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Abstract. While any fault-tolerant asynchronous consensus algorithm
requires two communication steps even in failure-free executions, it is
known that we can construct an algorithm terminating in one step for
some good inputs (e.g. all processes propose a same value). In this pa-
per, we present the necessary and sufficient constraint for the set of
inputs for which we can construct an asynchronous consensus algorithm
terminating in one step. Our investigation is based on the notion of
the condition-based approach: it introduces conditions on input vectors
to specify subsets of all possible input vectors and condition-based al-
gorithms can circumvent some impossibility if the actual input vector
satisfy a particular condition. More interestingly, conditions treated in
this paper are adaptive. That is, we consider hierarchical sequences of
conditions whose k-th condition is the set of input vectors for which the
consensus can be solved in one step if at most k processes crash. The nec-
essary and sufficient constraint we propose in this paper is one for such
condition sequences. In addition, we present an instance of the sufficient
condition sequences. Compared with existing constraints for inputs this
instance is more relaxed.

1 Introduction

The consensus problem is one of fundamental and important problems for design-
ing fault-tolerant distributed systems. In the consensus problem, each process
proposes a value, and all non-faulty processes have to agree on a common value
that is proposed by a process. The uniform consensus, a stronger variant of
the consensus, further requires that faulty processes are disallowed to disagree
(Uniform Agreement). The (uniform) consensus problem has many practical
applications, e.g., atomic broadcast [3, 10], shared object [1, 11], weak atomic
commitment [8] and so on. While it is a very important task to build an efficient
consensus primitive on the system because of such applications, it has no de-
terministic solution in asynchronous systems subject to only a single crash fault
[5]. Thus, to circumvent this impossibility, several approaches, such as eventual
synchrony, unreliable failure detectors, and so on, have been proposed. However,
even using such approach, it is not an easy task to solve the consensus prob-
lem “efficiently”. One of commonly used measurements to evaluate efficiency of
algorithms is communication steps, one of which is an execution period where
each pair of processes can concurrently exchange messages at most once. In



asynchronous systems with some assumptions to solve the consensus problem,
it is proved that any fault-tolerant consensus algorithm requires at least two
communication steps for decisions even in the run where no crash fault occurs
[13].

To circumvent this two-step lower bound, some papers investigate consensus
algorithms that achieve one-step decision in some good input cases. The first
result of such investigations is published by Brasileiro et al. [2]. On the assump-
tion of the underlying non-one-step consensus primitive, this paper proposes a
simple algorithm that correctly solves the consensus problem for any input and
that especially achieves the one-step decision if all processes propose a same
value. In other results [4][9], the one-step decision scheme is also considered in
the context of efficient combination with other schemes such as randomization
and failure detectors. However, these results leave an interesting and important
question as follows: for what input can the consensus problem be solved in one
step?

In this paper, we address this question based on the notion of the condition-
based approach. The principle of the condition-based approach is to restrict in-
puts so that the generally-unsolvable problem can become solvable. A condition
represents some restriction to inputs. In the case of the consensus problem, it is
defined as a subset of all possible input vectors whose entries correspond to the
proposal of each process. The first result of the condition-based approach clarifies
the conditions for which the uniform consensus can be solved in asynchronous
systems subject to crash faults [14]. More precisely, this result presented a class
of conditions, called d-legal conditions, and proved that the d-legal conditions
are the class of necessary and sufficient conditions that make the (uniform) con-
sensus solvable in asynchronous systems where at most d processes can crash.
In previous results, the condition-based approach is used to overcome several
impossibility results in distributed agreement problems [6, 12, 15–20]. We also
use the notion of the condition-based approach to overcome the two-step lower
bound of asynchronous consensus. In the same way as [2], this paper assumes
the underlying non-one-step consensus primitive. On this assumption, the main
objective of our study is to clarify the class of conditions such that we can con-
struct the algorithm that terminates in one step for the inputs belonging to the
condition and that even terminates (but not in one step) for any input out of
the condition.

