

LHCb Highlights

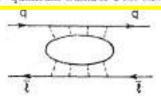
On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

History of Flavour physics

GIM mechanism in K⁰→µµ

Weak Interactions with Lepton-Hadron Symmetry*


S. E. Generore, J. Burreccos, ever L. Manuel Lyman Leberatory of Physics, Sormel Swisserby, Combibly, Manuelmoths 02/59 (Heroteck) i March 2003.

We people a modal of weak interactions in which the currents are constructed out of feter inside quark fields and interact with a changed conserve notes. We show, it all notice in probabilities thinty, that the banking divergence do not relate any recognitionnessing symmetry and the next to the finding discappeds respond at observed residual-interaction solvetime takes. The social location is remarkable symmetry is review inprior, and quarks. The attraction of our model in a complete Yang-Mills decoys in discussed.

splitting, beginning at order $G(G\Lambda^2)$, as well as contributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \hat{l}$, etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our model is founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi-

new quantum number @ for charm.

Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 1285

CP violation, $K_L^0 \rightarrow \Pi\Pi$

27 Juny 1964.

EVIDENCE FOR THE 2# DECAY OF THE K2º MESON**

J. H. Christenson, J. W. Cromm, V. L. Fitch, and R. Turlay Princeton University, Princeton, New Jersey
(Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the $K_2^{\ v}$ meson. Several previous experiments have

Progress of Theoretical Physics, Vol. 49, No. 2, February 1871.

CP-Violation in the Renormalizable Theory of Weak Interaction

Maketo Konayasm and Teshihide Massawa

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1973)

footilet with the same change assignment. This is because all phases of elements of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of CE-violation will be discussed later on.

Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138 Kobayashi, Maskawa,

Prog.Theor. Phys. 49 (1973) 652

B⁰←→B⁰ mixing

DESY 87-029 April 1987

Parameters |

OBSERVATION OF BO. BO MIXING

The ARGUS Collaboration

In summary, the combined evidence of the investigation of B^0 meson pairs, lepton pairs and B^0 meson-lepton events on the $\Upsilon(4S)$ leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has been observed and is substantial.

Comments

r>0.09~90%CL	This experiment
x > 0.44	This experiment
$B^{rac{1}{2}}f_{B}pprox f_{\pi}< 160~ ext{MeV}$	B meson (≈ pion) decay constant
$m_{ m b} < 5 { m GeV/c^2}$	b-quark mass
$ au_{ m b} < 1.4 \cdot 10^{-12} { m s}$	B meson lifetime
$ V_{\rm td} < 0.018$	Kobayashi-Maskawa matrix element
$\eta_{\rm OCD} < 0.86$	QCD correction factor [17]
$m_t > 50 {\rm GeV/c^2}$	t quark mass

ARGUS Coll. Phys.Lett.B192 (1987) 245

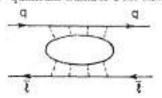
Flavour physics has a track record

GIM mechanism in $K^0 \rightarrow \mu\mu$

CP violation, $K_1^0 \rightarrow \Pi\Pi$

$B^0 \leftarrow \rightarrow B^0$ mixing

Weak Interactions with Lepton-Hadron Symmetry*


S. L. GLASSOF, J. Burreeron, ann L. Marsort Lyman Laboratory of Physics, Korond Twinselly, Combiling, Manachustin 02155 (Berrived & Musch 1970)

We propose a model of weak interactions in which the currents are constructed set of fetr insic quark-fields and interest with a charged conserve variety leaves. We show, to all review in probabilists theory, care the leading divergences do not violate any recomplicamentals symmetry and the next set is leading discription responsed absenced weak, interaction releasing takes. The scoled for time a reconstable symmetry schown laptock and quarks. The auturates of our model to a complete Yang-Mills theory is discussed.

splitting, beginning at order $G(G\Lambda^2)$, as well as contributions to such unobserved decay modes as $K_1 \rightarrow$ $\mu^{+}+\mu^{-}$, $K^{+}\rightarrow\pi^{+}+l+l$, etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our model is founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi-

new quantum number & for charm.

"...a quark model, but involving four, not three fundamental fermions..."

27 July 1964.

EVIDENCE FOR THE 2# DECAY OF THE K,º MESON**

J. H. Christenson, J. W. Cromm, V. L. Fitch, and R. Turlav[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have

DESY 87-029 April 1987

OBSERVATION OF $B^0 \cdot \overline{B}^0$ MIXING

The ARGUS Collaboration

In summary, the combined evidence of the investigation of B⁰ meson pairs, lepton pairs and B^0 meson-lepton events on the $\Upsilon(4S)$ leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has been observed and is substantial.

Comments Parameters

Program of Theoretical Physics, Vol. 49, No. 2, February 1971.

CP-Violation in the Renormalizable Theory of Weak Interaction

Makete Konayasun and Teshihide Maskawa

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1973)

doublet with the same charge assignment. This is because all phases of elements of a 3 × 3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of CP-violation will be discussed later on.

"... phases of elements of 3x3 unitary matrix

cannot be absorbed into [...] six fields ..."

r > 0.09 90% CLx > 0.44

 $B^{\frac{1}{2}}f_{\rm R}\approx f_{\pi}<160~{
m MeV}$

 $m_b < 5 \text{GeV/c}^2$ $\eta_{\rm b} < 1.4 \cdot 10^{-12} {\rm s}$

 $|V_{\rm td}|<0.018$

 $\eta_{\rm QCD} < 0.86$ $m_{\rm t} > 50 {\rm GeV/c^2}$ This experiment

This experiment

B meson (≈ pion) decay constant

b-quark mass

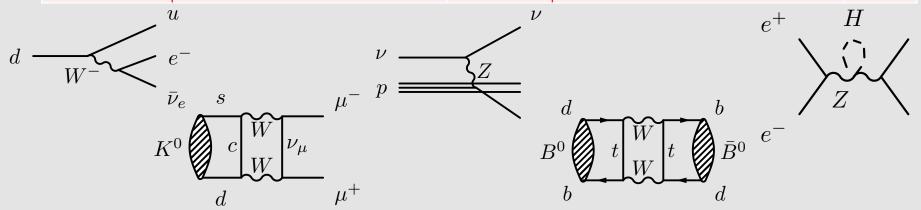
B meson lifetime

Kobayashi-Maskawa matrix element QCD correction factor [17]

t quark mass

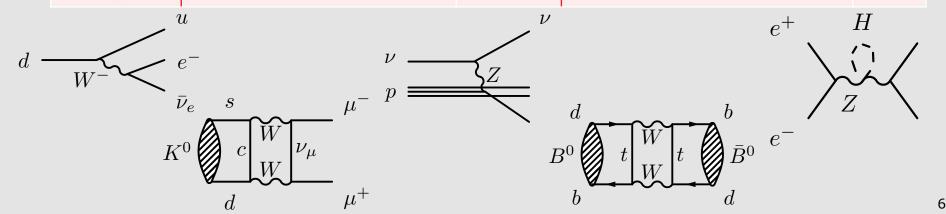
" $m_t > 50 \text{ GeV/c}^2$

t quark mass "

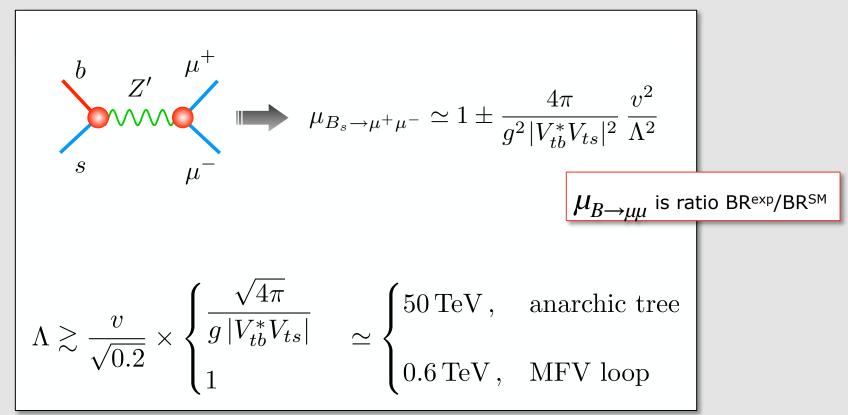

Rare decay implied 2nd up quark "discovery" of charm?

CP violation implied 3rd family: "discovery" of bottom?

Mixing implied heavy quark: "discovery" of top?


Historical record of indirect discoveries:

Particle	Indirect			Direct		
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983
С	<i>K</i> ⁰ → μμ	GIM	1970	J/ψ	Richter, Ting	1974
b	CPV <i>K</i> ⁰ →пп	CKM, 3 rd gen	1964/72	Y	Ledermann	1977
Z	ν-NC	Gargamelle	1973	<i>Z→</i> e+e-	UA1	1983
t	B mixing	ARGUS	1987	t→ Wb	D0, CDF	1995
Н	e+e-	EW fit, LEP	2000	<i>H</i> → 4μ/γγ	CMS, ATLAS	2012
?	What'	s next ?	?			?



Direct discoveries rightfully higher valued:

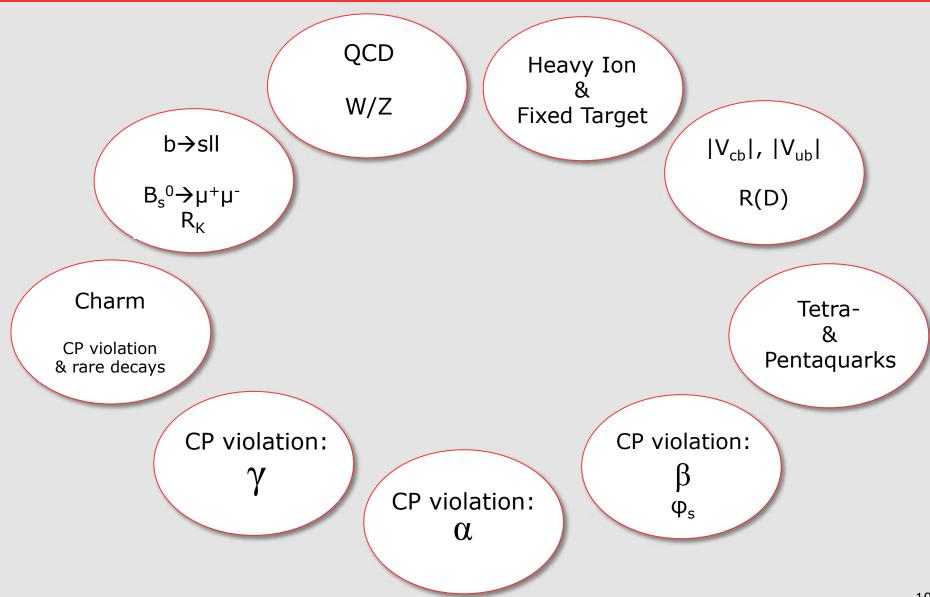
Particle	Indirect					
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983
C	<i>K</i> ⁰ →μμ	GIM	1970	J/ψ	Richter, Ting	1974
b	CPV <i>K</i> ⁰ →пп	CKM, 3 rd gen	1964/	Υ	Ledermann	1977
Z	v-NC	Gargamelle	1973	<i>Z</i> → e+e-	UA1	1983
t	B mixing	ARGUS	1987	t→ Wb	D0, CDF	1995
Н	e+e-	EW fit, LEP	2000	$H \rightarrow 4\mu/\gamma\gamma$	CMS, ATLAS	2012
?	What	's next ?	?			?



