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Abstract—The In-band Network Telemetry (INT) enables hop-
by-hop device-internal state exposure for reliably maintaining
and troubleshooting data center networks. For achieving network-
wide telemetry, orchestration on top of the INT primitive is
further required. One straightforward solution is to flood the
INT probe packets into the network topology for maximum
measurement coverage, which, however, leads to huge bandwidth
overhead. A refined solution is to leverage the SDN controller
to collect the topology and carry out centralized probing path
planning, which, however, cannot seamlessly adapt to occasional
topology changes. To tackle the above problems, in this work,
we propose INT-label, a lightweight In-band Network-Wide
Telemetry architecture via interval-based distributed labelling.
INT-label periodically labels device-internal states onto sampled
packets, which is cost-effective with minor bandwidth overhead
and able to seamlessly adapt to topology changes. Furthermore,
to avoid telemetry resolution degradation due to loss of labelled
packets, we also design a feedback mechanism to adaptively
change the instant label frequency. Evaluation on software P4
switches suggests that INT-label can achieve 99.72% measure-
ment coverage under a label frequency of 20 times per second.
With adaptive labelling enabled, the coverage can still reach 92%
even if 60% of the packets are lost in the data plane.

I. INTRODUCTION

Fine-grained, network-wide visibility is vital to reliably
maintaining and troubleshooting high-density, mega-scale
modern data center networks to accommodate heterogeneous
mission-critical applications [1, 2]. However, traditional net-
work management protocols, such as SNMP [3], fall short
of high-resolution monitoring of highly dynamic data center
network traffic, due to the inefficient controller-driven, per-
device polling mechanism. With end host-launched full-mesh
pings, Pingmesh [4] is capable of providing the maximum
end-to-end latency measurement coverage. However, it cannot
extract hop-by-hop latency or look into the queue depth inside
switches for in-depth analysis, but, for network applications
such as load balancing [5], failure localization [6, 7] and
management automation [8], these underlying information is
increasingly insightful. In-band Network Telemetry (INT) [9],
one of the killer applications of P4 [10], allows probe or user
packets to query device-internal states, such as queue depth
and queuing latency, when they pass through the data plane
pipeline, which is considered promising for high-precision
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monitoring and has been embedded into vendors’ latest mer-
chant silicon [11–13]. However, as a chip-level primitive, INT
simply defines the contract between the incoming packets and
the device-internal states for monitoring. For network-wide
telemetry, further orchestration on top of INT is needed.

There are generally two design patterns to realize network-
wide measurement coverage as shown in Fig. 1, that is, send-
ing probe packets [4, 5, 14, 15] and in-situ measurement [16–
19]. HULA [5] follows the probe packet paradigm and adopts
the ToR switches to flood the probes into data center network’s
multi-rooted topology for measurement coverage. Since each
probe sender does not have the global view of the network to
make any coordination, one link may be repetitively monitored
by many probes with large bandwidth overhead. For high-
resolution monitoring, the bandwidth waste will get even
worse. To overcome this limitation, centralized probing relies
on the SDN controller [20] to make optimized probing path
planning. For example, INT-path [15] collects the network
topology and generates non-overlapped probing paths that
cover the entire network with the minimum path number using
an Euler trail-based algorithm. INT-path is theoretically perfect
but still has deployment flaws. First, the path planning result
is tightly coupled with the topology. Any topology change
in failure-prone data center networks will cause topology
recollection and path recalculation at the controller, and probe
generators/collectors (i.e., path endpoints) reassignment at the
data plane, interrupting the 24/7 telemetry service. Besides, it
embeds source routing [21] into the probe packet to specify
the route the probe takes. This even bloats the probe packet
header especially for longer probing paths and needs additional
switch support of source routing forwarding. Finally, the probe
packet may have potential different forwarding treatment with
user traffic, which affects the measurement accuracy.

As in-situ measurement approaches, [16] and [17] adopt a
“probeless” architecture, that is, they insert the INT header and
INT metadata stack directly into the user packet without using
any probe packet. Specifically, the INT header is inserted into
sampled packets of specific flows from network ingress, and
each forwarding node writes INT metadata into those packets
labelled with the INT header. The INT sample rate is adjusted
according to the traffic fluctuation of specific flows. Labelling
user packets at the flow level will inevitably cause redundant
probing since different flows may share the same path and
many paths aggregate at core devices. Besides, they cannot
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Fig. 1. Landscape of network telemetry approaches.

guarantee network-wide measurement coverage. In postcard-
based approaches [18, 19], each device reports its internal
states to the controller every time a triggering packet visits the
device. However, each device separately reporting the device-
internal states in a high frequency tends to overwhelm the
southbound channel as well as the controller’s CPU.

To tackle the above problems, in this work, we propose
INT-label, a lightweight In-band Network-Wide Telemetry ar-
chitecture. INT-label follows the “probeless” architecture. The
INT-label-capable device periodically labels device-internal
states onto user packets rather than explicitly introducing probe
packets. Specifically, on each outgoing port of the device,
the packets will be sampled according to a predefined label
interval T and labelled with the instant device-internal states.
As a result, INT-label can still achieve network-wide coverage
with fine-grained telemetry resolution while introducing minor
bandwidth overhead. Along the forwarding path consisting of
different devices, the same packet will be labelled indepen-
dently simply according to the local sample decision, that is
to say, INT-label is completely stateless without involving any
probing path-related dependency. Therefore, there is no need
to leverage the SDN controller for conducting centralized path
planning. In other words, INT-label is decoupled from the
topology, allowing seamless adaptation to link failures. Like
INT, INT-label also relies on the programmability of the data
plane, which is being well supported by a growing number of
merchant silicon architectures such as Barefoot’s Tofino and
Broadcom’s Trident 3. In INT-label, the INT information is
extracted and then sent to the controller at the last-hop device
for analysis, so the in-network labelling is transparent to the
end hosts. To tackle the issue of excessive uploads of INT
packets, we design a probabilistic labelling algorithm which
makes label decision for an incoming packet based on the
number of already collected INT metadata in that packet,
in order to aggregate INT metadata into fewer packets to
reduce the number of uploaded INT packets. Besides, to avoid
telemetry resolution degradation due to loss of labelled packets
on some congested links, we design a feedback mechanism to
adaptively change the label frequency when the controller gets
aware of the packet loss by analyzing the telemetry result.

