
Linear HoTT and Quipper

Mitchell Riley

CQTS

20th April 2024

Linear HoTT and Quipper Mitchell Riley



The Goal

▶ Add linear type formers ⊗, I,⊸ to DTT.

▶ Leave the rest of DTT exactly the same.

Linear HoTT and Quipper Mitchell Riley



The Symmetry Proof We Want

Proposition

sym : A⊗B ≃ B ⊗A

Proof.

To define sym : A⊗B → B ⊗A, suppose we have p : A⊗B.
Then ⊗-induction allows us to assume p ≡ x⊗ y, and we have
y ⊗ x.

sym :≡ λp.let x⊗ y be p in y ⊗ x

Then to prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction
again: the goal reduces to x⊗ y = x⊗ y for which we have
reflexivity.

inv :≡ λp.let x⊗ y be p in reflx⊗y

Linear HoTT and Quipper Mitchell Riley



The Symmetry Proof We Want

Proposition

sym : A⊗B ≃ B ⊗A

Proof.

To define sym : A⊗B → B ⊗A, suppose we have p : A⊗B.
Then ⊗-induction allows us to assume p ≡ x⊗ y, and we have
y ⊗ x.

sym :≡ λp.let x⊗ y be p in y ⊗ x

Then to prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction
again: the goal reduces to x⊗ y = x⊗ y for which we have
reflexivity.

inv :≡ λp.let x⊗ y be p in reflx⊗y

Linear HoTT and Quipper Mitchell Riley



The Symmetry Proof We Want

Proposition

sym : A⊗B ≃ B ⊗A

Proof.

To define sym : A⊗B → B ⊗A, suppose we have p : A⊗B.
Then ⊗-induction allows us to assume p ≡ x⊗ y, and we have
y ⊗ x.

sym :≡ λp.let x⊗ y be p in y ⊗ x

Then to prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction
again: the goal reduces to x⊗ y = x⊗ y for which we have
reflexivity.

inv :≡ λp.let x⊗ y be p in reflx⊗y

Linear HoTT and Quipper Mitchell Riley



Colourful Variables

We need to prevent terms like λx.x⊗ x : A → A⊗A, so
variable use needs to be restricted somehow.

▶ Every term a has a colour C.

▶ Every variable binding x :C A also has a colour C.

▶ A variable is only usable when its colour matches the
colour of the term (roughly).

Linear HoTT and Quipper Mitchell Riley



Colourful Variables

We need to prevent terms like λx.x⊗ x : A → A⊗A, so
variable use needs to be restricted somehow.

▶ Every term a has a colour C.

▶ Every variable binding x :C A also has a colour C.

▶ A variable is only usable when its colour matches the
colour of the term (roughly).

Linear HoTT and Quipper Mitchell Riley



Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

Γ ⊢C a : A

where Γ ⊢ C colour is an iterated tensor of ‘primitive colours’
bound in the context.
Each variable is a term of its own colour:

r, b, p, x :r A, y :b B, z :p C ⊢r x : A

r, b, p, x :r A, y :b B, z :p C ⊢b y : B

r, b, p, x :r A, y :b B, z :p C ⊢p z : C

Each colour has a copy of all ordinary type formers.∑
(x:A)B(x)

∏
(x:A)B(x) (λx.b)

ind+(z.C, x.c1, y.c2, p) ind=(x.x
′.p.C, x.c, p)

Linear HoTT and Quipper Mitchell Riley



Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

Γ ⊢C a : A

where Γ ⊢ C colour is an iterated tensor of ‘primitive colours’
bound in the context.
Each variable is a term of its own colour:

r, b, p, x :r A, y :b B, z :p C ⊢r x : A

r, b, p, x :r A, y :b B, z :p C ⊢b y : B

r, b, p, x :r A, y :b B, z :p C ⊢p z : C

Each colour has a copy of all ordinary type formers.∑
(x:A)B(x)

∏
(x:A)B(x) (λx.b)

ind+(z.C, x.c1, y.c2, p) ind=(x.x
′.p.C, x.c, p)

Linear HoTT and Quipper Mitchell Riley



Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

Γ ⊢C a : A

where Γ ⊢ C colour is an iterated tensor of ‘primitive colours’
bound in the context.
Each variable is a term of its own colour:

r, b, p, x :r A, y :b B, z :p C ⊢r x : A

r, b, p, x :r A, y :b B, z :p C ⊢b y : B

r, b, p, x :r A, y :b B, z :p C ⊢p z : C

Each colour has a copy of all ordinary type formers.∑
(x:A)B(x)

∏
(x:A)B(x) (λx.b)

ind+(z.C, x.c1, y.c2, p) ind=(x.x
′.p.C, x.c, p)

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 1

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, there is a term

a⊗ b : A⊗B

with colour R⊗B.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗ y for some variables
xr : A, yb : B where r and b are fresh colours, when
constructing some other term c : C.