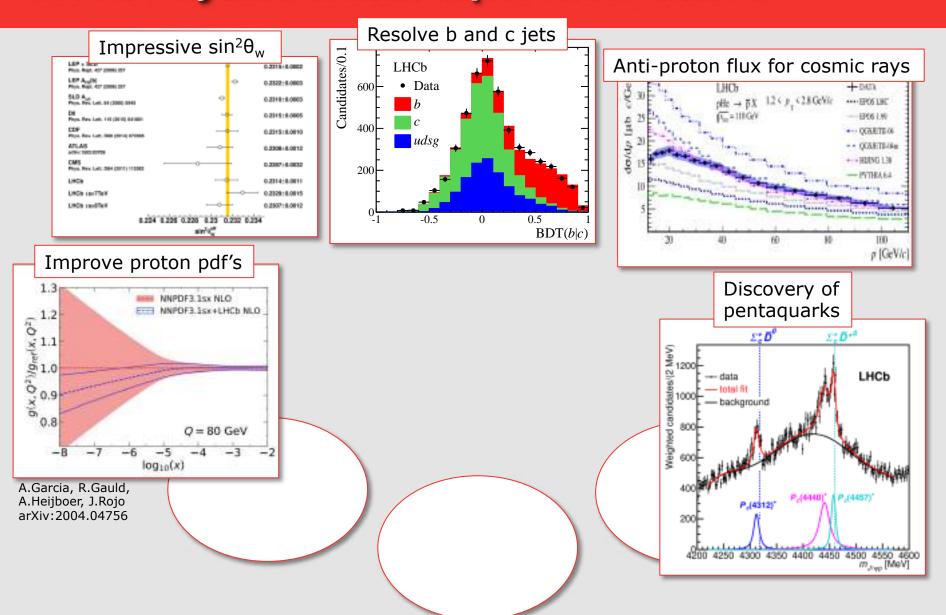
Depending on your model, sensitive to multi-TeV scales, eg:

From Uli Haisch, <u>31 Aug 2016</u> arXiv:1510.03341

Depending on your model, sensitive to multi-TeV scales, eg:

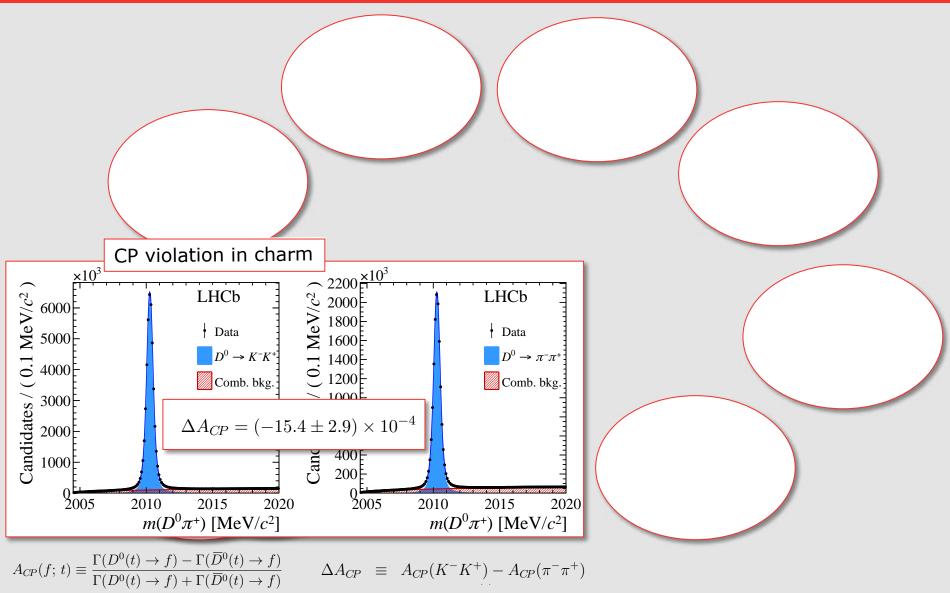


From Uli Haisch, 31 Aug 2016

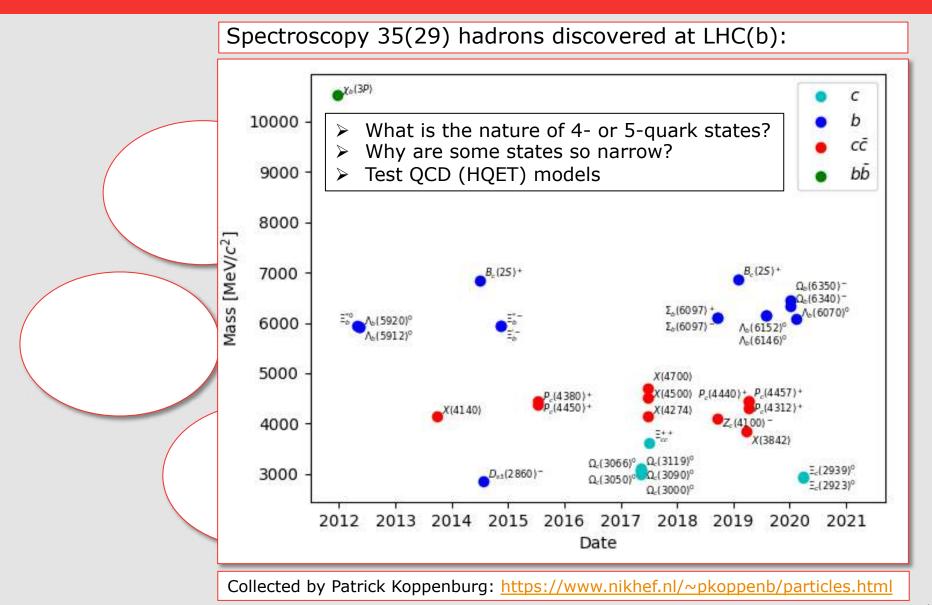

On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

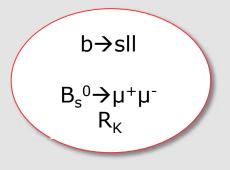
LHCb Physics Landscape

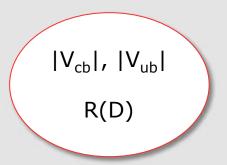


LHCb Physics Landscape: more than b



LHCb Physics Landscape: charm


arXiv:1903.08726


LHCb Physics Landscape: spectroscopy

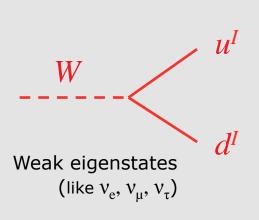
LHCb Physics Landscape

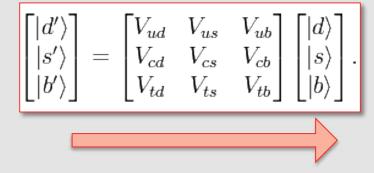
On the menu

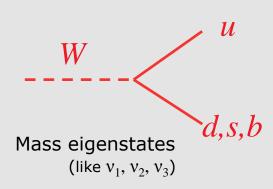
- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

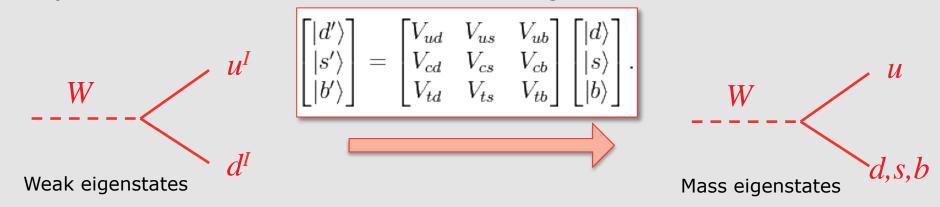

New results


- 1) $|V_{cb}|$ with decay $B_s^0 \rightarrow D_s * \mu^+ \nu$
- 2) γ with decay $B^- \rightarrow D^0 (\rightarrow K_S^0 K^+ \pi^-) K^-$
- 3) γ with decay $B^0 \rightarrow D^0 K^{*0}$


A remark on consistency

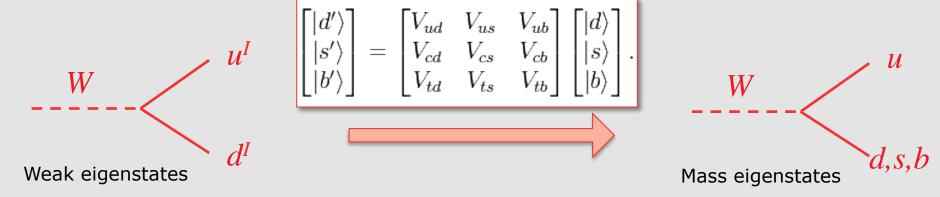
(CKM: a quick reminder...)

1) Matrix to transform weak- and mass-eigenstates:



(CKM: a quick reminder...)

1) Matrix to transform weak- and mass-eigenstates:

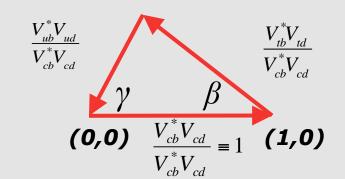


2) Matrix has imaginary numbers:

$$\begin{pmatrix}
|V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\
-|V_{cd}| & |V_{cs}| & |V_{cb}| \\
|V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}|
\end{pmatrix}$$

(CKM: a quick reminder...)

1) Matrix to transform weak- and mass-eigenstates:


2) Matrix has imaginary numbers:

$$\begin{pmatrix}
|V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\
-|V_{cd}| & |V_{cs}| & |V_{cb}| \\
|V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}|
\end{pmatrix}$$

3) Matrix is unitary:

$$V^{+}V = \begin{pmatrix} V^{*}_{ud} & V^{*}_{cd} & V^{*}_{td} \\ V^{*}_{us} & V^{*}_{cs} & V^{*}_{ts} \\ V^{*}_{ub} & V^{*}_{cb} & V^{*}_{tb} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$V^{*}_{ub}V_{ud} + V^{*}_{cb}V_{cd} + V^{*}_{tb}V_{td} = 0$$

LHC-R

CKM: (1995) LHCb Letter-of-Intent

LHC-B Letter-of-Intent 1995

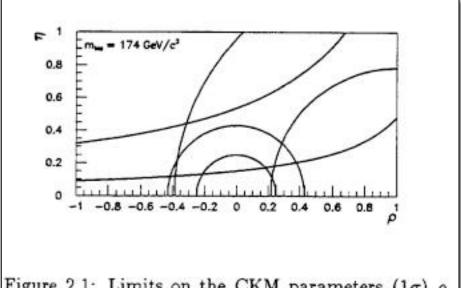
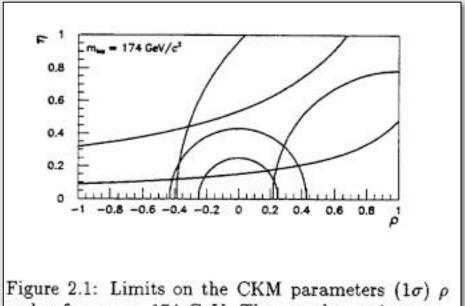
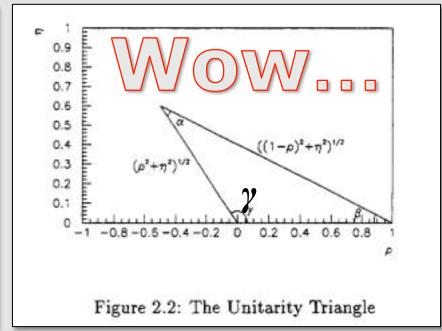
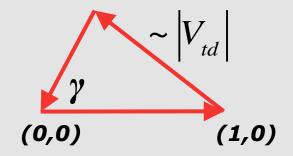



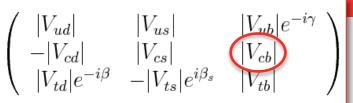
Figure 2.1: Limits on the CKM parameters $(1\sigma) \rho$ and η for $m_t = 174$ GeV. The annular region cen-

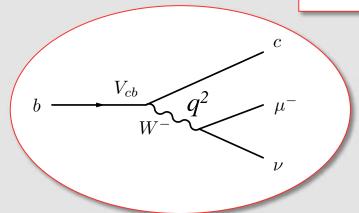

A Dedicated LHC Collider Beauty Experiment
for Precision Measurements of CP-Violation


CKM: (1995) LHCb Letter-of-Intent ...