The main contributions are summarized as follows:

• We propose INT-label, an INT-based “probeless” teleme-
try architecture, featuring lightweight and stateless. We
elaborate the packet encapsulation format and the corre-

sponding packet processing pipeline (§II).
• We design an interval-based distributed labelling strategy,

allowing non-redundant labelling to maximally cover
the entire network. We also propose a probabilistic la-
belling algorithm for excessive INT uploads suppression.
Furthermore, a feedback mechanism is added for label
frequency adaptation to avoid telemetry resolution degra-
dation due to loss of labelled packets (§III).

• We demonstrate that INT-label can theoretically achieve
non-redundant network-wide telemetry. Besides, we es-
tablish a mathematical model to analyze the distribution
of the number of collected INT metadata in a packet
under different scales of the FatTree topology (§IV).

• We implement an INT-label prototype using software
P4 switches [22] and the project is available at the git
repository [23]. Extensive evaluation suggests that INT-
label can achieve 99.72% measurement coverage under a
label frequency of 20 times per second. The probabilistic
labelling algorithm reduces the number of uploaded INT
packets by 35.2%. With adaptive labelling enabled, the
measurement coverage can still reach 92% even if 60%
of the packets are lost. Besides, INT-label consumes only
3% extra bandwidth compared with HULA [5] (§V).

II. TELEMETRY SYSTEM ARCHITECTURE

Design overview. The basic idea of INT-label is that every
network device conducts distributed in-band packet labelling
at each port to write the real-time device-internal states onto
the packet header of traffic passing through the port. The
packet label operation is triggered periodically at each port and
the label or not decision is made locally without requiring any
global synchronization. The distributed labelling guarantees
network-wide telemetry coverage except that, without relying
on additional network-wide probes, INT-label cannot monitor
device ports that have no traffic. However, the link states of
the ports without traffic are relatively insignificant for network
management and easy to speculate. For example, the latency
is very low and there is no queue buildup. Generally, the
network-wide telemetry resolution is expected to be as high as
possible, that is, the INT information of each port should be
updated as frequently as possible at the controller. However,
this will lead to tremendous overhead [24]. If the device
writes INT metadata to each packet passing through its port,
the controller will receive excessive redundant information,



Fig. 2. In-band network-wide labelling (INT-label) architecture.

which will dramatically increase the bandwidth consumption
of the switch-controller channel and the processing load of the
controller. In real deployment, the appropriate label frequency
should be decided according to the given telemetry resolution
requirement in the constraint of affordable system cost.

Packet encapsulation. Since the INT metadata is tagged
to user traffic, the in-network label operation should (1)
not interfere with the original IP packet forwarding, (2) be
transparent to the end hosts. As shown in Fig. 2, we place the
INT field after the IP protocol header, because the packet label
operation is conducted at each port and the IP header needs
to be parsed first to get the forwarding port by looking up the
routing table. We fill the PROTOCOL field in the IP header
with INT_TYPE when writing INT metadata to the packet for
the first time. The first field of the INT header is INT OPTION,
which contains the original value of the PROTOCOL field
(RP) and the number of INT metadata (INT_num). RP is used
to restore the original packet at the last-hop network device.
A variable-length INT label stack is allocated after the INT
OPTION field. Each INT label occupies 32B, containing the
information such as device ID, ingress/egress port ID, latency
and queue depth. Both encapsulation and decapsulation of
the INT field are conducted inside the network, completely
transparent to the end hosts. In the FatTree topology, the packet
can reach the destination after at most 5 hops, so the variable
part of the INT header is 160B (32B*5) at the longest.

Forwarding behaviors. The INT label operation is done
at the outgoing port after route lookup. Each port of the
switch/router has a special register (i.e., Reg1 in Fig. 2) that
records the last INT label time. As shown in Fig. 2, when
the packet is ready to be forwarded, the network device
determines whether the port has written INT metadata to any
packet within a label interval T. If the port has written INT
metadata to a previous packet not long ago, no action will be
taken to the current packet. Otherwise, the port will label the
current packet and update Reg1. If the PROTOCOL field is not
INT_TYPE, we will also need to change it to INT_TYPE for
INT header encapsulation and write the original PROTOCOL
field to the INT OPTION for later restoration. At the last
hop, we will extract the INT header and upload the INT
information to the SDN controller. The original IP packet is

restored with the RP field in the INT OPTION and forwarded
transparently to the destination. Different from INT-path [15],
INT-label is stateless without involving any probing path-
related dependency. Therefore, global view of the topology
and centralized path planning are unnecessary. In INT-label,
each device only needs to make sure that each of its ports is
probed within a certain period of time.

Telemetry data collection. The controller has a database
in which the records of each port are saved, including the
port states such as latency, queue depth and the timestamp of
labelling. Due to the potential end-to-end latency variation of
different paths, even for the same port, the earlier labelled INT
information may not reach the controller first. Therefore, the
controller needs to determine whether the database needs to
be updated according to the newly arrived INT information.
If the timestamp of the newly reached record is greater than
the one stored in the database, the database should be updated
according to the record; otherwise, the newly reached record
ought to be discarded. In this way, the latest global network
view is always maintained inside the database.