(let x⊗ y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 1

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, there is a term

a⊗ b : A⊗B

with colour R⊗B.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗ y for some variables
xr : A, yb : B where r and b are fresh colours, when
constructing some other term c : C.

(let x⊗ y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 1

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, there is a term

a⊗ b : A⊗B

with colour R⊗B.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗ y for some variables
xr : A, yb : B where r and b are fresh colours, when
constructing some other term c : C.

(let x⊗ y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Eg: Symmetry

Proposition

There is a function sym : A⊗B → B ⊗A

Proof.

Suppose p : A⊗B. Then ⊗-induction on p gives x :r A and
y :b B.

We can form y ⊗ x : B ⊗A of colour b⊗ r...

But now we are stuck, the term y ⊗ x has colour b⊗ r rather
than p so we can’t write

sym :≡ λp.let x⊗ y be p in y ⊗ x

Linear HoTT and Quipper Mitchell Riley



Eg: Symmetry

Proposition

There is a function sym : A⊗B → B ⊗A

Proof.

Suppose p : A⊗B. Then ⊗-induction on p gives x :r A and
y :b B.

We can form y ⊗ x : B ⊗A of colour b⊗ r...

But now we are stuck, the term y ⊗ x has colour b⊗ r rather
than p so we can’t write

sym :≡ λp.let x⊗ y be p in y ⊗ x

Linear HoTT and Quipper Mitchell Riley



2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

rewrite
Γ ⊢ s : C ⇒ D Γ ⊢D a : A

Γ ⊢C s∗(a) : s∗(A)
−−−−−−−−−−−−−−−−

With axioms:

sym : C⊗D ⇒ D⊗ C assoc : (C⊗D)⊗ E ⇒ C⊗ (D⊗ E)

s; t : C ⇒ E for s : C ⇒ D, t : D ⇒ E

s⊗ t : C⊗ E ⇒ D⊗ F for s : C ⇒ D, t : E ⇒ F

zero : C ⇒ D

etc.

Linear HoTT and Quipper Mitchell Riley



2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

rewrite
Γ ⊢ s : C ⇒ D Γ ⊢D a : A

Γ ⊢C s∗(a) : s∗(A)
−−−−−−−−−−−−−−−−

With axioms:

sym : C⊗D ⇒ D⊗ C assoc : (C⊗D)⊗ E ⇒ C⊗ (D⊗ E)

s; t : C ⇒ E for s : C ⇒ D, t : D ⇒ E

s⊗ t : C⊗ E ⇒ D⊗ F for s : C ⇒ D, t : E ⇒ F

zero : C ⇒ D

etc.

Linear HoTT and Quipper Mitchell Riley



2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

rewrite
Γ ⊢ s : C ⇒ D Γ ⊢D a : A

Γ ⊢C s∗(a) : s∗(A)
−−−−−−−−−−−−−−−−

With axioms:

sym : C⊗D ⇒ D⊗ C assoc : (C⊗D)⊗ E ⇒ C⊗ (D⊗ E)

s; t : C ⇒ E for s : C ⇒ D, t : D ⇒ E

s⊗ t : C⊗ E ⇒ D⊗ F for s : C ⇒ D, t : E ⇒ F

zero : C ⇒ D

etc.

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 2

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, and a 2-cell s : P ⇒ R⊗B, there is a term

a⊗s b : A⊗B

with colour P.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗s y for some variables
x :r A, y :b B where r and b are fresh colours and there is a
fresh 2-cell s : P ⇒ r⊗ b, when constructing some other
term c : C.

(let x⊗s y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 2

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, and a 2-cell s : P ⇒ R⊗B, there is a term

a⊗s b : A⊗B

with colour P.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗s y for some variables
x :r A, y :b B where r and b are fresh colours and there is a
fresh 2-cell s : P ⇒ r⊗ b, when constructing some other
term c : C.