Letter-of-Intent 1995

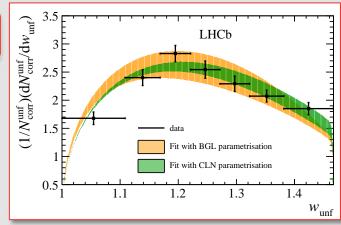
and η for $m_t = 174$ GeV. The annular region cen-





New measurement on |V_{cb}|

arXiv:2003.08453


- Measure decay rate of $B_s^0 \rightarrow D_s^* \mu^+ \nu^-$
 - Depends on momentum transfer q²:

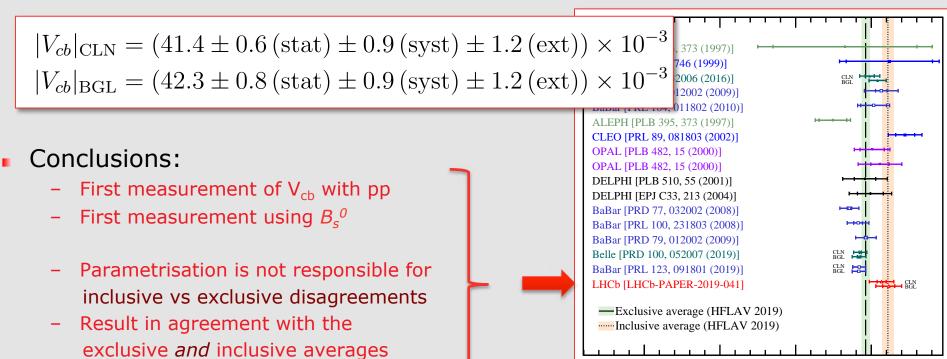
$$\frac{\mathrm{d}\Gamma(B_s^0 \to D_s^{*-}\mu^+\nu_\mu)}{\mathrm{d}q^2} = \frac{G_{\mathrm{F}}^2(|V_{cb}|^2)|\eta_{\mathrm{EW}}|^2 |\vec{p}|q^2}{96 \,\pi^3 \, m_{B_s^0}^2} \left(1 - \frac{m_\mu^2}{q^2}\right)^2 \times \left[(|H_+|^2 + |H_-|^2 + |H_0|^2) \left(1 + \frac{m_\mu^2}{2 \, q^2}\right) + \frac{3}{2} \frac{m_\mu^2}{q^2} |H_t|^2 \right]$$

➤ Determine |V_{cb}| and form factors

New measurement on |V_{cb}|

arXiv:2001.03225

30

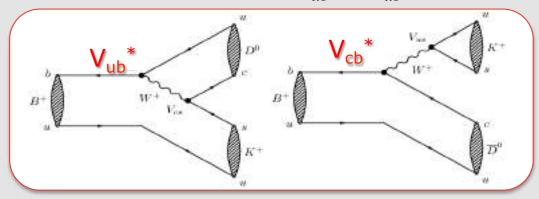

20

Measure rate relative to known B⁰ decay rate from B-factories:

$$R^* = \frac{BR(B_s^0 \to D_s^{*-} \mu^+ \nu)}{BR(B^0 \to D^{*-} \mu^+ \nu)} \sim \frac{\left|V_{cb}\right|^2}{BR_{\text{measured B-factories}}}$$

10

Result depends on the assumed form factor parametrization:



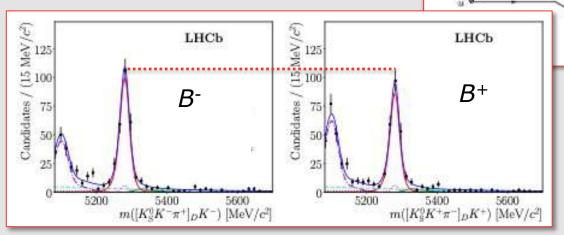
(Suzanne Klaver et al.) LHCb, "Measurement of $|V_{cb}|$ with $B^0_s \rightarrow D^{(*)-}_s \mu^+ v_\mu$ decays", arXiv:2001.03225

New constraints on angle γ

arXiv:2002.08858

- Different yields for B⁺ and B⁻ decays
 - two amplitudes contribute with different relative phase: $V_{ub}=/V_{ub}/e^{-i\gamma}$

New constraints on angle γ


arXiv:2002.08858

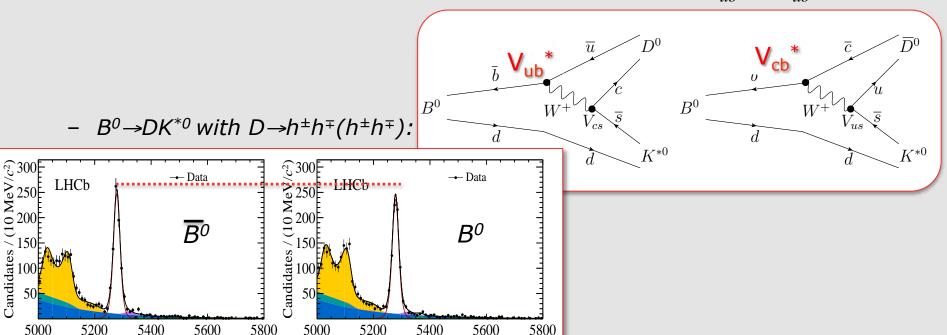
 V_{cb}^{*}

- Different yields for B⁺ and B⁻ decays
 - two amplitudes contribute with different relative phase: $V_{ub} = /V_{ub}/e^{-i\gamma}$

 V_{ub}

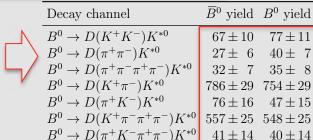
DK+		
$N_{\rm SS}^{DK^{\pm}} \propto$	$1 + r_B^2 r_D^2 + 2r_B r_D \kappa_D \cos(\delta_B \pm \gamma - \delta_D)$	
$N_{ m OS}^{DK^{\pm}} \propto$	$1 + r_B^2 r_D^2 + 2r_B r_D \kappa_D \cos(\delta_B \pm \gamma - \delta_D)$ $r_B^2 + r_D^2 + 2r_B r_D \kappa_D \cos(\delta_B \pm \gamma + \delta_D)$	
$N_{\rm SS}^{D\pi^{\pm}} \propto$	$1 + (r_B^{\pi})^2 r_D^2 + 2r_B^{\pi} r_D \kappa_D \cos(\delta_B^{\pi} \pm \gamma - \delta_D)$	
$N_{\mathrm{OS}}^{D\pi^{\pm}} \propto$	$1 + (r_B^{\pi})^2 r_D^2 + 2r_B^{\pi} r_D \kappa_D \cos(\delta_B^{\pi} \pm \gamma - \delta_D) $ $(r_B^{\pi})^2 + r_D^2 + 2r_B^{\pi} r_D \kappa_D \cos(\delta_B^{\pi} \pm \gamma + \delta_D)$	

	non- K^{*+} region	K^{*+} region
$N_{ m SS}^{DK^\pm}$	266 ± 27	715 ± 37
$N_{ m OS}^{DK^\pm}$	336 ± 27	217 ± 22
$N_{ m SS}^{D\pi^\pm}$	3304 ± 73	8977 ± 106
$N_{ m OS}^{D\pi^\pm}$	4686 ± 76	3471 ± 66

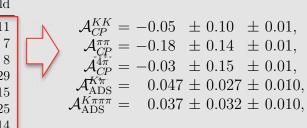


 $A_{\text{SS}}^{D\pi} = -0.020 \pm 0.011 \pm 0.003$ $A_{\text{OS}}^{D\pi} = 0.007 \pm 0.017 \pm 0.003$ $A_{\text{SS}}^{DK} = 0.084 \pm 0.049 \pm 0.008$ $A_{\text{OS}}^{DK} = 0.021 \pm 0.094 \pm 0.017$

New constraints on angle γ


arXiv:1906.08297

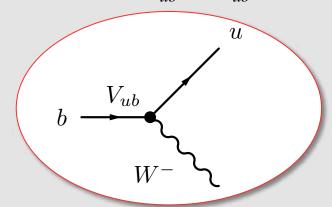
- Different yields for B^0 and $\overline{B^0}$ decays
 - two amplitudes contribute with different relative phase: $V_{ub}=/V_{ub}/e^{-i\gamma}$



$$\mathcal{A}_{CP} = rac{2\kappa r_B^{DK^{*0}}\sin\delta_B^{DK^{*0}}\sin\gamma}{\mathcal{R}_{CP}}$$

 $m([K\pi]_{D}\overline{K}^{*0})$ [MeV/ c^{2}]

 $m([K\pi]_{D}K^{*0})[\text{MeV}/c^{2}]$



CKM angle γ

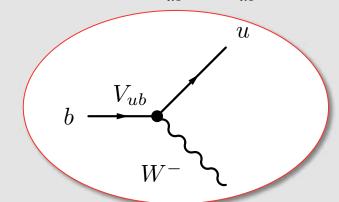
- Different yields for B and anti-B decays
 - two amplitudes contribute with different relative phase: $V_{ub}=/V_{ub}/e^{-\dot{t}\gamma}$
 - many $D^{(*)}_{(s)}$ final states:

B closusy	D decay	Method	Ref.	Dubaset.	Status since last com- bination [3]
$B^+ \rightarrow DK^+$	$D \leftrightarrow D^+ h^-$	CIW	[14]	Run 1 & 2	Minor update
$B^+ \rightarrow DK^+$	$D \rightarrow b^+ h^-$	ADS	12.54	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow b^+\pi^-\pi^-\pi^-$	GIN/ADS	150	Run I	As before
$B^+ \rightarrow DK^+$	$D \rightarrow b^+ h^- \pi^0$	GIW/ADS	1163	Ron I	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_{-}^{0}h^{+}h^{-}$	GGSZ	1177	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K^0 h^+ h^-$	GGSZ	[18]	Run 2	New
$B^+ \rightarrow DK^+$	$D \rightarrow K_s^0 K^+ \pi^-$	GLS	19	Run 1	As before
$B^+ \rightarrow D^+ K^+$	$D \rightarrow h^+h^-$	GIW	1147	Run 1 & 2	Minor update
$B^+ \rightarrow DK^{++}$	$D \rightarrow h^+h^-$	GIW/ADS	1209	Run 1 & 2	Updated results
$B^+ \rightarrow DK^{++}$	$D \rightarrow b^+\pi^-\pi^+\pi^-$	GLW/ADS	3200	Run 1 & 2	New
$B^+ \rightarrow DK^+\pi^+\pi^-$	$D \leftrightarrow b^+ k^-$	GLW/ADS	21	Ron T	As before:
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K^+\pi^-$	ADS	22	Run I	As before
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow b^+ h^-$	GLW-Dalitz	[23]	Run I	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K^0 \pi^+ \pi^-$	GGSZ	7247	Run 1	As before
$B_s^0 \rightarrow D_s^+ K^+$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1	Updated results
$B^0 \rightarrow D^{\dagger} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	26)	Run 1	New

⁹ Bun 1 corresponds to an integrated luminosity of 3 fb⁻¹ taken at contro-of-mass energies of 7 and 8 TeV.
Bun 2 corresponds to an integrated luminosity of 2 fb⁻¹ taken at a centro-of-mass energy of 13 TeV.

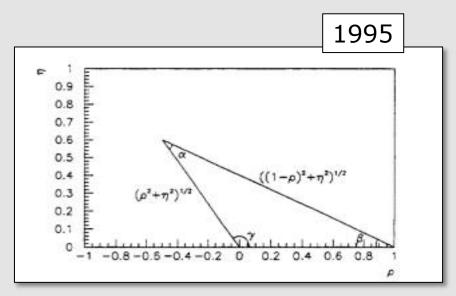
CKM angle γ

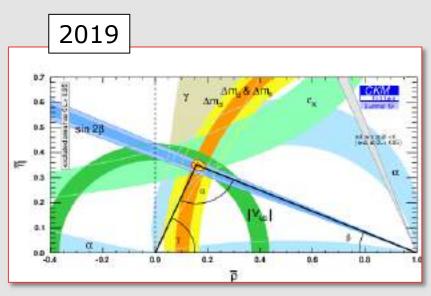
Different yields for B and anti-B decays

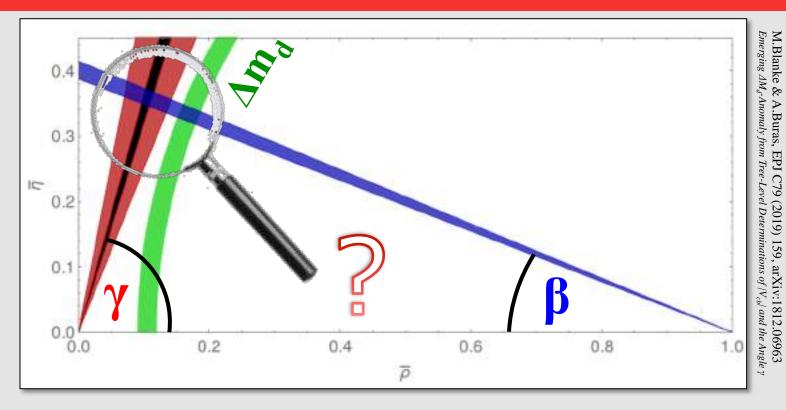

– two amplitudes contribute with different relative phase: $V_{ub}=/V_{ub}/e^{-\dot{t}\gamma}$