Excessive uploads suppression. The INT information we
collect from the data plane needs to be uploaded to the
controller for further analysis. However, excessive uploads
of INT packets will contend the southbound interface and
overload the controller’s CPU. To tackle this problem, we
further change the original interval-based labelling to the
probabilistic labelling according to the number of already
collected INT metadata in the packet. In our design, the packet
which has already been labelled for several times will have a
higher probability to be labelled again in its forwarding path.
As a result, the INT metadata will be more concentrated.
By aggregating once completely randomly distributed INT
metadata, the number of packets carrying INT information can
be reduced without compromising the telemetry granularity.

Labelled packet loss handling. However, there may be
packet loss on the unreliable links. If the labelled packet is lost
in transmission, the port will not know this and only believe
that it has provided the INT metadata during this period of
time. This will result in the failure of the controller to update
the database in a timely manner. To resolve this issue, we
design adaptive labelling. If the controller finds that a port has
not been updated for a long time, it suggests that there may be
packet loss after the packet is forwarded through this port. We
need to increase the frequency of packet labelling at this port,
so that the number of packets carrying the INT information
will increase, thus weakening the impact of packet loss. As
shown in Fig. 2, the controller updates a special data plane
register (i.e., Reg2) to modify the instant INT label frequency.
Increasing the label frequency will not further deteriorate the
network situation, because there is no additional increase in
the number of packets in the network.

III. LABELLING ALGORITHMS

A. Algorithm Description

We first propose a simple interval-based labelling algorithm
(Base A) based on the interval between the current time



and last label time in the egress port, followed by a more
sophisticated one with label times-based probabilistic labelling
(Base B). At last, we introduce the adaptive labelling (Pro).

Algorithm 1: Interval-based labelling (Base A)
Input: Label interval T, each arriving packet
Output: (Labelled or unlabelled) outgoing packet

1 Function LabelPacket(packet):
2 if IP.PROTOCOL ̸= INT_TYPE then
3 Write original IP.PROTOCOL to RP and modify the

IP.PROTOCOL to INT_TYPE
4 Set INT_num in the INT OPTION to 0

5 Write INT metadata and increase INT_num by 1
6 Write Rx.CT to the register Reg1 of the port Rx.Py

7 Function BaseA(T, packet):
8 Look up the routing table to get the forwarding port Rx.Py

9 Get last label time Rx.Py .LT from the register Reg1 and
current time Rx.CT of router Rx

10 if Rx.CT −Rx.Py .LT > T then
11 LabelPacket(packet)

12 else
13 NoAction()

14 if DIP = next hop IP and IP.PROTOCOL = INT_TYPE then
15 Extract and upload INT information to the controller
16 Modify the IP.PROTOCOL with the RP
17 Recalculate the checksum

18 Forward packet

Interval-based labelling (Base A). Algo. 1 details the
packet labelling and label decision making algorithm, which
is invoked for each arriving packet. For packet labelling, if the
packet has never been labelled, we need to allocate the INT
header and change the IP.PROTOCOL. For packet restoring
purpose, the original PROTOCOL field needs to be recorded
(line 2-4 in Algo. 1). The INT metadata will then be written
to the packet header with INT_num incremented by 1. In
addition, the last label time (LT) in Reg1 needs to be updated
with CT, which is the current time read from the timer of
the device. (line 5-6). The Base A algorithm leverages the
difference of CT and LT to determine if labelling is required.
The label operation will be done only when (1) there is an
arriving packet, (2) the label interval T has elapsed (line 10-
13). It should be noted that line 12-13 is a placeholder function
reserved for the Base B algorithm, and no action will be taken
in Base A. We compare DIP with the next-hop IP to determine
whether the device is at the last hop (line 14). If it is true
and the packet has been labelled, the INT information will be
extracted and sent to the controller while the original packet
is forwarded transparently to the destination (line 15-18).

Label times-based probabilistic labelling (Base B).
Algo. 2 describes the probabilistic labelling algorithm. The
basic idea of Base B is to label each packet with a probability
p, which is determined by the number of already collected INT
metadata in the packet (INT_num). The larger the INT_num,
the higher the probability p. The difference between Base
B and Base A is that when Rx.CT − Rx.Py.LT ≤ T , the
device may also label the packet instead of doing nothing
(line 13 in Algo. 1). Due to space limitation, Algo. 2 only
describes the different part from Base A. Replacing line 13 of
Algo. 1 with line 4-7 of Algo. 2 is the complete pseudocode

Algorithm 2: Label times-based probabilistic labelling
(Base B)

Input: Label interval T, each arriving packet
Output: (Labelled or unlabelled) outgoing packet

1 Function BaseB(T ,packet):
2 ......
3 else
4 Read INT_num from the INT OPTION
5 p = f(INT_num)
6 if random(0, 1) < p then
7 LabelPacket(packet)

8 ......

of Base B. Specifically, if CT − LT > T , the packet is still
labelled (line 10-11 in Algo. 1). Otherwise, the device first
reads INT_num from the INT OPTION (line 4 in Algo. 2).
Then, it calculates the labelling probability p according to
INT_num (i.e., p = f(INT_num)), and randomly labels the
packet with the probability p (line 5-7).
f() can be any increasing function, depending on spe-

cific design requirement. The simplest is f (INT_num) =
INT_num

MAX_hop−1 . When INT_num = 0, p = 0; when INT_num =
MAX_hop − 1, p = 100%. In this way, the packets carrying
fewer INT metadata are still labelled according to the interval,
and the packets carrying more INT metadata have a higher
probability to be labelled. Compared with Base A, Base B
increases the total label times in the data plane, but to a certain
extent, makes INT metadata more aggregated. At the same
time, as the increase of the data plane label times, the device
states collected by the controller is updated slightly faster.