The contribution of this paper is to characterize such class of the necessary
and sufficient conditions that make the uniform consensus terminate in one step.
More interestingly, the condition we consider in this paper is adaptive in the sense
of our previous result [12]. In the adaptive condition-based approach, a restric-
tion for inputs is not represented by a single subset of all possible inputs, but
represented by a hierarchical sequence of conditions called condition sequence.
An adaptive condition-based algorithm is instantiated by a condition sequence,
and guarantees some property according to the rank of the input vector in the
hierarchy of the given condition sequence. For example, the first result for the
adaptive condition-based approach [12] considers time complexity lower bound



in synchronous consensus. In this result, all input vectors are classified into some
hierarchical condition sequence whose k-th condition is the set of input vectors
that reduce the worst-case time complexity of synchronous consensus by k, and
we construct the algorithm achieving time reduction according to the rank of
the actual input vector in the hierarchy. This paper considers the consensus al-
gorithm instantiated by an one-step condition sequence, whose k-th condition
is the set of input vectors for which the algorithm can terminate in one-step
even if at most k processes crash. We present a property of condition sequences
called one-step legality, and prove that a condition sequence can become the
one-step condition sequence of some algorithm if and only if it is one-step legal.
We introduce root adjacency graphs, which is an analysis tool for specifying the
property of one-step legality. The notion of root adjacency graphs is based on the
idea of graph representation of conditions proposed in [14]. An root adjacency
graph is also a graph representation of a condition sequence, and the one-step
legality property for a condition sequence is defined as the characterization of
its root adjacency graph. Additionally, we also propose an instance of one-step
legal condition sequences. Compared with existing constraints (i.e., all processes
propose a same value), this instance is more relaxed.

The paper is organized as follows: In section 2, we introduce the system
model, the definition of the consensus problem, and other necessary formaliza-
tions. Sections 3 and 4 provide the characterization theorem of one-step consen-
sus solvability and its correctness proof. In Section 5, we present an example of
one-step legal condition sequences. We conclude this paper in Section 6.

2 Preliminaries

2.1 Asynchronous Distributed Systems

A distributed system consists of n processes P = {p0, p1, p2, · · · , pn−1}, in which
any pair of processes can communicate with each other by exchanging messages.
All channels are reliable; neither message creation, alteration, nor loss occurs.
The system is asynchronous in the sense that there is no bound on communica-
tion delay.

Each process can crash. If a process crashes, it prematurely stops its execution
and makes no operation subsequently. Each process can crash at any timing. A
process that does not crash (even in the future) is called a correct process. We
assume that there is some upper bound t on the number of processes that can
crash in the whole system. Every process knows the value of t a priori. The
actual number of crash faults is denoted by f . The value of f is unknown to
each process.

Formally, a process is modeled as a state machine. The communication is de-
fined by two events, Sendi(m, pk), and Receivei(m, pk). The event Sendi(m, pk)
is one that pi sends message m to the process pk. The event Receivei(m, pk) is
one that pi receives the message m from pk. A process crash is also defined as
an event. An event Crashi means the crash of process pi. We also assume that



algorithms we consider in this paper are deterministic, i.e., the state after a tran-
sition is uniquely determined by the triggering event and the state immediately
before the transition.

2.2 Uniform Consensus

A (uniform) consensus algorithm provides each process pi with two events,
Proposei(v) and Decidei(v), as the interface to the upper application layer. In
a consensus algorithm, each correct process pi initially proposes a value v by
Proposei(v) , and eventually chooses a decision value v′ by Decidei(v′). Then,
the decision value must be chosen from the values proposed by processes so
that all processes decide a same value. More precisely, the consensus problem is
specified by the following three properties:

Termination : Every process pi eventually invokes Decidei(v) unless it crashes.
Uniform Agreement : If two events Decidei(v1) and Decidej(v2) are invoked,

v1 = v2 holds.
Validity : If Decidei(v) is invoked, then Proposej(v) is invoked by some process

pj .

We define V as the set of all possible proposal values. Throughout this paper,
we assume that V is a finite ordered set. An input to consensus algorithms is
represented by a vector whose i-th entry is the value of pi’s proposal value. We
call it an input vector.

2.3 Uniform Consensus Primitive

This paper investigates the inputs for which consensus algorithms can decide in
one step. However, it is well-known that the consensus problem cannot be solved
in asynchronous systems subject to only one crash fault. Thus, we need some
assumption to guarantee correct termination for arbitrary inputs. In this paper,
same as the previous result [2], we assume that a uniform consensus primitive
is equipped to the system. This assumption can be regarded as an higher ab-
straction of other standard assumptions, such as unreliable failure detector or
eventual synchrony, which are sufficient ones to solve the consensus problem.
On this assumption, our aim is to provide an algorithm that decides in one step
for good inputs and that solves consensus (but not in one step) for any input
with support of the underlying uniform consensus primitive. In the following
discussion, two events, UC propose(v) and UC decide(w), are provided by the
underlying consensus, which mean the proposal of value v and the decision with
value w respectively.