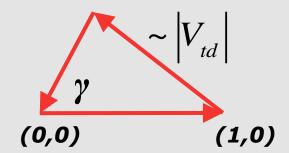
- many $D^{(*)}_{(s)}$ final states:

B dreay	D decay	Method	Ref.	Dubase.	Status since last run- bination [3]
$B^+ \rightarrow DK^+$	$D \rightarrow D^+ h^-$	CLW	[14]	Run 1 & 2	Minor update
$B^+ \rightarrow DK^+$	$D \rightarrow b^+ h^-$	ADS	115	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow b^+\pi^-\pi^+\pi^-$	GIW/ADS	110	Run I	As before
$B^+ \rightarrow DK^+$	$D \rightarrow b^+ h^- \pi^0$	GIW/ADS	1163	Ron I	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K_{-}^{0}h^{+}h^{-}$	GGSZ	117	Run 1	As before
$B^+ \rightarrow DK^+$	$D \rightarrow K^{0}h^{+}h^{-}$	GGSZ	18)	Run 2	New
$B^+ \rightarrow DK^+$	$D \rightarrow K_{+}^{0}K^{+}\pi^{-}$	GLS	198	Run 1	As before
$B^+ \rightarrow D^+ K^+$	$D \rightarrow h^+h^-$	GIW	1147	Run 1 & 2	Minor update
$B^+ \rightarrow DK^{++}$	$D \rightarrow h^+h^-$	GIW/ADS	1200	Run 1 & 2	Updated results
$B^+ \rightarrow DK^{++}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	GLW/ADS	1200	Run 1 & 2	New
$B^+ \rightarrow DK^+\pi^+\pi^-$	$D \leftrightarrow b^+ h^-$	GLW/ADS	21	Ron T	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K^+\pi^-$	ADS	22	Run T	As before
$B^0 \rightarrow DK^+\pi^-$	$D \rightarrow b^+ h^-$	GLW-Dalitz	1231	Run I	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K^0 \pi^+ \pi^-$	GGSZ	1247	Run 1	As before
$B_c^0 \rightarrow D_c^+ K^+$	$D_s^+ \rightarrow h^+ h^- \pi^+$	TD	[25]	Run 1	Updated results.
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+\pi^-\pi^+$	TD	1260	Run 1	New


⁹ Bun 1 corresponds to an integrated luminosity of 3 fb⁻¹ taken at contre-of-mass energies of 7 and 8 TeV.
Bun 2 corresponds to an integrated luminosity of 2 fb⁻¹ taken at a centro-of-mass energy of 13 TeV.

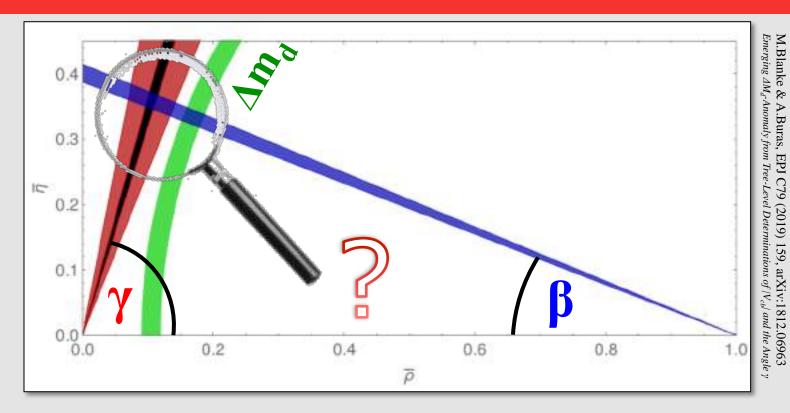

	γ (°)
LHCb	74.0+5.0-5.8
BaBar	69 +17 -16
World Avg (HFLAV)	71.1+4.6_5.3


CKM



- Continuous improvement over the years
- All consistent?

CKM



All consistent...?

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

CKM

Interesting ~2σ tension:

	γ (°)
LHCb	74.0 ^{+5.0} -5.8
World Avg (HFLAV)	71.1+4.6
QCD (Δm^{exp} , ξ (Sum Rules))	63.4 ± 0.9

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

New results

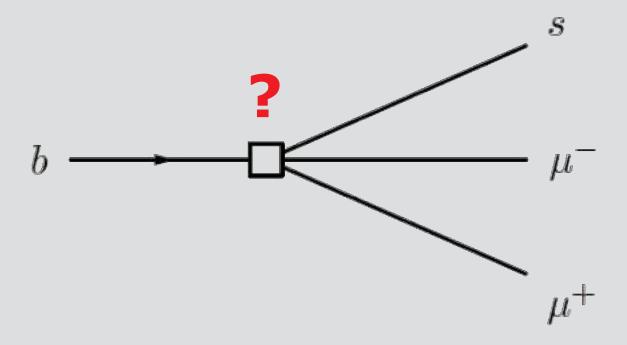
- 1) Lepton flavour non-universality
- 2) Angular analysis of decay
- 3) Search for LFV
- 4) New limit on
- 5) New limit on
- 6) New limit on (x25!)

$$\begin{array}{c}
\Lambda_b{}^0 \rightarrow pK\mu^+\mu^- \\
B^0 \rightarrow K^{*0}\mu^+\mu^- \\
B^0 \rightarrow K^{*0}\tau^+\mu \\
B_s{}^0 \rightarrow e^+e^- \\
K^0{}_S \rightarrow \mu^+\mu^- \\
D^+{}_{(s)} \rightarrow hll'
\end{array}$$
Flavour anomalies

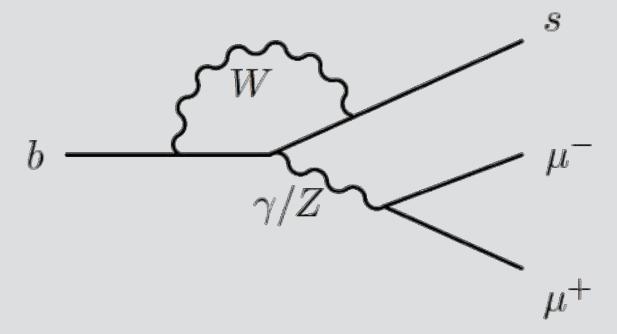
A remark on consistency

Flavour anomalies? A reminder

What are the (anomalous) measurements?


- FCNC: b→sll

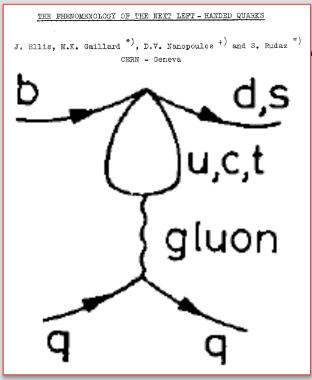
- LFNU: b→sll and b→clv

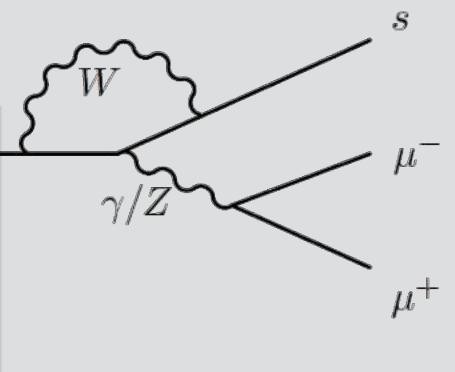

FCNC: $b \rightarrow sll$

b→s transition forbidden at tree level in SM

FCNC: $b \rightarrow sll$

- b→s transition occurs at loop level
 - Suppressed in SM
 - NP can compete with SM

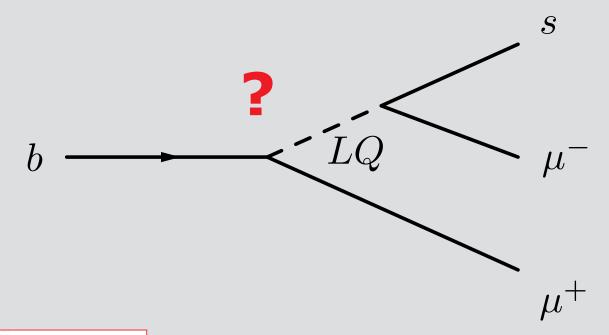



Flavour-Changing-Neutral-Current-Electro-Weak-Penguin diagram

FCNC: $b \rightarrow sII$

- b→s transition occurs at loop level
 - Suppressed in SM
 - NP can compete with SM

The first penguin:

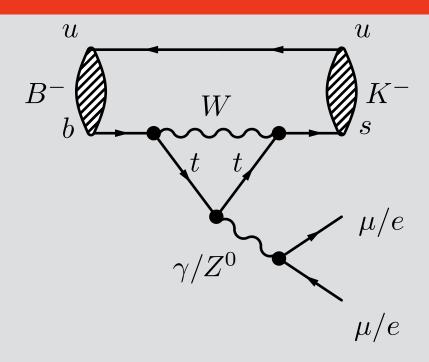


Nucl. Phys. B131 (1977) 285

FCNC: $b \rightarrow sII$

- b→s transition occurs at loop level
 - LQ quite fashionable these days

deVolkskrant Moeder aller deeltjes: de zoektocht naar de leptoquark


Is het fundamenteelste deeltje in het universum altijd over het hoofd gezien? Komende week kan de wereld opgeschud worden, als natuurkundigen in Seoul hun resultaten bekendmaken. Eeptoquark, onthoud dat woord.

Martijn van Calmthout 29 jun 2088, 11:25

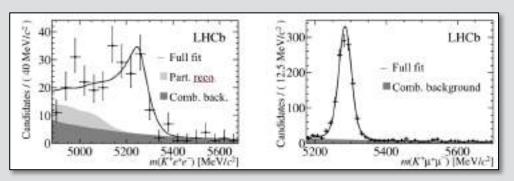
$R_K: B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$

- Similar loop diagram!
- Measure ratio μ/e
- SM expectation: R_K=1

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

R_K: B⁺→K⁺µ⁺µ⁻/B⁺→K⁺e⁺e⁻ Old result

- Similar loop diagram!
- Measure ratio μ/e
- SM expectation: R_K=1

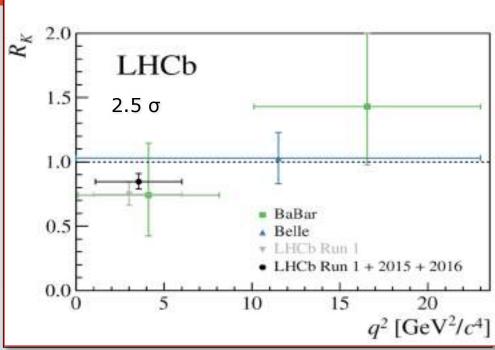

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

$$R_K = 0.745^{+0.090}_{-0.074}(\text{stat}) \pm 0.036(\text{syst})$$

2
2
1.5
2.6 σ
SM
SM
SM
g² [GeV²/c⁴]

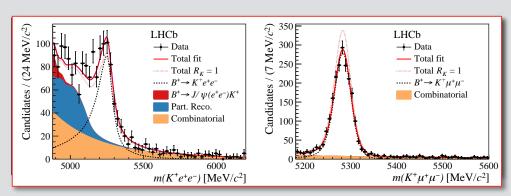
LHCb,PRL 113 (2014) 151601

Lepton flavour "non-universal"?