Algorithm 3: Telemetry result collection
Input: Each arriving packet with INT information
Output: Updated INT database at the controller

1 Function ResultCollection(packet):
2 Extract INT_info from packet
3 for Rx, Py , Rx.CT , Latency in INT_info do
4 if the key (Rx, Py) not in the INT database then
5 Add database entry (Rx, Py) : Rx.CT , Latency into

the INT database
6 else
7 Get recorded time Rx.Py .RT (i.e., previously

inserted Rx.CT ) according to the key.
8 if Rx.CT > Rx.Py .RT then
9 Update the INT database with Rx.CT and

Latency (i.e., the latest INT metadata)

Telemetry result collection. Algo. 3 demonstrates the
telemetry result collection algorithm. These steps are shared
by both Base A, B and Pro algorithms. At the controller,
each packet with the INT information may contain multiple
INT metadata collected along the route, each of which will
be regarded as a separate entry and installed into the INT
database, that is, one telemetry packet uploaded from the data
plane may trigger a string of database insertions. The INT
database is indexed by the unique key (device ID, port ID) with
value filled with the telemetry data as well as the timestamp
that the telemetry data is labelled at the data plane (we call
this timestamp “recorded time” (RT )). Through adding entries
with the latest timestamps, it is ensured that the INT database



contains the latest telemetry results (line 8 in Algo. 3).

Algorithm 4: Adaptive labelling (Pro)
Input: INT database, label interval T, parameter k
Output: Updated value S in Reg2

1 Initialize: Last time Reg2 is updated (i.e., LRT) = current time
2 Function Pro(INT database, T, k):
3 while True do
4 if current time − LRT > k ∗ T then
5 Get recorded time Rx.Py .RT according to the key

(Rx, Py) from the INT database.
6 if current time −Rx.Py .RT > k ∗ T then
7 Reg2 = Reg2 + 1
8 LRT = current time

9 else
10 if Reg2 > 0 then
11 Reg2 = Reg2 − 1
12 LRT = current time

Controller-driven adaptive labelling (Pro). Adaptive la-
belling (Algo. 4) is leveraged to handle telemetry resolution
degradation due to loss of labelled packets. Based on the Base
A/B algorithm, the Pro algorithm adds additional modules to
both controller and data plane for dynamically adjusting the
label interval T , which is originally fixed in the Base A/B
algorithm. In order to dynamically adjust the label interval,
we have added a register Reg2 to store a variable S at each
port of the device. The initial value of S is set to 0, which will
be updated by the controller. The value of S suggests that the
label interval T needs to be reduced by 2S times. That is, the
label interval of Base A/B changes from T to T/2S , which
can be easily implemented with the right shift operation. By
analyzing the network-wide device states, the controller can
determine if the label frequency of some ports need to be
changed. For example, if the recorded time of a port has not
been updated for a very long time (i.e., CT−RT > k∗T ), the
controller will increase S in Reg2 to raise the label frequency
(line 6-7 in Algo. 4). Otherwise, the controller will decrease
S except that S = 0 (line 10-12). In order to ensure that S
will not be changed too often in a short time, we record the
last timestamp as LRT when Reg2 is updated and modify S
after a period of time from the LRT (line 4).
B. Case Study

Fig. 2 shows the label-based INT collection and upload
process, as well as adaptive labelling. Firstly, Host1 sends a
packet with the destination of Host2. When forwarding the
packet, the routers decide whether to label INT metadata to
the packet according to the line 10 in Algo. 1. Also, the routers
determine if the next hop is the destination address. If so, they
will extract the INT information from the packet and restore
the original packet (line 14-16). Thus, the transparency of the
INT collection process to the host would be guaranteed. When
receiving the INT information uploaded by R6, the controller
will parse them one by one (as described by the line 2-3 in
Algo. 3). Then, the newer records are stored in the database
through comparison of the timestamps (line 7-9). If a port has
not been updated for a long time, the controller will modify
Reg2 of the corresponding port for label frequency increase.

IV. THEORETICAL ANALYSIS

A. Proof of Correctness

Firstly, we demonstrate that the Base A algorithm can
achieve both network-wide probing and non-redundant la-
belling. Here, network-wide probing means that all links with
traffic will be monitored during a given time window while
non-redundant labelling means that none of these links will be
monitored more than once during a pre-defined interval.

1) Proposition 1: Base A can probe the device states of all
the ports with traffic within the interval T + Ts, where T is
the label interval, Ts is the maximum packet arrival interval.

Proof. We construct a simple proof by contradiction. Assum-
ing that Base A cannot achieve network-wide probing within
T + Ts, that is to say, the time interval between the two label
operations can be greater than T + Ts, indicating that there
is at least a port Rx.Py that does not write INT metadata to
the packets during the time period [t, t + T + Ts]. That also
means t > Rx.Py.LT . On the other hand, there must be a
packet forwarded to other network devices through this port
within the time period [t, t+ T + Ts], since the time interval
between packets arriving at the port is less than or equal to
Ts. Now consider a packet with arrival time of t + T + Tp,
where 0 < Tp ≤ Ts. ∵ t > Rx.Py.LT and Tp > 0.
∴ t+ T + Tp −Rx.Py.LT > t+ T + Tp − t = T + Tp > T .
According to the line 10 in Algo. 1, the port needs to write INT
metadata to this packet at its arrival time t + T + Tp. Since
0 < Tp ≤ Ts, the port writes INT metadata to the packet
during the time period [t, t + T + Ts], which contradicts the
assumption. Hence, the assumption is incorrect and Base A
can achieve network-wide probing within the interval T +Ts.

In other words, we can complete the probing of all the ports
with traffic at time t+T+Ts from any given time t. The value
of Ts is roughly inversely proportional to the rate of traffic
passing through the port. So, when the traffic rate becomes
higher, the time required to probe all the ports with traffic
will approach T . Conversely, if the traffic rate is low, Ts will
inevitably increase, which suggests that the port states cannot
be monitored as frequently as expected. However, since the
traffic rate is generally extremely high in a data center network,
Ts is far less than T thus T + Ts is very close to T .