2.4 Configurations and Executions

A system configuration c is represented by all processes’ states and the set of
messages under transmission. An execution of a distributed system is an alterna-
tive sequence of configurations and events E = c0, e0, c1, e1, c2 · · ·. In this paper,



we deal with admissible executions, where occurrences of send, receive, propose
and decide of the underlying consensus, and crash events satisfy those semantics.

2.5 Nonessential Assumptions

The asynchronous system model introduced in this section is the standard one
as defined in [3]. In this subsection, for ease of presentation, we introduce some
additional assumptions into the model. Notice that the introduced assumptions
do not essentially differentiate our model from standard ones. Throughout this
paper, we assume the followings:

– There exists a discrete global clock, and that each event has one time when
it occurs. This global clock is a fictional device. That is, each process does
not have access to the global clock (thus, it adds no additional power to the
model).

– Local processing delay is negligible (i.e., any local computation is instanta-
neously processed).

– Each process pi invokes Proposei(v) at time zero unless it initially crashes.
– Any message has at least one time unit delay.

2.6 One-Step Decision of Consensus Problem

In this subsection, we introduce the definition of one-step decision in the con-
sensus problem.

An initial message is one that is sent at time zero. Intuitively, an initial
message sent by a process pi is one whose sending event is triggered by pi’s
activation of the consensus algorithm. We say that a message m is over at time
u if the receiver of m has received m or crashed at u. Let ot(E) be the minimum
time when all initial messages are over in execution E. Then, the prefix of the
execution E by time ot(E) (including transitions occurring at time ot(E)) is
called the one-step prefix of E, and is denoted by pref(E). We also define E(A, I)
as the set of all admissible executions of a consensus algorithm A whose input
vectors are I.

Using the above definitions, we define one-step decision as follows:

Definition 1 (One-step Decision) A consensus algorithm A decides in one
step for an input vector I if for any execution E ∈ E(A, I) all processes decide
or crash in pref(E).

3 Characterization of One-Step Consensus Solvability

3.1 Notations

For an input vector I, we define a view J of I to be a vector in (V∪{⊥})n obtained
by replacing several entries in I by ⊥ (⊥ is a default value such that ⊥6∈ V). Let
⊥n be the view such that all entries are ⊥. For views J1 and J2, the containment



relation J1 ≤ J2 is defined as ∀k(0 ≤ k ≤ n− 1) : J1[k] 6=⊥ ⇒ J1[k] = J2[k]. We
also describe J1 < J2 if J1 ≤ J2 and J1 6= J2 hold. For a view J (∈ (V ∪ {⊥})n)
and a value a(∈ V ∪{⊥}), #a(J) denotes the number of entries of value a in the
view J , that is, #a(J) = |{k ∈ {0, 1, · · · , n − 1}|J [k] = a}|. For a view J and a
value a, we often describe a ∈ J if there exists a value k such that J [k] = a. For
an input vector I ∈ Vn, For two views J1 and J2, let dist(J1, J2) be the Hamming
distance between J1 and J2, that is dist(J1, J2) = |{k ∈ {0, 1, · · · , n− 1}|J1[k] 6=
J2[k]}|. A condition is a subset of all possible input vectors Vn.

Let [V n]k be the set of all possible views where ⊥ appears at most k times.

3.2 One-Step Condition Sequence

The objective of this paper is not only to clarify the static conditions that enable
the consensus problem to terminate in one step, but also to provide such condi-
tions in an adaptive fashion: the content of a condition varies according to the
number of actual faults. To handle such adaptiveness, we introduce condition
sequences. Formally, a condition sequence S is a hierarchical sequence of t + 1
conditions (C0, C1, C2, · · · , Ct) satisfying Ck ⊇ Ck+1 for any k(0 ≤ k ≤ t − 1).
Then, we define one-step condition sequences as follows.

Definition 2 (One-Step Condition Sequence) The one-step condition se-
quence of a consensus algorithm A is the condition sequence whose k-th condi-
tion (0 ≤ k ≤ t) is the set of input vectors for which the algorithm A decides in
one step when at most k processes crash.

The one-step condition sequence of an algorithm A is denoted by SolA.

