[go: up one dir, main page]

nLab left adjoint (Rev #18, changes)

Showing changes from revision #17 to #18: Added | Removed | Changed

Contents

1. Idea

The left part of a pair of adjoint functors is one of two best approximations to a weak inverse of the other functor of the pair. (The other best approximation is the functor’s right adjoint, if it exists.) Note that a weak inverse itself, if it exists, must be a left adjoint, forming an adjoint equivalence.

A left adjoint to a forgetful functor is called a free functor. Many left adjoints can be constructed as quotients of free functors.

The concept generalises immediately to enriched categories and in 2-categories.

2. Definitions

\subsection{For categories}

\begin{defn} \label{DefinitionLeftAdjointForCategories} Given categories π’ž\mathcal{C} and π’Ÿ\mathcal{D} and a functor R:π’Ÿβ†’π’žR: \mathcal{D} \to \mathcal{C}, a left adjoint of RR is a functor L:π’žβ†’π’ŸL: \mathcal{C} \to \mathcal{D} together with natural transformations ΞΉ:id π’žβ†’R∘L\iota: id_\mathcal{C} \to R \circ L and Ο΅:L∘Rβ†’id π’Ÿ\epsilon: L \circ R \to id_\mathcal{D} such that the following diagrams (known as the triangle identities) commute, where β‹…\cdot denotes thewhiskering of a functor with a natural transformations. transformation.

\begin{centre} \begin{tikzcd} L \ar[r, id(L) L \cdot \iota] \ar[dr, swap, id] & L \circ R \circ L \ar[d, \epsilon \cdot id(R)] L] \ & L \end{tikzcd} \end{centre}

\begin{centre} \begin{tikzcd} R \ar[r, \iota \cdot id(R)] R] \ar[dr, swap, id] & R \circ L \circ R \ar[d, id(R) R \cdot \epsilon] \ & R \end{tikzcd} \end{centre}

\end{defn}

\begin{rmk} \label{RemarkEquivalentDefinitionLeftAdjointForCategories} Requiring the commutativity of the two diagrams in Definition \ref{DefinitionLeftAdjointForCategories} is equivalent to requiring that there is a natural isomorphism between the Hom functors

Hom π’ž(L(βˆ’),βˆ’),Hom π’Ÿ(βˆ’,R(βˆ’)):D opΓ—Cβ†’Set. Hom_\mathcal{C}\left(L(-),-\right), Hom_\mathcal{D}\left(-,R(-)\right): D^{op} \times C \to \mathsf{Set}.

Depending upon one’s interpretation of Set\mathsf{Set}, the category of sets, one may strictly speaking need to restrict to locally small categories for this equivalence to parse. \end{rmk}

\subsection{For enriched categories}

The equivalent formulation of Definition \ref{DefinitionLeftAdjointForCategories} given in Remark \ref{RemarkEquivalentDefinitionLeftAdjointForCategories} generalises immediately to the setting of enriched categories.

\begin{defn} Given 𝕍\mathbb{V}-enriched categories π’ž\mathcal{C} and π’Ÿ\mathcal{D} and a 𝕍\mathbb{V}-enriched functor R:π’Ÿβ†’π’žR: \mathcal{D} \to \mathcal{C}, a left adjoint of RR is a 𝕍\mathbb{V}-enriched functor L:π’žβ†’π’ŸL: \mathcal{C} \to \mathcal{D} together with a 𝕍\mathbb{V}-enriched natural isomorphism between the Hom functors

Hom π’ž((L(βˆ’),βˆ’),Hom π’Ÿ(βˆ’,R(βˆ’)):D opΓ—C→𝕍. Hom_\mathcal{C}\left((L(-),-\right), Hom_\mathcal{D}\left(-,R(-)\right): D^{op} \times C \to \mathbb{V}.

\end{defn}

\subsection{In a 2-category}

Definition \ref{DefinitionLeftAdjointInACategory} generalises immediately from Cat, the 2-category of categories, to any 2-category.

\begin{defn} \label{DefinitionLeftAdjointInA2Category} Let π’œ\mathcal{A} be a 2-category. Given objects π’ž\mathcal{C} and π’Ÿ\mathcal{D}, and a 1-arrow R:π’Ÿβ†’π’žR: \mathcal{D} \to \mathcal{C} of π’œ\mathcal{A}, a left adjoint of RR is a 1-arrow L:π’žβ†’π’ŸL: \mathcal{C} \to \mathcal{D} together with 2-arrows ΞΉ:id π’žβ†’R∘L\iota: id_\mathcal{C} \to R \circ L and Ο΅:L∘Rβ†’id π’Ÿ\epsilon: L \circ R \to id_\mathcal{D} such that the following diagrams commute, where β‹…\cdot denotes whiskering in π’œ\mathcal{A}.

\begin{centre} \begin{tikzcd} L \ar[r, id(L) L \cdot \iota] \ar[dr, swap, id] & L \circ R \circ L \ar[d, \epsilon \cdot id(R)] L] \ & L \end{tikzcd} \end{centre}

\begin{centre} \begin{tikzcd} R \ar[r, \iota \cdot id(R)] R] \ar[dr, swap, id] & R \circ L \circ R \ar[d, id(R) R \cdot \epsilon] \ & R \end{tikzcd} \end{centre}

\end{defn}

\begin{rmk} If one assumes that one’s ambient 2-category has more structure, bringing it closer to being a 2-topos, for example a Yoneda structure, one should be able to give an equivalent formulation of Definition \ref{DefinitionLeftAdjointInA2Category} akin to that of Remark \ref{RemarkEquivalentDefinitionLeftAdjointForCategories}. \end{rmk}

\subsection{For preorders and posets}

Restricted to preorders or posets, Definition \ref{DefinitionLeftAdjointForCategories} in its equivalent formulation of Remark \ref{RemarkEquivalentDefinitionLeftAdjointForCategories} can be expressed in the following terminology.

\begin{defn} Given posets or preorders π’ž\mathcal{C} and π’Ÿ\mathcal{D} and a monotone function R:π’Ÿβ†’π’žR: \mathcal{D} \to \mathcal{C}, a left adjoint of RR is a monotone function L:π’žβ†’π’ŸL: \mathcal{C} \to \mathcal{D} such that, for all xx in π’Ÿ\mathcal{D} and yy in π’ž\mathcal{C}, we have that L(x)≀yL(x) \leq y holds if and only if x≀R(y)x \leq R(y) holds. \end{defn}

3. Properties

\section{Examples}

Revision on February 27, 2021 at 07:08:09 by Richard Williamson See the history of this page for a list of all contributions to it.