2) Proposition 2: Base A conducts non-redundant labelling
within the interval T , where T is the label interval.

Proof. Similarly, the contradiction method is served to prove
the non-redundant probing property of Base A. Assuming that
INT-label can cause redundant probing, that is, a port Rx.Py

writes INT metadata to at least two packets within time T . The
moments that two packets carrying device-internal states leave
the port are denoted as t1 and t2, where t2 > t1. According
to our assumption, t2 − t1 < T . When the packet is to be
forwarded at time t2, the label or not decision in Algo. 1
will be made. At this time, Rx.CT = t2, Rx.Py.LT ≥ t1.
∴ Rx.CT −Rx.Py.LT ≤ t2− t1 < T . According to the line
10 in Algo. 1, the port should not write INT metadata to the
packet before forwarding. That is, the packet being forwarded
at time t2 will not carry INT information, which contradicts



the assumption. So the assumption is incorrect and Base A
achieves non-redundant probing within the label interval T .

B. Analysis of INT label times distribution

In this subsection, we analyze the distribution of the number
of INT metadata carried by the packets of Base A and Base
B under different scale FatTree topologies. The analysis is
divided into three parts: (1) the relationship between the
number of hops required for a packet to reach the destination
and the size of the FatTree, (2) the label times distribution of
Base A, (3) the label times distribution of Base B.

End-to-end hop number vs. FatTree topology size. We
analyze the number of hops required for a packet to reach
the destination under a k-ary FatTree as introduced in [25].
The k indicates its pod number, and each pod contains k/2
aggregation and edge switches separately. Each edge switch is
directly connected with k/2 hosts. The total number of hosts
is k3/4. We assume that the host1 located at <pod1, edge1>
sends packets to all other hosts. Since there are k3/4 hosts in
total, host1 sends k3/4 − 1 packets. In the FatTree topology,
the end-to-end hop number of a packet is only related to the
positional relationship between the sender and the receiver. For
ease of description, we assume that the location of the receiver
is <podR, edgeR>. Let H be the number of hops required for
the packet to reach the destination. Next, we analyze the end-
to-end hop number case by case.

1. If edgeR = edge1, H = 1. Each edge connects k/2 hosts,
so there are k/2− 1 packets with an H value of 1.

2. If edgeR ̸= edge1 and podR = pod1, H = 3. A pod
contains k/2 edge switches, and each edge switch connects
k/2 hosts, so there are (k/2 − 1) ∗ k/2 packets with an H
value of 3.

3. If podR ̸= pod1, H = 5. There are k pods in the k-ary
FatTree network, and each pod contains (k/2)2 hosts, so there
are (k − 1) ∗ (k/2)2 packets with an H value of 5.

So H is a discrete random variable whose value can be 1, 3,
and 5. The probability distribution of H can be calculated as:
P (H = 1) =

(
k
2 − 1

)
/
(

k3

4 − 1
)

, P (H = 3) =
(
k
2 − 1

)
∗

k
2/

(
k3

4 − 1
)

, P (H = 5) = (k − 1) ∗
(
k
2

)2
/
(

k3

4 − 1
)

.
Label times distribution of Base A. In Base A solution,

each switch independently determines if a packet needs to be
labelled, whether the packet has already carried INT metadata
or not. Therefore, the packet labelling by different switches
are independent and unrelated events in probability theory.
We assume that Xi represents whether the packet is labelled
after passing through the i-th switch. Xi is a discrete random
variable whose value is 0 or 1 (representing unlabelled or
labelled), so Xi is a typical Bernoulli trial. We assumed that
the average interval of packets passing through each port is
Ts and the label interval is T . There will be a packet being
labelled among T/Ts packets, so the probability of a packet
being labelled is p = 1/( T

Ts
) = Ts

T . Therefore, X1, X2, ..., Xn

all obey the Bernoulli trial with p being Ts

T .
There is a theorem in probability theory as follows: In

a Bernoulli experiment with n trials and the probability of

success on each trial is p. Let A count the number of
successes in n trials, then the probability of event A = s
is: P (A = s) = Cs

np
s(1− p)n−s, s = 0, 1, 2, . . . , n.

In Base A solution, let Yn count the number of label
times after n hops. ∵ Yn ∼ B(n, Ts

T ). ∴ P (Yn = s) =

Cs
n

(
Ts

T

)s (
1− Ts

T

)n−s
, s = 0, 1, 2, . . . , n.

Let ZA represent the label times of a packet sent by host1
in Base A solution, so the probability distribution of ZA

is: P (ZA = s) =
∑

l=1,3,5 P (H = l) ∗ P (Yl = s) , s =
0, 1, . . . , 5. By plugging the above relations into the expression
of P (ZA = s), we get the probability distribution of label
times in the Base A solution. Limited by space, we will not
expand it here but put the results on our git repository [23].

Label times distribution of Base B. In Base B solution,
each switch labels packets further according to the number of
INT metadata carried in the packets. The larger the number
of metadata, the greater the probability of being labelled. It
is obviously different from Base A that whether the packet
of Base B will be labelled on the subsequent switch will be
affected by the labelling of previous switches. Therefore, each
labelling cannot be regarded as an independent unrelated event,
we need to analyze the correlation between the two labelling.

In Base B solution, even if CT −LT ≤ T , the switch may
label the packet and refresh the last label time (LT), which
reduces the probability of labelling based on the interval. We
denote the probability based on the interval and the probability
based on the INT metadata number as pB and f(INT_num),
respectively. The larger f(INT_num) is, the smaller pB is.
For example, when f(INT_num) = 1, then pB = 0. The
switch will only label packets based on the INT number.
Conversely, the smaller f(INT_num) is, the larger pB is. When
f(INT_num) = 0, pB = Ts

T . It can be seen that pB is a
function of f(INT_num), denoted as pB = g(f(INT_num)).
According to the above analysis, g(x) is a monotonically
decreasing function as g(x) ∈

[
0, Ts

T

]
, x ∈ [0, 1].