3.3 Characterization Theorem

This subsection presents the characterization theorem for one-step consensus
solvability. The key idea of the characterization theorem derives from the notion
of legality in [14]: we consider a graph representation of condition sequences, and
the characterization is given as a property of such graphs. To provide the theo-
rem, we first introduce root adjacency graphs and their legality. Root adjacency
graphs are a variant of the graph representation of legal conditions proposed in
[14] so that it can handle the one-step solvability and condition sequences.

Definition 3 (Decidable/Undecidable views) For a condition sequence
S = (C0, C1, · · · , Ct), the decidable views DV (S) and undecidable views UV (S)
are respectively the set of views defined as follows:

DV (S) =
t⋃

k=1

{J |dist(J, I) ≤ k, I ∈ Ck}

UV (S) =
⋃

J∈DV (S)

{J ′|J ′ ∈ [V n]t, J ′ ≤ J}



Notice that DV (S) ⊆ UV (S) holds.

Definition 4 (Root Adjacency Graphs) Given a condition sequence S, its
root adjacency graph RAG(S) is the graph such that

– The vertex set consists of all views in UV (S).
– The two views J1 and J2 are connected if J1 ≤ J2 holds and J2 belongs to

DV (S).

The legality of root adjacency graphs is defined as follows:

Definition 5 (Legality) A root adjacency graph G is legal if, for each con-
nected component Com of G, at least one common value appears at all views
belonging to Com.

We say a condition sequence S is one-step legal if RAG(S) is legal. Using the
above definitions, we state the characterization theorem.

Theorem 1 (One-step Consensus Solvability Theorem) There exists a con-
sensus algorithm whose one-step condition sequence is S if and only if S is
one-step legal.

The intuitive meaning of root adjacency graphs is explained as follows: In
general, the information that a process can gathers in one-step prefixes can
be represented by a view because the information each process can send in
one-step prefixes is only its proposal. In this sense, the decidable views can be
interpreted as the set of views J such that if a process gathers the information
corresponding J in one step , it can immediately decides (i.e., one-step decision).
The undecidable views can also be interpreted as the set of views J such that if
a process gathers the information corresponding J in one step, it must consider
the possibility that other processes may decide in one step (but it does not have
to decide immediately). Then, a root adjacency graph can be regarded as one
obtained by connecting two views J1 and J2 such that if two processes gathers J1

and J2 respectively, they must reach a same decision. Thus, the sentence “root
adjacency graphs is legal” implies that there exists at least one possible decision
value.

For any view J ∈ DV (S), there exists an input vector I satisfying dist(J, I) ≤
k and I ∈ Ck for some k. In such vectors, we call one that maximizes k the master
vector of J (if two or more vectors maximize k, one chosen by some (arbitrary)
deterministic rule is the master vector of J). Then, we also call the value of k
legality level of the master vector. For any view J ∈ DV (S) and its master vector
I with legality level k, there exists a view J ′ satisfying J ′ ≤ J and J ≤ I. The
view J ′ minimizing #⊥(J ′) is called the root view of J , and denoted by Rv(J).
Notice that Rv(J) ∈ DV (S) and #⊥(J ′) ≤ k necessarily hold because of I ∈ CK

and dist(J, I) ≤ k.



4 Proof of the Characterization Theorem

4.1 Proof of Sufficiency

This subsection presents the sufficiency proof of the theorem, i.e., we propose a
generic one-step consensus algorithm for any one-step legal condition sequence
S and prove its correctness.

Figure 1 presents the pseudo-code description of a generic consensus algo-
rithm OneStep that is instantiated by any one-step legal condition sequence S.
In the description, we use the function h, that is the mapping from a view in
UV (S) to a value in V. The mapped value h(J) for a view J is one that appears
in common at any view in the connected component to which J belongs (such
value necessarily exists from the fact that S is one-step legal). If two or more
values appear in common, the largest one is chosen. The algorithmic principle
of OneStep is as follows: first, each process pi exchanges its proposal with each
other, and constructs a view Ji. The view Ji is maintained incrementally. That
is, it is updated on each reception of a message. When at least n − t messages
are received by pi, process pi tests whether Ji belongs to the undecidable views
UV (S) or not. If it belongs to UV (S), process pi activates the underlying con-
sensus with proposal h(Ji). Otherwise, pi activates the underlying consensus
with proposal Ji[i]. In addition, when the view Ji is updated, each process pi