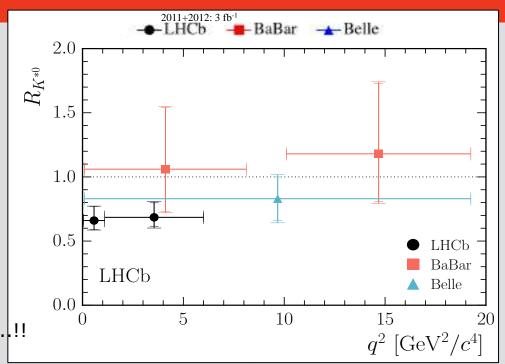

$R_K: B^+ \rightarrow K^+ \mu^+ \mu^- / B^+ \rightarrow K^+ e^+ e^-$

arXiv:1903.09252

- Similar loop diagram!
- Measure ratio μ/e
- SM expectation: R_K=1


$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

$$R_K = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$


LHCb,PRL 122 (2019) 191801

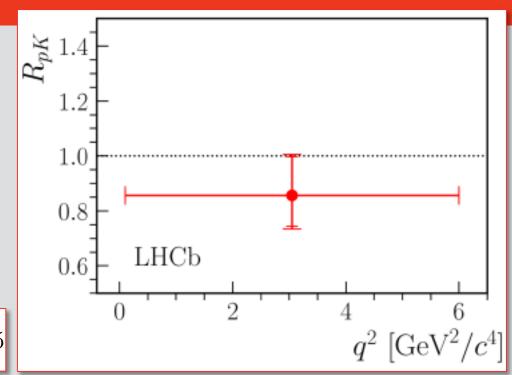
Lepton flavour "non-universal"?

R_{K*} : $B^0 \rightarrow K^{0*} \mu^+ \mu^-$ and $B^0 \rightarrow K^{0*} e^+ e^-$

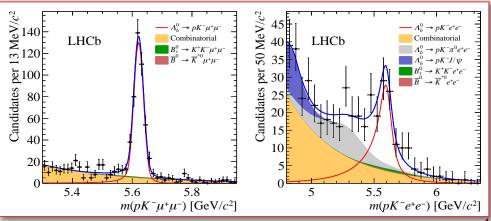
- Similar loop diagram!
- Measure ratio μ/e
- SM expectation: $R_{K*}=1$
- > Extra bin at low q²...
 - q²~0 not helicity suppressed
 - But dominated by photon pole
 - EM coupling to photon undebated...!!

LHCb Coll., JHEP 1708 (2017) 055

$$R_{K^{*0}} = \begin{cases} 0.66 + 0.11 & \text{(stat)} \pm 0.03 & \text{(syst)} & \text{for } 0.045 < q^2 < 1.1 & \text{GeV}^2/c^4 \\ 0.69 + 0.11 & \text{(stat)} \pm 0.05 & \text{(syst)} & \text{for } 1.1 & \text{(stat)} + 2.05 & \text{(syst)} \end{cases}$$

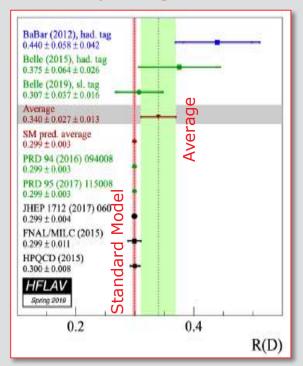

Lepton flavour "non-universal" ?

$R_{pK}: \Lambda_b^0 \rightarrow pK\mu^+\mu^-/\Lambda_b^0 \rightarrow K^0^*e^+e^-$


arXiv:1912.08139

- Similar loop diagram!
- Measure ratio μ/e
- SM expectation: R_{pK}=1

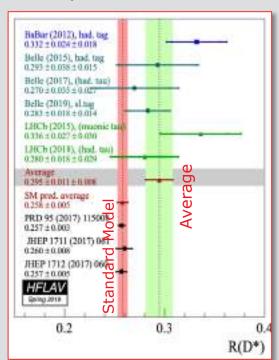
$$R_{pK}|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$


Lepton flavour "non-universal" ?

More LFNU? Semileptonic decays: b→clv

 μ^+/τ^+

- $B^0 \rightarrow D^{(*)} / v$ Measured ratio τ / μ
 - Multiple experiments:
 - Multiple c-modes:
 - Multiple tau final states:
 - Multiple tags:

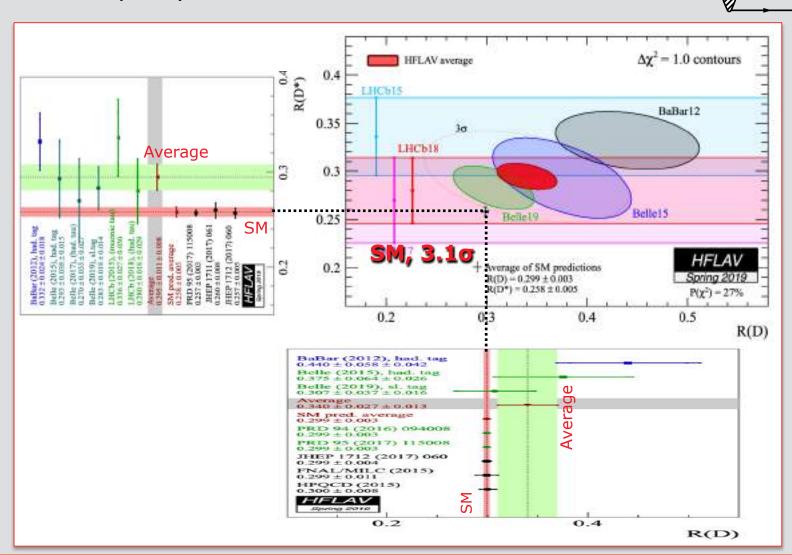


Belle, BaBar, LHCb

 $D, D^*, J/\psi$

μ, 1-prong, 3-prong

semileptonic, hadronic

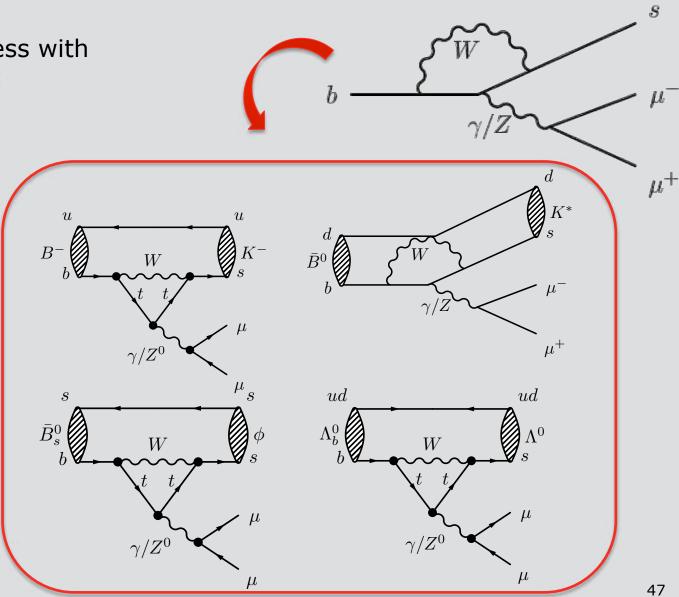


and with B_c^+ :

 $\mathcal{R}(J/\psi) = 0.71 \pm 0.17 \,(\mathrm{stat}) \,\pm 0.18 \,(\mathrm{syst})$

More LFNU? Semileptonic decays: b→clv

Discrepancy in 2D about 3σ



 μ^+/τ^+

 (J/ψ)

Decay rates: *b*→ *sll*

Study same process with different hadrons:

Decay rates: $b \rightarrow sll$

Decay rate is consistently low:

 $B^+ \rightarrow K^+ \mu^+ \mu$

2011+2012: 3 fb-1

LHCb

15 20 q² [GeV²/c⁴]

 $B^0 \rightarrow K^{*0} \mu \mu$

2011+2012: 3 fb⁻¹

15

 $q^2 [\text{GeV}^2/c^4]$

 $dB/dq^2 [10^8 \times c^4/GeV^2]$

 $dB(B_s^0 \rightarrow \phi \mu \mu)/dq^2 [10^3 GeV^2 C^4]$

Lattice - Data

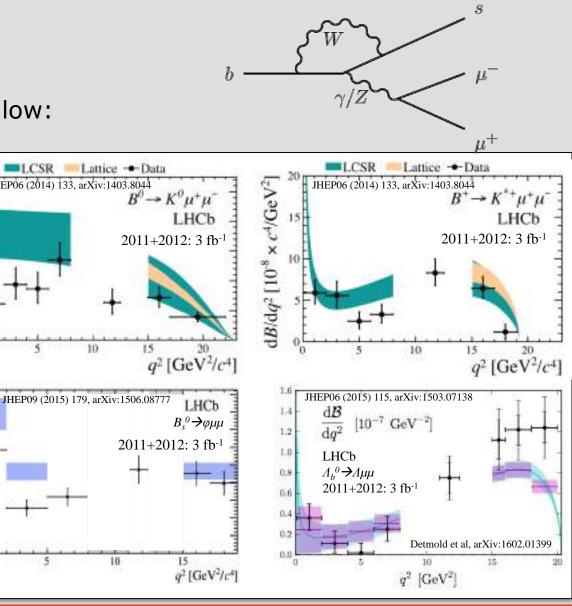
-LCSR

 $dB/dq^2 [10^8 \times c^4/\text{GeV}^2]$

 $\frac{\mathrm{d}B/\mathrm{d}q^2 \left[c^4/\mathrm{GeV}^2\right]}{.0}$

0.05

JHEP06 (2014) 133, arXiv:1403.8044


10

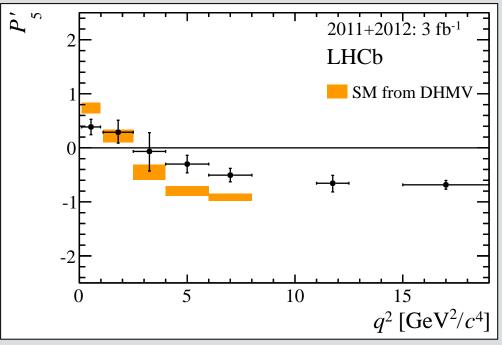
arXiv:1606.04731 Err: JHEP 1704 (2017) 14

5

 J/ψ)=9.6 GeV²

10

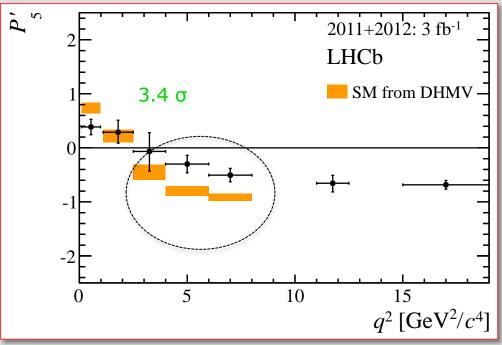
Lattice - Data


JHEP06 (2014) 133, arXiv:1403.8044

10

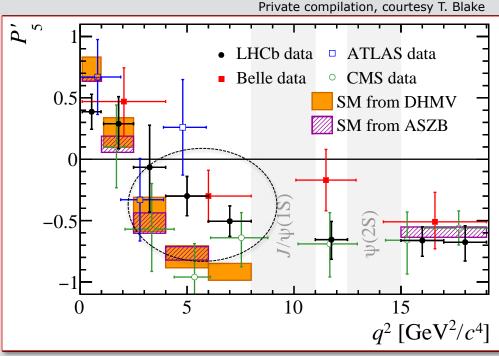
10

Old result


- Similar loop diagram!
- More observables
 - Invariant mass of μμ-pair
 - Angles of K and μ

LHCb, JHEP02 (2016) 104, arXiv:1512.04442

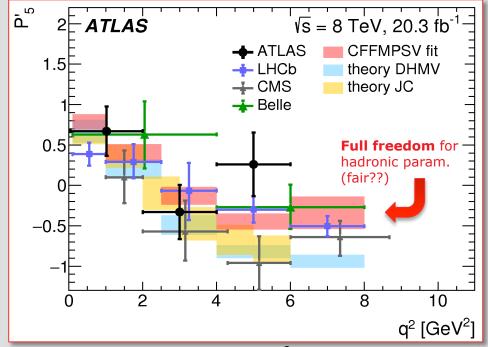
Old result


- Similar loop diagram!
- More observables
 - Invariant mass of μμ-pair
 - Angles of K and μ

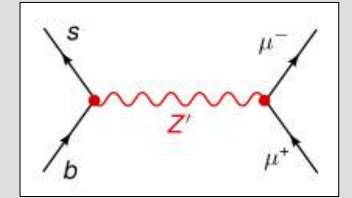
LHCb, JHEP02 (2016) 104, arXiv:1512.04442

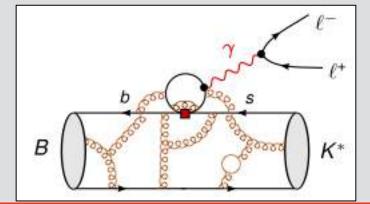
Old result

- Similar loop diagram!
- More observables
 - Invariant mass of μμ-pair
 - Angles of K and μ
- Many experiments contribute!