For the convenience of explanation, we denote N and T as
INT number-based and interval-based labelling, respectively.
P (N) = f (INT_num), P (T ) = g (f (INT_num)). Next, we
analyze the probability of joint events case by case.

1. The packet is labelled based on the INT number, denoted
as NT̄ . According to the total probability rule, P (N) =
P (T )P (N | T ) + P (T̄ )P (N | T̄ ). Because N and T
cannot happen at the same time, P (N | T ) = 0. Therefore
P (N) = P (T̄ )P (N | T̄ ). According to the formula for
conditional probability P (B | A) = P (AB)/P (A), P (N |
T̄ ) = P (NT̄ )/P (T̄ ). Therefore, P (NT̄ ) = P (T̄ )P (N |
T̄ ) = P (N) = f (INT_num).

2. The packet is labelled based on the interval, denoted as
N̄T . As with 1, we can get the conclusion: P (N̄T ) = P (T ) =
g (f (INT_num)).

3. The packet is not labelled, denoted as N̄ T̄ . Because
N and T cannot happen at the same time, P (NT ) = 0.
Therefore, P (N̄ T̄ ) = 1 − P (NT ) − P (N̄T ) − P (NT̄ ) =
1− f (INT_num)− g (f (INT_num)).

In Base B solution, let Wn count the number of label times
after n hops. Obviously, Wn is a discrete random variable



with values of 0, 1, 2, . . . , n. Easy to get, P (Wn+1 = i) =
P (Wn = i)∗(1−g(f(i))−f(i))+P (Wn = i− 1)∗(f(i−1)+
g(f(i−1))), i = 0, 1, . . . , n+1. The first term represents that
when Wn = i, the packet is still not labelled by the n+1th hop
switch, so Wn+1 = i. The second term represents that when
Wn = i− 1, the packet is labelled by the n+1th hop switch,
so Wn+1 = i. The boundary terms involved in this formula
are all 0, such as P (Wn = −1) = 0, P (Wn = n + 1) = 0.
Then we analyze the probability distribution of W1. Since the
packet before the first-hop switch labelling will not carry any
INT information, whether the packet is labelled at the first-hop
switch is affected only by the interval, so the labelling prob-
ability is the same as that of Base A, which is Ts

T . Therefore,
P (W1 = 0) = 1−Ts

T and P (W1 = 1) = Ts

T . According to the
expression of P (Wn+1), we derive the probability distribution
of W2, and then the probability distribution of W3,W4, . . ..

Similar to the analysis in Base A, we only need the
distribution of W1, W3, and W5. ZB represents the label times
of a packet sent by host1 in Base B solution, so the probability
distribution of ZB is: P (ZB = s) =

∑
l=1,3,5 P (H = l) ∗

P (Wl = s) , s = 0, 1, . . . , 5. By plugging the above relations
into the expression of P (ZB = s), we get the probability
distribution of label times of Base B. Also, we put the results
on our git repository [23].

V. EVALUATION

A. Experiment Setup

We build an emulation-based network prototype to demon-
strate INT-label’s performance. The configuration is Intel Xeon
Silver 4116 CPU with 12 cores and 24 threads, and 32GB
memory with Ubuntu 18.04 OS. The prototype is based on
Mininet [26] and consists of 1 controller, 4 Spine switches,
4 Leaf switches, 4 ToR switches and 8 servers, organized
into the same FatTree topology with HULA [5]. Among the 8
servers, server1 and server8 randomly send traffic (packet size
= 1kB) to others. The default traffic rate is around 5Mbps. With
pre-installed flow tables, traffic passes through 24 ports (some
ports are deliberately bypassed without traffic). The default la-
bel interval is 50ms. The maximum INT header length is 160B
(32B*5). The default network-wide telemetry resolution is 10
times/s (here, we set a fairly coarse-grained default telemetry
resolution limited mainly by BMv2’s poor performance [22]).
The default f() is f(0) = 0, f(i) = 1, i = 1, . . . , 4. The
prototype consists of 829 lines of Python and 317 lines of P4,
available at the git repository [23].

Network testbed. Mininet [26] is used to establish the vir-
tual network environment. We use the simple switch model of
BMv2 (a software-based P4 switch) [22] to realize the virtual
switch so that arbitrary packet header customization of INT
can be allowed. The simple switch model of BMv2 is good
enough for our design verification despite the implementation
difference it may have with the actual hardware P4 switch.
Besides, we implement a remote controller through a separate
OS process that receives notifications from the data plane and
communicates with the database through socket.

Traffic generation. Python’s Scapy library is employed to
write scripts for traffic generation and collection. The route of
the background traffic is specified by the source routing [21],
and the background traffic rate is dominated by the sleep
function at the sender (by pausing the sending for a while).

B. Results

Impact of the background traffic rate. Fig. 3 shows the
impact of the background traffic rate on the network-wide
coverage rate and the bandwidth occupation of INT encapsu-
lation overhead. The coverage rate is defined as the labelled
port number divided by the total number of ports with traffic
passing by during every 100ms (the default telemetry reso-
lution). bandwidth occupation = bandwidth of INT

bandwidth of traffic . In §IV, we
have demonstrated that our architecture can achieve network-
wide probing if the background traffic rate is much larger than
the label frequency. In other words, the coverage rate can be
affected by the packet arriving rate of each port. As shown
in Fig. 3, the coverage rate increases with the background
traffic rate, which confirms our analysis. Furthermore, as the
background traffic rate increases, the bandwidth occupation
rate of the INT encapsulation with a constant label frequency
decreases. The reason lies in that, as the traffic rate of the
port increases, the average INT information carried by each
packet gradually decreases. When the background traffic rate
reaches a certain scale, the coverage rate no longer increases
significantly, which is a turning point. Besides, the coverage
rate and the bandwidth occupation of Base B are always higher
than those of Base A due to the possibility of conducting
redundant labelling. We set the default background traffic rate
as the rate at the turning point in Fig. 3.