tests whether its view Ji belongs to the decidable views DV (S) or not. If Ji

belongs to DV (S), process pi immediately decides h(Ji), that is, it decides in
one step. When the underlying consensus reaches decision, each process simply
borrows the decision of the underlying consensus unless it has already decided
in one step. Intuitively, the correctness of the algorithm OneStep relies on two
facts: one is that if two processes pi and pj decide in one-step, the views Ji and
Jj at the time of their decisions are necessarily connected in RAG(S), and an-
other one is that if a process pi decides v in one-step, each process pj activates
the underlying consensus with the proposal value v. From the former fact, we
can show that two processes pi and pj , both of which decide in one step, have a
same decision. The latter fact implies that if a process pi decides v in one step,
any other process pj (that may not decide in one step) propose v. The detailed
explanation of correctness is given in the following proof.

Correctness We prove the correctness of the algorithm Onestep. In the follow-
ing proofs, let vector Jpro

i and Jdec
i be the the value of Ji at the time when pi

execute the lines 13 and 10 respectively (Notice that both values are uniquely
defined because lines 13 and 10 are respectively executed at most once). If pi

does not execute line 13 (10), Jpro
i (Jdec

i ) is undefined.

Lemma 1 (Termination) Each process pi eventually decides unless it crashes.

Proof Since at most t processes can crash, each process pi receives at least n−t
messages. Then, pi necessarily activates the underlying consensus, and thus the



Algorithm OneStep for one-step legal condition sequence S
Code for pi:

1: variable:
2: proposedi, decidedi : FALSE
3: Ji : init ⊥n

4: Upon Proposei(vi) do:
5: Ji[i]← vi

6: Send vi to all processes (excluding pi);

7: Upon Receivei(v) from pj do:
8: Ji[j]← v
9: if Ji ∈ DV (S) and decidedi 6= TRUE then
10: decidedi ← TRUE ; Decidei(h(Ji))
11: endif
12: if #⊥(Ji) ≤ t and proposedi = FALSE then
13: if Ji ∈ UV (S) then UC proposei(h(Ji)) /∗ Starting the Underlying Consensus ∗/
14: else UC propose(Ji[i]) endif
15: proposedi ← TRUE
16: endif

17: Upon UC decidei(v) do: /∗ Decision of the Underlying Consensus ∗/
18: if decidedi 6= TRUE then
19: decidedi ← TRUE ; Decidei(v)
20: endif

Fig. 1. Algorithm Onestep: An One-Step Consensus Algorithm for a One-Step Legal
Condition Sequence S

decision of underlying consensus eventually occurs on pi unless pi crashes. This
implies that pi eventually decides unless it crashes. 2

Lemma 2 (Uniform Agreement) No two processes decide differently.

Proof Let pi and pj be the processes that decide, and vi and vj be the decision
values of pi and pj respectively. The input vector is denoted by I. Then, we prove
vi = vj . We consider the following three cases.

– (Case1) When both pi and pj decide at line 10: For short, let g = #⊥(Jdec
i ).

Both Jdec
i and Jdec

j appear in DV (S). Let I ′ be the master vector of Jdec
i ,

and k be its legality level. Then, for any vector I ′′ that is obtained from
Jdec

i by replacing ⊥ by any value, dist(I ′, I ′′) ≤ k holds. Thus, letting I
be the input vector, dist(I ′, I) ≤ k holds, and thus we obtain I ∈ DV (S).
In addition, since Jdec

i ≤ I, and Jdec
j ≤ I holds, I and Jdec

i , and I and
Jdec

j are respectively adjacent to each other in RAG(S). This implies that
vi = h(Jdec

i ) = h(Jdec
j ) = vj holds.

– (Case2) When pi and pj respectively decide at lines 10 and 19: Since pj ’s
decision is borrowed from the decision of the underlying consensus primitive,
it is a value proposed by some process at line 13 or 14. Thus, it is sufficient to
show that every process pk proposes vi at line 13 or 14 unless it crashes. Let
vk be pk’s proposal. Jdec

i appears in DV (S). Then, by the same argument



as Case 1, we can show I ∈ DV (S). Since Jpro
k ≤ I and Jdec

i ≤ I holds, we
can conclude Jpro

k ∈ UV (S), that is, pk propose the value h(Jpro
k ) at line 13.