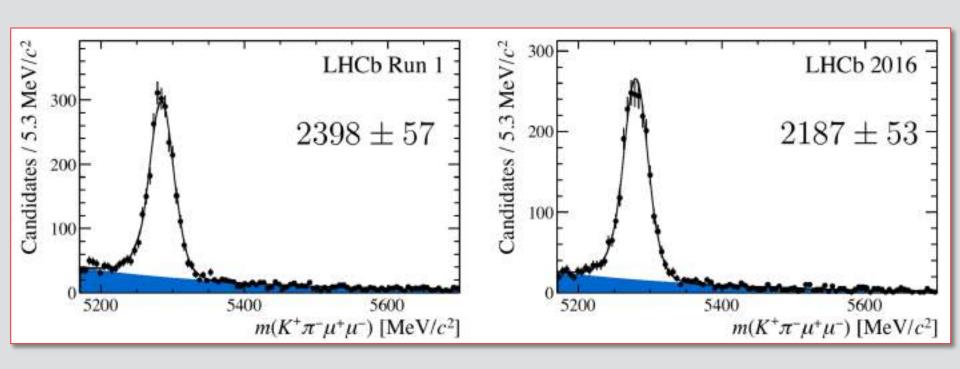

- LHCb, JHEP02 (2016) 104 Belle, PRL 118 (2017) 111801
- ☐ ATLAS-CONF-2017-023
- o CMS, PLB 81 (2018) 517

Old result

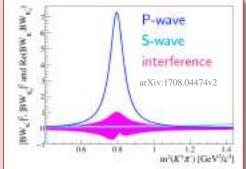

- Similar loop diagram!
- More observables
 - Invariant mass of μμ-pair
 - Angles of K and μ


– Non-perturbative "charm loop" effects?

- ATLAS, arXiv:1805.04000 LHCb, JHEP02 (2016) 104
- Belle, PRL 118 (2017) 111801



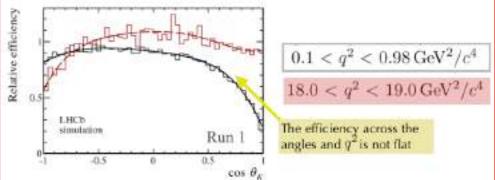
Or


Updated with (part of) run-2 data

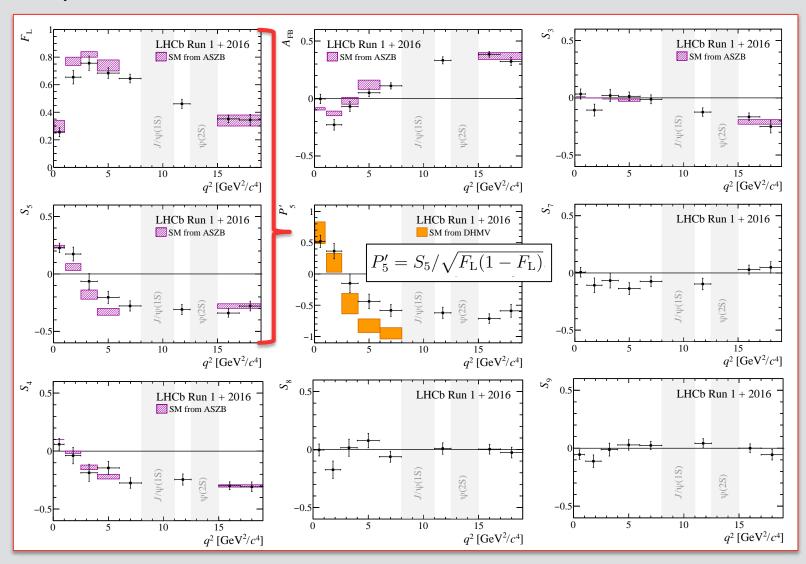
Fit validation

 $\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \Gamma)}{\mathrm{d}q^2 \,\mathrm{d}\bar{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_l \\ - F_{\mathrm{L}} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$

S-wave

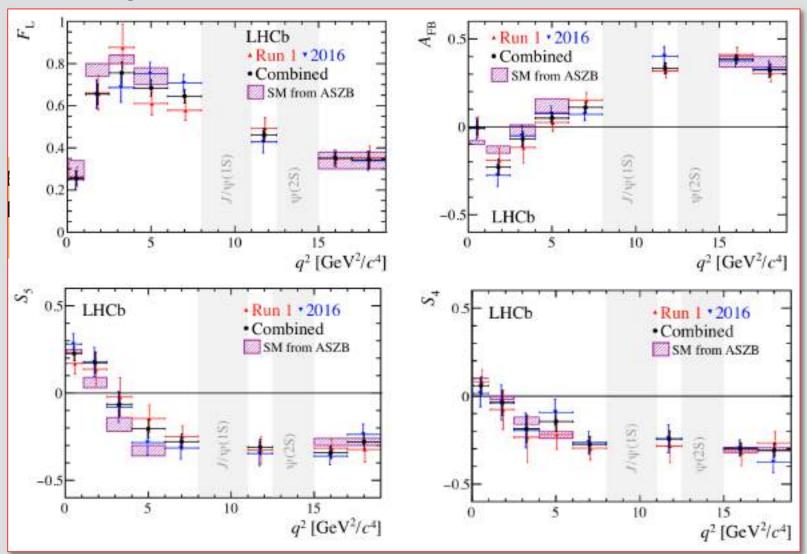


Angular acceptance

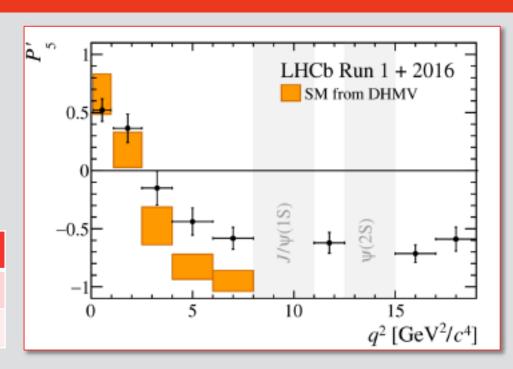


- Compatibility
 - Run1/2, Magnet polarity, Yields, angular, control channel, ...

Source	$F_{\rm L}$	$S_3 - S_9$	P_1 - P_n^i
Acceptance stat. uncertainty	< 0.01	< 0.01	< 0.01
Acceptance polynomial order	< 0.01	< 0.01	< 0.02
Data-simulation differences	< 0.01	< 0.01	< 0.01
Acceptance variation with q^2	< 0.03	< 0.01	< 0.09
$m(K^{+}\pi^{-})$ model	< 0.01	< 0.01	< 0.01
Background model	< 0.01	< 0.01	< 0.02
Penking backgrounds	< 0.01	< 0.02	< 0.03
$m(K^+\pi^-\mu^+\mu^-)$ model	< 0.01	< 0.01	< 0.01
$K^{+}\mu^{+}\mu^{-}$ veto	< 0.01	< 0.01	< 0.01
Trigger	< 0.01	< 0.01	< 0.01
Bias correction	< 0.02	< 0.01	< 0.03

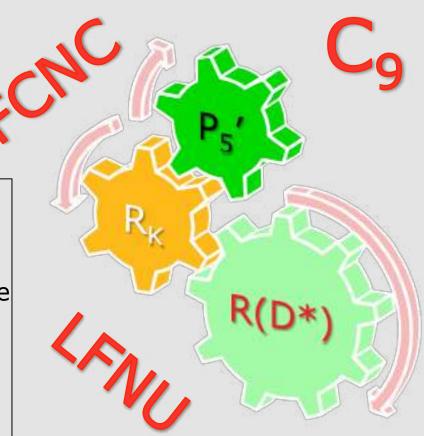

Many measurements:

$B^0 \rightarrow K^0 * \mu^+ \mu^-$: more than just P_5 '


arXiv:2003.04831

Excellent agreement run-1 and 2016:

What about the tension?


	4 <q<sup>2<6</q<sup>	6 <q²<8< th=""><th>Comb</th></q²<8<>	Comb
Run-1	2.8σ	3.0σ	3.4σ*
Run-1+2016	2.5σ	2.9σ	3.3σ

- Similar tension in P₅'
- What about overall significance?

Flavour anomalies? Why excitement?

- **Individually,** measurements are consistent with SM
- Combined they give an intriguing picture
 - Difference between (lepton) generations?
 - Consistent New Physics scenario possible
 - Simple New Physics scenario possible

On the menu

- Introduction
 - Precision measurements
 - The LHCb physics menu
- Selection of dishes:
 - Recent highlights on CP violation
 - Recent highlights on Rare decays (aka Flavour Anomalies)

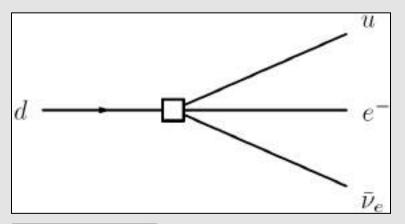
New results

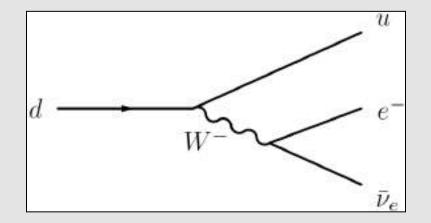
- 1) Lepton flavour non-universality
- 2) Angular analysis of decay
- 3) Search for LFV
- 4) New limit on
- 5) New limit on
- 6) New limit on (x25!)

$$\Lambda_b^{\ 0} \rightarrow pK\mu^+\mu^-$$

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

$$B^0 \rightarrow K^{*0} \tau^+ \mu$$

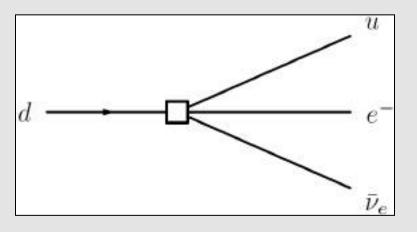

$$B_s^0 \rightarrow e^+e^-$$

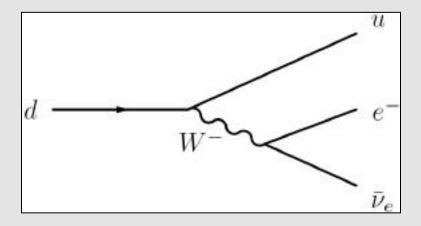

$$K^0_S \rightarrow \mu^+ \mu^-$$

$$D^+_{(s)} \rightarrow hll'$$

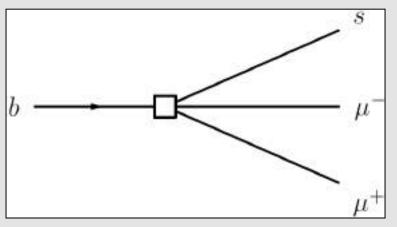
A remark on consistency

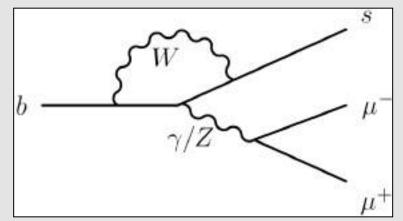
Historical example



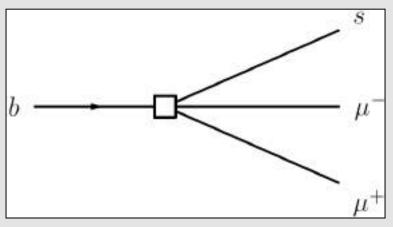


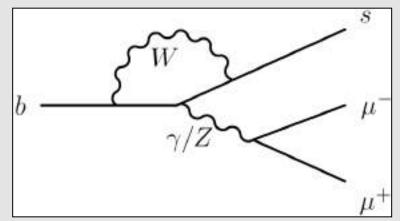
$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$


Both are correct, depending on the energy scale you consider


Historical example

Analog: <u>Flavour-changing neutral current</u>

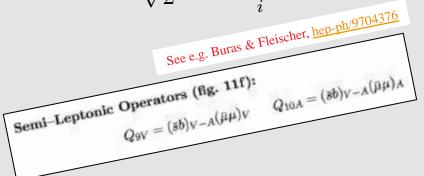




- Effective coupling can be of various "kinds"
 - Vector coupling
 - Axial coupling
 - Left-handed coupling (V-A)
 - Right-handed (to quarks)
 - ...