The number of packets carrying INT metadata: Base
A vs. Base B. Fig. 4 shows the number of packets with
INT information under different label intervals, with a total of
10000 packets generated. It can be seen from the figure that
as the label interval increases, the number of labelled packets
of Base A decreases and the number of labelled packets of
Base B is always lower than that of Base A. Specifically, the
number of labelled packets of Base B decreases much faster
than that of Base A. This is because the increase in T leads
to more packets performing probabilistic labelling based on
the INT metadata number, resulting in a more concentrated
distribution of INT metadata, which in turn leads to a more
obvious reduction in the number of labelled packets. When
T = 100ms, compared with Base A, the number of labelled
packets of Base B is relatively reduced by 35.2%.

The number of label times: Base A vs. Base B. Fig. 5
shows the total label times in the data plane under different
label intervals, with a total of 10000 packets generated. As can
be seen from the figure, Base B only causes a small number
of redundant labels, which is insignificant compared with the
reduction in the number of labelled/uploaded packets.

Right label interval for a given telemetry resolution. For
network management, a network operator may need to deter-
mine which label frequency is appropriate for cost-effective
network-wide telemetry under a certain telemetry resolution.
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Fig. 3. The impact of label interval
on coverage rate and bandwidth occu-
pation.
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Fig. 4. The number of packets la-
belled with INT metadata under dif-
ferent label intervals.
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Fig. 5. The data plane label times
under different label intervals.
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Fig. 6. How the relation between
label interval and telemetry resolution
affects the coverage rate.
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Fig. 7. The impact of label interval
on coverage rate and INT bandwidth
occupation.
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Fig. 8. The impact of data plane la-
bel interval on network-wide coverage
rate changes over time.


� 
� �� �� ���
�������������������

��


����
����
����
���	
���

����

�
��

��
��

��
�

��
�

�����
����
���

Fig. 9. Different coverage rates under
Base A/B and Pro strategies.
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Fig. 10. Network-wide coverage
degradation due to loss of packets
under Base A/B and Pro strategies.

Over-low label frequency can cause incomplete network-wide
view, while over-high label frequency is unnecessary and
inefficient. Fig. 6 shows how to choose the appropriate label
frequency according to the telemetry resolution requirement.
For example, regardless of using Base A or Base B, the
network-wide coverage rate in Fig. 6 has exceeded 0.98 when
the ratio of telemetry interval/label interval is 1.6, which helps
determine the right label interval if the required telemetry reso-
lution (i.e., 1/telemetry interval) is provided. Given the default
telemetry resolution of 10 times/s, our system can achieve
99.72% measurement coverage under a label frequency of 20
times/s (telemetry interval/label interval = 2 at this time).

Impact of label interval on coverage rate and bandwidth
overhead. Fig. 7 demonstrates the impact of label interval on
coverage rate and bandwidth overhead. We set the telemetry
interval to 100ms and make the background traffic rate fast
enough. As shown in Fig. 7, the coverage rate increases as the
label interval decreases. While a smaller label interval corre-
sponds to a higher coverage rate, the bandwidth occupation
also becomes greater. Label interval of 60ms is the turning
point of the coverage curve. And the same conclusion can be
drawn from 100ms/60ms = 1.6 that telemetry interval/label
interval = 1.6 can achieve a good tradeoff between coverage
rate and bandwidth overhead. In addition, compared to Base
A, Base B always has a higher coverage rate and bandwidth
occupation due to its redundant labelling property.

Impact of the data plane label interval on coverage
rate changes over time. Fig. 8 shows the impact of label
interval on network-wide coverage rate changes over time for
Base A algorithm. As shown in Fig. 8, when T = 20ms, the
coverage always remains at 100%, which means that a smaller
label interval has a more stable and higher coverage. We find
that a larger label interval causes more jitters of the network-
wide coverage rate, which is triggered by the labelled packets
queuing in congested links. Although the label intervals in
Fig. 8 are all below the default telemetry interval (i.e., 100ms),
the labelled packets with larger label interval are more likely
to miss the packet collection of the latest telemetry round.

Performance of Base A/B and Pro under different label
intervals. Fig. 9 shows the relationship between the coverage
of the Base A/B and Pro algorithms and the label interval
when label interval and telemetry interval are closer. As shown
in Fig. 9, the coverage of the Pro algorithm remains around
99%, while the coverage of Base A/B algorithm gradually
decreases with the increase of label interval, because the Pro
algorithm can automatically increase the label frequency when
coverage decreases. This indicates that the Pro algorithm can
always achieve higher coverage, while the coverage of the
Base A/B algorithm is affected by the relationship between
the label interval and the telemetry interval.

Network coverage rate degradation due to traffic loss.
Fig. 10 shows coverage rate degradation due to traffic loss.
We deliberately change the background traffic rate, limit the
forwarding rate and max queue depth of BMv2 to generate
packet loss. Fig. 10 suggests that network coverage rate will
degrade due to packet loss since the labelled packets will get
lost as well. Specifically, the Pro algorithm outperforms the
Base A/B algorithm thanks to the built-in adaptive labelling
mechanism. With adaptive labelling enabled, the coverage rate
can still reach 92% even if 60% of the packets are lost.