Since Jpro
k and Jdec

i is connected in RAG(S), vk = h(Jpro
k ) = h(Jpro

i ) = vi

holds. It follows that every process pk proposes vi.
– (Case3) When both pi and pj decide at line 19: Then, from the uniform

agreement property of the underlying consensus, vi = vj clearly holds.

Consequently, the lemma holds. 2

Lemma 3 (Validity) If a process decides a value v, then, v is a value proposed
by a process.

Proof If a process pi decides at line 15, its decision value is h(Jdec
i ), which is

a value in Jdec
i . On the other hand, if a process pi decides at line 19, then, its

decision value is a proposal of the underlying consensus. That is, the decision
value is h(Jpro

k ) or Jpro
k [k] for some pk, which is also a value in Jpro

k . In both
cases, the decision value is one of proposals, and thus the validity holds. 2

Lemma 4 (One-Step decision) The algorithm OneStep decides in one step
for any input vector I belonging to Sk(k ≥ f) if at most k processes crash.

Proof Since each process pi receives the messages from all correct processes
unless it crashes, #⊥(Ji) ≤ k holds eventually. Then, Ji is included in [Sk]k.
This implies that pi decides in one step. 2

From Lemma 1, 2, 3, and 4, we can show the following lemma that implies
the sufficiency of the characterization theorem.

Lemma 5 For any one-step legal condition sequence S, there exists one-step
consensus algorithm whose one-step condition sequence is S.

4.2 Proof of Necessity

This subsection presents the necessity proof of the characterization theorem. In
the proof we consider a subclass of admissible executions called P -block syn-
chronous executions, which are defined as follows:

Definition 6 (P -Block Synchronous Executions) For a set of processes P ,
P -block synchronous executions are defined as ones satisfying the following prop-
erties:

1. No UC decidei(v′) occurs at time zero or one.
2. All message transferred between two processes in P have one time unit delay,

and others have two time unit delay.



For a view, J , let P (J) be a set of processes pi such that J [i] 6=⊥ holds. For a
consensus algorithm A, a view J , and a set of processe P , let ESync(A, J, P ) be
the set of all possible P -block synchronous executions where process pi ∈ P (J)
proposes J [i] and never crashes, and pi 6∈ P (J) initially crashes. Here, we define
representative executions of a view J as follows:

Definition 7 (Representative Executions) For a consensus algorithmA and
a view J , its representative executions ERep(A, J) is a set of executions defined
as follows:

ERep(A, J) =
{

ESync(A, J,P) if J 6∈ DV (SolA)
ESync(A, J, P (Rv(J))) if J ∈ DV (SolA)

For a consensus algorithm A and a view J , let val(A, J) be the set of all
decision values that appear at executions in ERep(A, J).

Using the above notations, we prove the following lemma that implies the
necessity of the characterization theorem (for lack of space, we only give a part
of all proofs).

Lemma 6 Let A be an consensus algorithm, and J be a view in DV (SolA).
Then, in any execution E ∈ ERep(A, J), each process in P (Rv(J)) decides in
one step.

Proof Let I be the master vector of J , and k be its legality level. From the
definition of root views, Rv(J) ≤ I holds. Since #⊥(Rv(J)) ≤ k holds, in any
execution E ∈ ERep(A, J), at most k processes crash. Thus, any execution E ∈
ERep(A, J) can be regarded as one where input vector is I ∈ Ck and the number
of crash processes is at most k. This implies that each process achieves one-step
decision in E.

Lemma 7 Let A be an consensus algorithm. Then, RAG(SolA) is one-step
legal.

Proof Clearly for any view J , all values in val(J) must be appeared in J from
the validity property of the consensus problem. Thus, we prove this lemma by
showing val(J1) = val(J2) for any two different views J1 and J2 that are adjacent
to each other in RAG(SolA). Then, a value in val(J) appears in any view of the
connected component to which J belongs, i.e. each connected component has a
common value.

Suppose for contradiction that val(J1) 6= val(J2) holds for two different views
J1 and J2 that are adjacent to each other. Without loss of generality, we assume
J2 < J1. Then, from the definition of the RAG(SolA), J1 belongs to DV (SolA).
Since we assume val(J1) 6= val(J2), there exist two synchronous executions E1 ∈
ERep(A, J1) and E2 ∈ ERep(A, J2) where processes reach different decisions v1

and v2 respectively. In execution E2, all correct processes eventually reach to the
decision. Let ∆ be the time when all correct processes decides in E2. From the
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Fig. 2. Executions E1, E2 and E3

fact of J2 < J1 and J1 ≤ Rv(J1), there exists at least one process in P (Rv(J1))
that does not crash in E1 but crashes in E2. Let P1 be the set of such processes.
We also define P2 as P − P1. Then, we consider the execution E3 obtained by
modifying the execution E2 as follows:

– The behavior of each process in P2 by time ∆ is identical to E2.
– Each process pi in P1 proposes a value J1[i].
– All messages transferred from a process in P1 to one in P2 have ∆ + 1 time

unit delay, and all other messages have exactly one time unit delay.