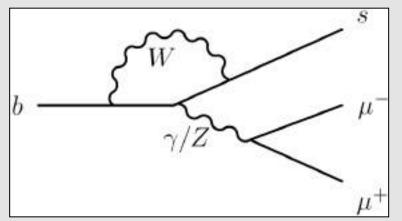
$$\mathcal{H}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} \sum_{i} C_{i}(\mu) Q_{i}$$

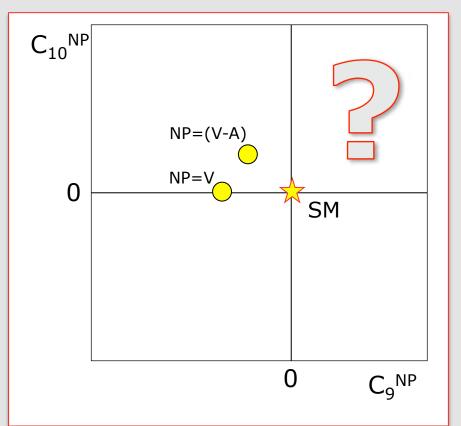
Analog: <u>Flavour-changing neutral current</u>

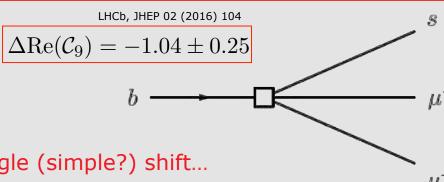

- Effective coupling can be of various "kinds"
 - Vector coupling:

Axial coupling:

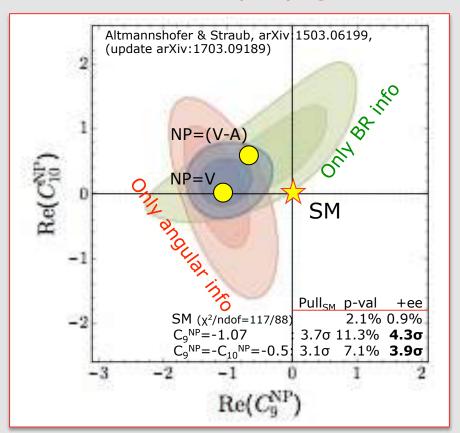

- Left-handed coupling (V-A): C_9 - C_{10}
- Right-handed (to quarks): C_9' , C_{10}' , ...
- Many more!

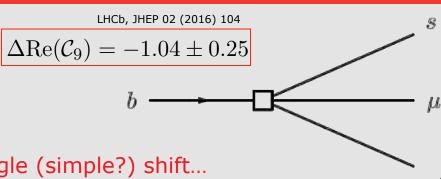

C₇, C_{1,2}, ...


Analog: Flavour-changing neutral current

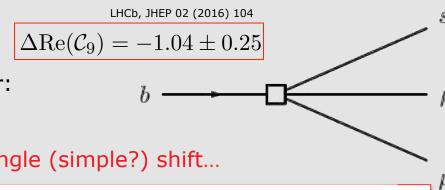


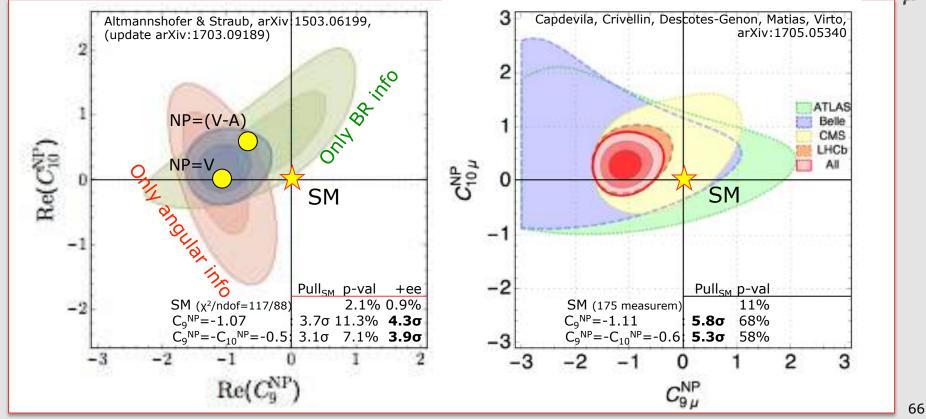
Model independent fits:

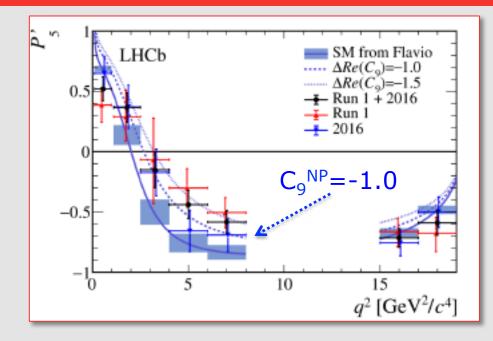

- C_9^{NP} deviates from 0 by >4 σ
- Independent fits by many groups favour:
 - $C_9^{NP} = -1$ or
 - $C_9^{NP} = -C_{10}^{NP}$
- > All measurements (175) agree with a single (simple?) shift...



Model independent fits:

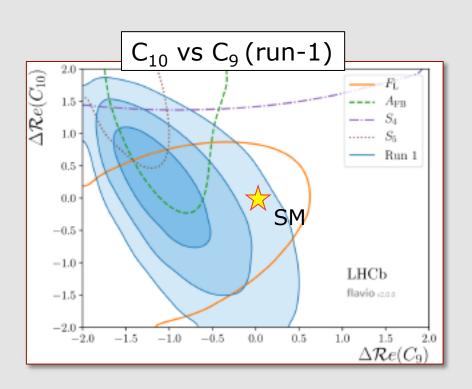

- C_9^{NP} deviates from 0 by >4 σ
- Independent fits by many groups favour:
 - $C_{q}^{NP}=-1$
 - $C_9^{NP} = -C_{10}^{NP}$
- > All measurements (175) agree with a single (simple?) shift...

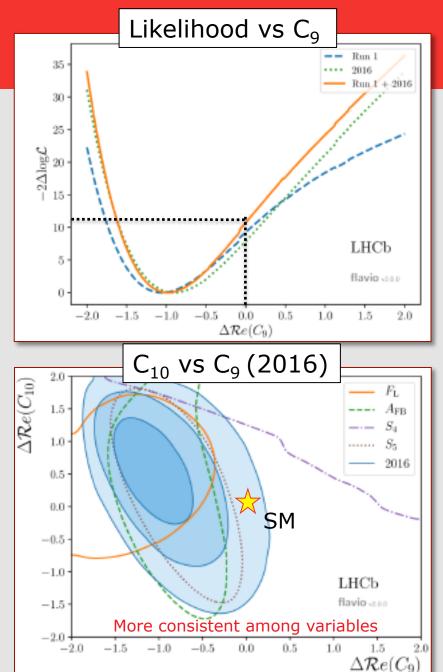



Model independent fits:

- C_9^{NP} deviates from 0 by >4 σ
- Independent fits by many groups favour:
 - $C_{q}^{NP}=-1$
 - $C_9^{NP} = -C_{10}^{NP}$
- > All measurements (175) agree with a single (simple?) shift...

- All (175) measurements favor $C_9^{NP}=-1.0$
- New P_5 closer to SM, but also in better agreement with C_9^{NP} =-1.0
- It is not only about P₅'

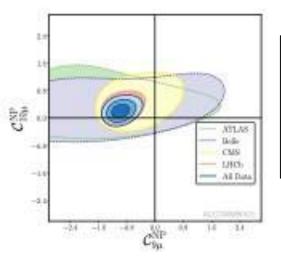

Many variables; all sensitive to effective couplings:


• C_7 (photon), C_9 (vector) and C_{10} (axial) couplings hide everywhere:

$$\begin{split} A_{\perp}^{L,R} &\propto \begin{pmatrix} C_{0}^{eff} \end{pmatrix} + C_{0}^{efff} \end{pmatrix} + C_{$$

Best fit

■ Improved fit for $C_9^{NP} = -1.0$



Global fit

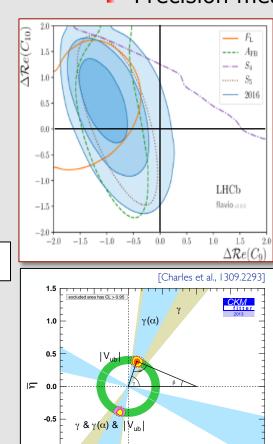
Emerging patterns of New Physics with and without Lepton Flavour Universal contributions

Marcel Algueró^{a,b}, Bernat Capdevila^{a,b,c}, Andreas Crivellin^{d,e}, Sébastien Descotes-Genon^f, Pere Masjuan^{a,b}, Joaquim Matias^{a,b}, Martín Novoa Brunet^f and Javier Virto^g.

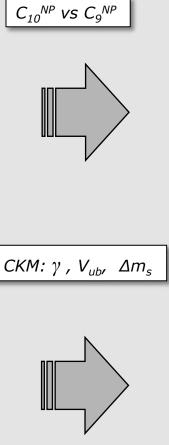
	All						
1D Hyp.	Best fit	p-value					
$\mathcal{C}_{9\mu}^{ ext{NP}}$	-1.03	[-1.19, -0.88]	6.3	37.5%			
aND aND		$ \begin{bmatrix} -1.33, -0.72 \\ -0.59, -0.41 \end{bmatrix} $					
$\mathcal{C}_{9\mu}^{ ext{NP}} = -\mathcal{C}_{10\mu}^{ ext{NP}}$	-0.50	[-0.69, -0.32]	5.8	25.3%			

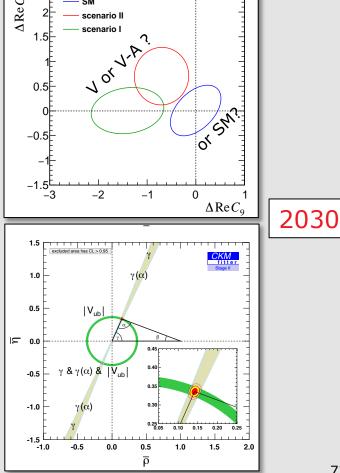
- There is a reduction of the internal tensions between some of the most relevant observables of the fit, in particular, between the new averages of R_K and P_5' . This leads to an increase in consistency between the different anomalies. This is illustrated
- The reduced uncertainties of the $B \to K^* \mu \mu$ data and its improved internal consistency sharpen statistical statements on the hypotheses considered. There is a significant increase of the statistical exclusion of the SM hypothesis as its p-value is reduced down to 1.4% (i.e. 2.5σ). The Pull_{SM} of the 6D fit is now higher (5.8σ) .

arXiv:1903.09578, addendum 6 Apr 2020


- Similar picture as before
- Reduction of internal tensions
- Increase of statistical exclusion of SM hypothesis
 - p-value 1.4%, Pull 5.8σ

Outlook


2020	2021	2022	2023	2024	2025	2026	202	27	2028	2029	2030	2031	2032	2033	203
			Run III						Rı	un IV				Ru	n V
LS2	?					LS3						LS4			
	40 MHz RADE I	$L = 2 \ x \ 10^{33}$		LHCb Consolidate: Upgr Ib			$L = 2 \times 10^{33}$ $50 fb^{-1}$			LIDCD A DE TT		L=1-2 300	2x 10 ³ fb ⁻¹		
ATLAS Phase 1		L	$= 2 \times 10^{\circ}$	34	ATLAS Phase	S II UPG	GRAD	E		$\begin{array}{c} \mathbf{1L-LH} \\ = 5 \times 10 \end{array}$		ATLAS		HL-L $L=5$	
CMS Phase 1	[Upgr		300 fb ⁻¹		CMS Phase	II UPG	GRAD	E				CMS		3000	0 fb ⁻¹
Belle II		5 ab ⁻¹	L = 8	$x 10^{35}$	50	ab ⁻¹			h	ttps://lhc-c	ommissionin		dule: Freder		

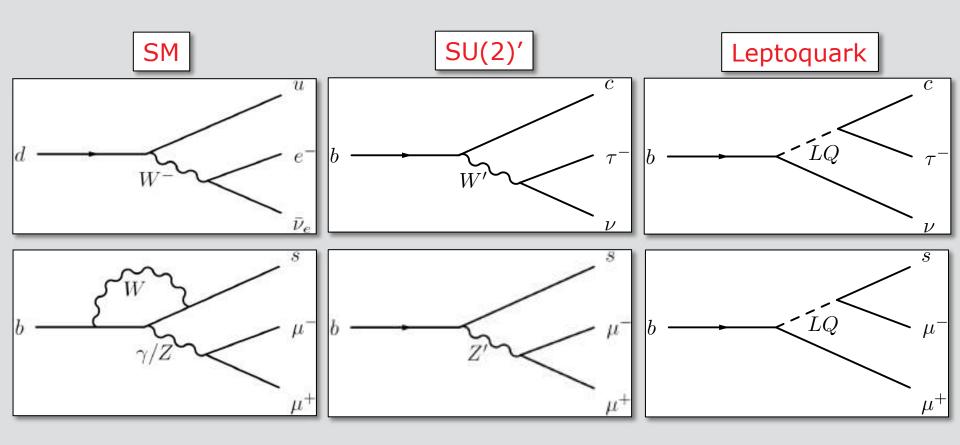

Conclusions

- Precision measurements to scrutinize the Standard Model
- Precision measurements reach very high mass scales
- Precision measurements are not yet precise enough

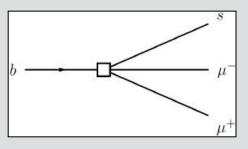
γ(α)

3o contours

What NP could it be?