Packet loss due to rate limit. Fig. 11 compares the packet
loss rate of Base A/B and HULA due to deliberate rate limit.
We limit the bandwidth and max queue depth of BMv2 so that
there is no packet loss while sending background traffic alone.
It can be seen that there is no packet loss of Base A/B because
of its ultra-low bandwidth occupation. HULA induces packet
loss, which decreases from 12% to 5% as the probe interval
increases from 10ms to 100ms.

Distribution of INT label times. Fig. 12 shows the number
of packets under different label times, with a total of 10000
packets. It can be seen from the figure that the number of
packets with label times of 1 in Base A is the largest. And
the number of packets gradually decreases with the increase
of label times. The number of packets whose label times is
5 is extremely small. Although the number of packets with
label times of 1 in Base B is also the largest, the number of



�� �� �� 	� 
� �� �� � �� ���
� ������������"� #�����!�

����

����

���	

����

���

����

����
��

��
�"

��
�!

!�
�

�"
�

��!���
��!���
����

Fig. 11. Packet loss rate (due to
rate limit) under different label/probe
intervals (Base A/B vs. HULA).
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times in Base A/B.
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Fig. 13. The number of probe gen-
erators required under different scale
FatTree topologies.

�� �� ��
�!���&���#��

��
�

��
�

��
�

��
	

��



��
 �

'
��
%�
�
!$
%��
�
�"

$�

43
346

1169

22
369

1897
6016

398336
4582656

32
256

866

����"�%�
�� ���$�

����
���������

Fig. 14. The bandwidth overhead for
network-wide telemetry under differ-
ent scale FatTree topologies.

packets with label times of 4 and 5 is quite large as well. Even
the number of packets whose label times is 5 is second only
to those whose label times is 1. In addition, the packets with
label times 1 and 2 in Base B are much less than those in Base
A, and the packets with label times 4 and 5 are much more. In
summary, the Base B algorithm does make INT information
more concentrated in some packets, which coincides with the
conclusion we’ve reached in §IV.

The number of probe generators required. Fig. 13 shows
the number of probe generators required by different methods
under different scale FatTree topologies. INT-label does not
need to allocate any probe generator due to its “probeless”
mechanism, so its number is 0 in any topology. The number
of probe generators of INT-path is positively correlated with
the number of odd vertices in the topology [15]. And the odd
vertices in the FatTree depends on its scale. When there is
no odd vertex, only one probe generator is needed to send
and receive probes. When there are 2k odd vertices, 2k probe
generators are needed. The number of Pingmesh is positively
correlated with the sum of the number of hosts and ToR
switches. The number of HULA is positively correlated with
the number of ToR switches. So the number of Pingmesh is
the most, and the number of INT-path and HULA are lower.
Therefore, INT-label has enormous advantages in deployment
as it does not require even a single probe generator.

Network-wide telemetry bandwidth overhead. Fig. 14
shows the bandwidth cost comparison under different scale
FatTree topologies. Because INT-label only needs to adds a
piece of INT header to packets, it occupies little bandwidth.
HULA has a large number of redundant probes due to its
broadcast mechanism, so its bandwidth cost is always much
higher than that of other methods. Pingmesh’s performance
is better when the topology size is smaller, but gradually
deteriorates as the topology scale increases. It should be noted
that Pingmesh is incapable of measuring hop-by-hop link
latency. Although INT-path realizes non-redundant telemetry,
it needs to generate extra probe packets, resulting in more
bandwidth cost than INT-label. It can be concluded that INT-
label can achieve network-wide device-internal state coverage
with minimal bandwidth overhead.

VI. RELATED WORK

Network monitoring/telemetry provides better visibility into
the intricate networks, making it easier to maintain and trou-
bleshoot the widespread distributed systems [27, 28]. How-
ever, traditional management protocols, such as SNMP [3],
fail to achieve fine-grained monitoring due to its inefficient

controller-driven device state polling, which cannot promptly
adapt to the drastic traffic dynamics in data center networks.
Other approaches such as NetFlow [29], sFlow [30], IP-
FIX [31] maintain per-flow counters instead of monitoring the
low-level packet queuing behaviors. The protocol-independent
forwarding architecture [10, 32] unleashes the power of data
plane programmability, enabling network devices to arbi-
trarily edit packet headers. The In-band Network Telemetry
(INT) [9, 33] takes full advantage of this capability, allowing
probe/user packets to query device-internal states as they pass
through the data plane pipeline.

In some use cases, INT is activated to monitor specific
flows by labelling each packet or some of the packets of
these user-specified flows [34, 35]. While in other use cases,
network-wide telemetry is favored for network-wide traffic
load balancing [5] or failure detection/localization [4, 6]. As
INT is essentially an underlying primitive for device-internal
state exposure, network-wide telemetry further requires high-
level orchestration on top of INT [15].

Telemetry systems [4, 5, 15] get network telemetry results
by sending probe packets, but extra probe packets also lead to
extra traffic and potentially different forwarding treatment.

For “probeless” architectures, if all traffic carries INT
telemetry data, it will lead to great telemetry redundancy.
To reduce redundancy, the idea of sampling gets popular.
However, sampling directly from the network ingress [16, 17]
will cause considerable telemetry redundancy as well. Besides,
it is also difficult to realize the network-wide telemetry within
a given interval. Postcard [18] can realize the non-redundant
network-wide telemetry, but a large number of INT packets
will be uploaded and overwhelm the controller’s CPU.
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VIII. CONCLUSION

In this work, we propose INT-label, a lightweight In-band
Network-Wide Telemetry architecture without explicitly using
probe packets. INT-label periodically labels device-internal
states onto sampled user packets, which is cost-effective
with minor bandwidth overhead. In INT-label, the network-
wide monitoring is completely decoupled from the topology,
allowing seamless adaptation to topology changes. INT-label
is ready to be deployed in mega-scale modern data centers.
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