The construction of the execution E3 is illustrated in Figure 2. Since each
process in P1 does not affect ones in P2 by time Delta + 1, the execution E3

is possible admissible execution of the algorithm A. In execution E3, each non-
faulty process in P2 decides v2 at ∆ or earlier because it cannot distinguish the
execution E3 from E2 by time ∆ + 1. In both E1 and E3, each process in P1

receives a same set of initial messages at time one because initial messages sent
by a process pi is uniquely determined by pi’s proposal. This implies that each
process in P1 cannot distinguish E3 from E1 by time two. Thus, by Lemma 6, in
E3 each process in P1 decides v1 at time one. However, since we assume v1 6= v2,
the execution E3 has two different decision values (processes in P1 decides v,
and others decides v2). It contradicts the uniform agreement property of the
consensus. 2



5 An Example of One-Step Legal Condition Sequence

In this section, we propose an example of one-step legal condition sequences.
First, we introduce a condition that are basis of the example.

Definition 8 (Frequency-Based Condition Cfreq
d ) Let 1st(J) be the non-⊥

value that appears most often in view J (if two more values appears most often,
the largest one is chosen), and Ĵ be the vector obtained from J by replacing
1st(J) by ⊥. Letting 2nd(J) = 1st(Ĵ), the frequency-based condition Cfreq

d is
defined as follows:

Cfreq
d = {I ∈ Vn|#1st(I)(I)−#2nd(I)(I) > d}

It is known that Cfreq
d belongs to d-legal conditions, which is the class of

conditions that are necessary and sufficient to solve the consensus problem in
failure-prone asynchronous systems where at most d processes can crash.

Using this condition, we can construct a one-step condition sequence.

Theorem 2 Letting 3t < n, a condition sequence, Sa freq =
(Cfreq

t , Cfreq
t+2 , · · · , Cfreq

t+2k, · · · , Cfreq
3t ) is one-step legal.

Proof We prove the one-step legality of Sa freq by showing that 1st(J1) =
1st(J2) holds for any two views J1 and J2 that are adjacent to each other in
RAG(Sa freq). Suppose 1st(J1) 6= 1st(J2) for contradiction. Since either J1 or J2

belongs to DV (Sa freq), we assume J1 ∈ DV (Sa freq) without loss of generality.
Let I1 be the master vector of J1, and k be its legality level. From the definition
of Cfreq

t+2k, #1st(I1)(I1) −#v(I1) > t + 2k holds for any value v 6= 1st(I1). Then,
since dist(J1, I1) ≤ k holds, #1st(I1)(J1)−#v(J1) > t also holds for any value v.
This implies 1st(I1) = 1st(J1), and thus we obtain #1st(J1)(J1)−#v(J1) > t for
any v. It follows that #1st(J1)(J2) − #1st(J2)(I1) > 0 holds because of J1 ≥ J2

and #⊥(J2) ≤ t. However, it contradicts to the fact that 1st(J2) is the most
often value in J2. Thus, 1st(J2) = 1st(J1) holds and the lemma is proved. 2

Notice that the assumption 3t < n is necessary is to achieve one-step decision
[2]. That is, if 3t ≥ n, no condition sequence is one-step legal.

Compared with existing constraints (e.g., one that all processes propose a
same value), the adaptive condition sequence Sa freq is more relaxed. Thus, the
algorithm OneStep instantiated by Sa freq is a strict improvement of existing
one-step consensus algorithms.

6 Concluding Remarks

This paper investigated the one-step solvability of consensus problem. While any
consensus algorithm require at least two steps even in failure-free executions, we
can construct an algorithm that terminates in one step for several good inputs.



In this paper, we proposed the necessary and sufficient condition sequences for
which we can construct one-step consensus algorithms. We also presented an
instance of sufficient condition sequences. Compared with existing constraints
for inputs (e.g., all processes propose a same value), this instance is more relaxed.
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