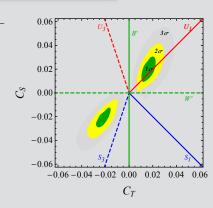

• If interpreted as NP signals, both set of anomalies are <u>not in contradiction</u> among themselves & with existing low- & high-energy data.

<u>Taken together</u>, they point out to NP coupled mainly to 3rd generation, with a flavor structure connected to that appearing in the SM Yukawa couplings

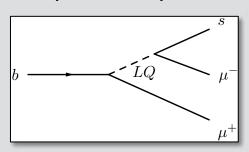

G. Isidori, Implications workshop, CERN, 10 Nov 2017

- Anomalous measurements:
 - FCNC: b→sll
 - LFNU: b→sll and b→clv
- What are the interpretations?

Most popular models: Z' or Leptoquark



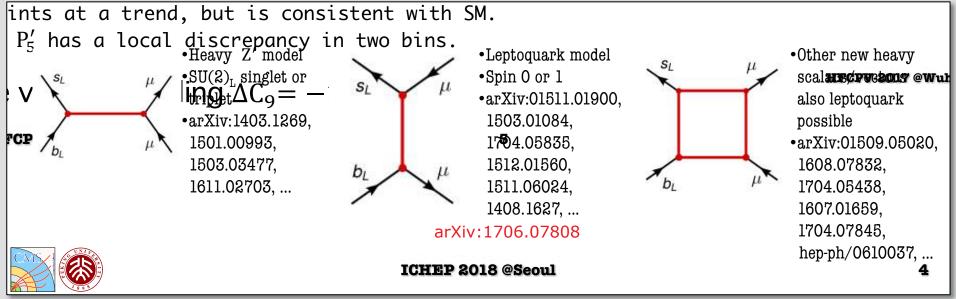
Step 1: Effective theory



$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda_{ij}^q \lambda_{\alpha\beta}^{\ell} \left[C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right]$$

Observable	Experimental bound	Linearised expression
$R_{D^{(*)}}^{ au\ell}$	1.237 ± 0.053	$1 + 2C_T(1 - \lambda_{sb}^q V_{tb}^* / V_{ts}^*)(1 - \lambda_{\mu\mu}^{\ell} / 2)$
$\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$	-0.61 ± 0.12 [36]	$-rac{\pi}{lpha_{ m em}V_{tb}V_{ts}^*}\lambda_{\mu\mu}^{\ell}\lambda_{sb}^{q}(C_T+C_S)$
$R_{b\to c}^{\mu e}-1$	0.00 ± 0.02	$2C_T(1-\lambda_{sb}^q V_{tb}^*/V_{ts}^*)\lambda_{\mu\mu}^{\ell}$
$B_{K^{(*)}\nu\bar{\nu}}$	0.0 ± 2.6	$1 + \frac{2}{3} \frac{\pi}{\alpha_{\text{em}} V_{tb} V_{ts}^* C_{\nu}^{\text{SM}}} (C_T - C_S) \lambda_{sb}^q (1 + \lambda_{\mu\mu}^{\ell})$
$\delta g^Z_{ au_L}$	-0.0002 ± 0.0006	$0.033C_T - 0.043C_S$
$\delta g^Z_{ u_ au}$	-0.0040 ± 0.0021	$-0.033C_T - 0.043C_S$
$ g_{ au}^W/g_{\ell}^W $	1.00097 ± 0.00098	$1 - 0.084C_T$
$\mathcal{B}(au o 3\mu)$	$(0.0 \pm 0.6) \times 10^{-8}$	$2.5 \times 10^{-4} (C_S - C_T)^2 (\lambda_{\tau\mu}^{\ell})^2$

Step 2: Simplified models

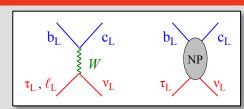


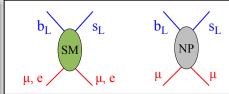
$$SU(2)_L$$
-singlet vector leptoquark, $U_1^{\mu} \equiv (\mathbf{3}, \mathbf{1}, 2/3)$

$$\mathcal{L}_{U} = -\frac{1}{2}U_{1,\mu\nu}^{\dagger}U^{1,\mu\nu} + M_{U}^{2}U_{1,\mu}^{\dagger}U_{1}^{\mu} + g_{U}(J_{U}^{\mu}U_{1,\mu} + \text{h.c.})$$

$$J_{U}^{\mu} \equiv \beta_{i\alpha} \bar{Q}_{i}\gamma^{\mu}L_{\alpha} .$$

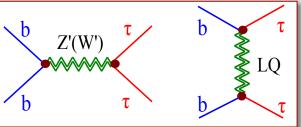
Many models! See e.g.:

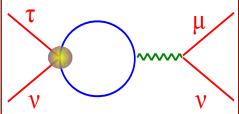


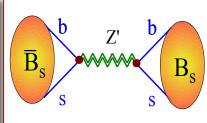

Ingredients

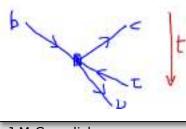
- NP: large coupling $b \rightarrow c\tau v$
 - Large coupling to 3rd gen leptons
 - Left-handed coupling (no RH neutrino)

- Small coupling to 2nd gen leptons
- Left-handed coupling (from C₉)




Ingredients


- NP: large coupling $b \rightarrow c\tau v$
 - Large coupling to 3rd gen leptons
 - Left-handed coupling (no RH neutrino)



- Small coupling to 2nd gen leptons
- Left-handed coupling (from C₉)

G.Isidori

J.M.Camalich

Experimental constraints

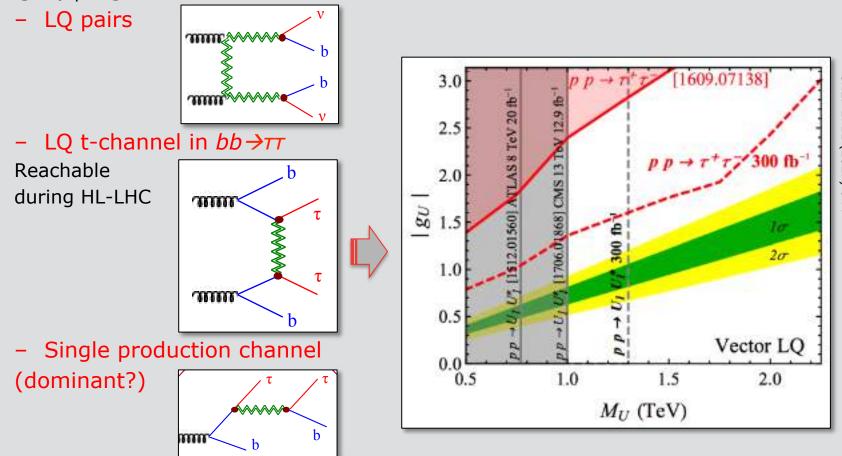
- High p_T searches (No π resonance: no s-channel Z')
- Radiative constr. τ→μνν
- B_s^0 mixing (No tree level NP: small bs implies large τv)
- B_c^+ lifetime (Scalar LQ increases BR($B_c^+ \rightarrow \tau^+ \nu$))

Vector LQ favoured over

Scalar LQ or Z'

 $SU(2)_L$ -singlet vector leptoquark emerges as a particularly simple and successful framework.

- Many more experimental handles; predictions can be checked!
- Universal for all b→ctv:
 - Accurate R(D*), R(J/ψ), ...
- Strong coupling to *Tau's*:
 - Measure e.g. B^0 → $K*\tau\tau$
- LFNU linked with LFV:
 - Look for e.g. $B^0 \rightarrow K^* \tau \mu$
 - $BR(\tau \rightarrow \mu\mu\mu) \sim 10^{-9}$
- c, u symmetry:
 - Study suppressed semileptonic


ndles;	predictions can be checked!	JHEP 1711 (2
$\frac{R_{D}}{(R_{D})_{SM}} =$	$=\frac{\Gamma(\mathrm{B}\to\mathrm{D}^*\mathrm{tv})/\Gamma_{\mathrm{SM}}}{\Gamma(\mathrm{B}\to\mathrm{D}^*\mathrm{\mu\nu})/\Gamma_{\mathrm{SM}}}=\frac{\Gamma(\mathrm{B}_\mathrm{c}\to\psi\mathrm{tv})/\Gamma_{\mathrm{SM}}}{\Gamma(\mathrm{B}_\mathrm{c}\to\psi\mathrm{\mu\nu})/\Gamma_{\mathrm{SM}}}=\frac{\Gamma(\Lambda_\mathrm{b}\to\Lambda_\mathrm{c}\mathrm{tv})/\Gamma_{\mathrm{SM}}}{\Gamma(\Lambda_\mathrm{b}\to\Lambda_\mathrm{c}\mathrm{\mu\nu})/\Gamma_{\mathrm{SM}}}=$	2017) 04

	μμ (ee)	ττ	vv	τμ	μе
$b \rightarrow s$	R_{K}, R_{K^*} $O(20\%)$	$B \to K^{(*)} \tau \tau$ $\longrightarrow 100 \times SM$	$B \to K^{(*)} vv$ $O(1)$	$B \to K \tau \mu$ $\longrightarrow \sim 10^{-6}$	B → K μe ????
$b \rightarrow d$	$B_{d} \rightarrow \mu\mu$ $B \rightarrow \pi \mu\mu$ $B_{s} \rightarrow K^{(*)} \mu\mu$ $O(20\%) [R_{K}=R_{\pi}]$	$B \to \pi \tau\tau$ $\longrightarrow 100 \times SM$	$B \to \pi \text{ VV}$ $O(1)$	$B \to \pi \tau \mu$ $\longrightarrow \sim 10^{-7}$	B → π μe ???

$$\frac{\Gamma(B\to\pi\ \text{tv})/\Gamma_{SM}}{\Gamma(B\to\pi\ \text{\muv})/\Gamma_{SM}} = \frac{\Gamma(\Lambda_b\to p\ \text{tv})/\Gamma_{SM}}{\Gamma(\Lambda_b\to p\ \text{\muv})/\Gamma_{SM}} = \frac{\Gamma(B_s\to K^*\text{tv})/\Gamma_{SM}}{\Gamma(B_s\to K^*\text{\muv})/\Gamma_{SM}} = \dots = \frac{R_D}{(R_D)_{SM}}$$

- B_s mixing
 - O(1-10%) effect on Δm_s

- Many more experimental handles; predictions can be checked!
- High p_T signatures?

Buttazzo, Greljo, Isidori,

The need for more precision

Imagine if Fitch and Cronin had stopped at the 1% level, how much physics would have been missed"

A.Soni

• "A special search at Dubna was carried out by Okonov and his group. They did not find a single $K_L^0 \rightarrow \pi^+\pi^-$ event among 600 decays into charged particles (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the lab. The group was unlucky."

L.Okun

(remember: $B(K_1^0 \to \pi^+\pi^-) \sim 2 \ 10^{-3}$)