)k

, k ≥ 0.

Thus

Xk = 2U0Xk−1 −Xk−2, X0 =
(u2 + 2v2)2

2
,

X1 = 4V0uvt(u
2 + 2v2)2(u4 − 4v4) + U0

(u2 + 2v2)2

2
,

Zk = 2U0Zk−1 − Zk−2, Z0 = 2uvt(u4 − 4v4),

Z1 = 2U0uvt(u
4 − 4v4) + V0

(u2 + 2v2)2

2
.

Then 
xk = 2U0xk−1 − xk−2 − (U0 − 1)(16tu2v2 + 1),

yk = xk − t(u2 + 2v2)2,

zk = 2U0zk−1 − zk−2,

where

x0 =1 + 8tu2v2, x1 = 4V0uvt(u
4 − 4v4) + 8tu2v2 +

1

2
(U0 + 1),

y0 =1− (u2 − 2v2)2t, y1 = (u2 − 2v2)t
(
4V0uv(u

2 + 2v2)− (u2 − 2v2)
)
+

1

2
(U0 + 1),

z0 =2uvt(u4 − 4v4), z1 = 2U0uvt(u
4 − 4v4) + V0

(u2 + 2v2)2

2
.

When u, v ∈ Z+, u >
√
2v, and u is a positive even integer, for any k ≥ 1, we deduce that

xk, yk, zk are positive integers greater than 1. Thus Eq. (1.2) has infinitely many positive integer
solutions (xk, yk, zk).

Example 3.5. When u = 2, v = 1, then m = 4, n = 32, r = −36t, and 2(m + n) = 72 is not a
perfect square. We have

X2 − 72Z2 = 182 − 72(48t)2.

An infinity of positive integer solutions are given by

Xk + Zk

√
72 = (18 + 48t

√
72)(17 + 2

√
72)k, k ≥ 0.

Thus Xk = 34Xk−1 −Xk−2, X0 = 18, X1 = 6912t+ 306,

Zk = 34Zk−1 − Zk−2, Z0 = 48t, Z1 = 816t+ 36.

It is easy to prove that
Xk + 1152t+ 18 ≡ 0 (mod 36),

10



then xk, zk ∈ Z+. Hence, we have
xk = 34xk−1 − xk−2 − 1024t− 16, x1 = 224t+ 9, x2 = 6560t+ 289,

yk = xk − 36t, y1 = 188t+ 9, y2 = 6524t+ 289,

zk = 34zk−1 − zk−2, z1 = 816t+ 36, z2 = 27696t+ 1224.

Therefore, whenm = 4, n = 32, Eq. (1.2) has infinitely many positive integer solutions (xk, yk, zk).

4 Some related questions

In this paper, we have investigated the problem about the linear combination of two triangular
numbers is a perfect square. Similarly, we can ask

Question 4.1. Are there positive integer solutions of the Diophantine equation

mPk(x) + nPk(y) = z2,

where Pk(x) =
x
(
(x−1)(k−2)+2

)
2

is a polygonal number, and k > 4? If it has, are they infinitely
many?

When k = 4, P4(x) = x2 is a square number. H. Cohen [3, Corollary 6.3.6.] gave the general
solutions of the Diophantine equation

Ax2 +By2 = Cz2,

i.e., “Assume that ABC 6= 0, let (x0, y0, z0) be a particular nontrivial solution of Ax2 + By2 =

Cz2, and assume that z0 6= 0. The general solution in rational numbers to the equation is given
by 

x = d
(
x0(As

2 −Bt2) + 2y0Bst
)
,

y = d
(
2x0Ast− y0(As2 −Bt2)

)
,

z = dz0(As
2 +Bt2),

where d ∈ Q, s, t ∈ Z, and gcd(s, t) = 1.”

Question 4.2. Are there positive integer solutions of the Diophantine equation

m

(
x

k

)
+ n

(
y

k

)
= z2,

where
(
x
k

)
= x!

(x−k)!k!
is a binomial coefficient, where k ≥ 3? If it has, are they infinitely many?
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