(let x⊗s y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Rules for ⊗, Take 2

▶ Formation: For closed* A : U and B : U , there is a type
A⊗B : U .

▶ Introduction: Given a : A with colour R and b : B with
colour B, and a 2-cell s : P ⇒ R⊗B, there is a term

a⊗s b : A⊗B

with colour P.

▶ Elimination: Any term p : A⊗B of colour P may be
assumed to be of the form x⊗s y for some variables
x :r A, y :b B where r and b are fresh colours and there is a
fresh 2-cell s : P ⇒ r⊗ b, when constructing some other
term c : C.

(let x⊗s y be p in c) : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Eg: Symmetry

Proposition

There is a function sym : A⊗B → B ⊗A

Proof.

Suppose p : A⊗B. Then ⊗-induction on p gives x :r A and
y :b B, so that s : p ⇒ r⊗ b. There is a 2-cell
(s; sym) : p ⇒ b⊗ r, so y ⊗s;sym x : B ⊗A.

sym :≡ λp.let x⊗s y be p in y ⊗s;sym x

To prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction again: the
goal reduces to x⊗s y = x⊗s y for which we have reflexivity.

inv :≡ λp.let x⊗s y be p in reflx⊗sy

Linear HoTT and Quipper Mitchell Riley



Eg: Symmetry

Proposition

There is a function sym : A⊗B → B ⊗A

Proof.

Suppose p : A⊗B. Then ⊗-induction on p gives x :r A and
y :b B, so that s : p ⇒ r⊗ b. There is a 2-cell
(s; sym) : p ⇒ b⊗ r, so y ⊗s;sym x : B ⊗A.

sym :≡ λp.let x⊗s y be p in y ⊗s;sym x

To prove
∏

(p:A⊗B) sym(sym(p)) = p, use ⊗-induction again: the
goal reduces to x⊗s y = x⊗s y for which we have reflexivity.

inv :≡ λp.let x⊗s y be p in reflx⊗sy

Linear HoTT and Quipper Mitchell Riley



The Resource Interpretation

▶ Linear HoTT is a bunched type theory.

▶ There is no notion of ‘linear variable’ which may only be
used once. Instead, colours denote permission to use a
resource.

▶ When we have access to a variable, we can use it any
ordinary way we like.

f : A⊗B → A⊗ (B ×B ×B)

f :≡ λp.let x⊗ y be p inx⊗ (y, y, y)

g : A⊗B → (A⊗B)× (A⊗B)

g :≡ λp.let x⊗ y be p in (x⊗ y, x⊗ y)

Linear HoTT and Quipper Mitchell Riley



Formal Rules and a Stupid Trick

⊗-form
Γ, l ⊢l A type Γ, r ⊢r B type

Γ ⊢C A⊗B type

⊗-intro

Γ ⊢ s : C ⇒ L⊗R
Γ ⊢L a : A[L/l] Γ ⊢R b : B[R/r]

Γ ⊢C a⊗s b : A⊗B

⊗-elim

Γ, z :D A⊗ ⊢C C type

Γ, l, r, s : D ⇒ l⊗ r, x :l A, y :r B ⊢C c : C[x⊗s y/z]
Γ ⊢D p : A⊗B

Γ ⊢C let xl ⊗s y
r be p in c : C[p/z]

Linear HoTT and Quipper Mitchell Riley



Comparison with Old Rules

Pros:

▶ No more baroque rules for “splits”.

▶ Simpler crisp induction principles without complicated
pattern matching.

▶ No context clearing/manipulation in modal rules.

Cons:

▶ Explicit 2-cell manipulation.
▶ Mostly inferable?

▶ Conversion checking seems harder.
▶ E.g., (sym⊗ id)∗((a⊗ b)⊗ c) ≡ sym∗(a⊗ b)⊗ c

▶ Bad judgement states.
▶ E.g. x :r A ⊢r⊗r x⊗ x : A⊗A

▶ Still pretty ad-hoc.

Linear HoTT and Quipper Mitchell Riley



Comparison with Old Rules

Pros:

▶ No more baroque rules for “splits”.

▶ Simpler crisp induction principles without complicated
pattern matching.

▶ No context clearing/manipulation in modal rules.

Cons:

▶ Explicit 2-cell manipulation.
▶ Mostly inferable?

▶ Conversion checking seems harder.
▶ E.g., (sym⊗ id)∗((a⊗ b)⊗ c) ≡ sym∗(a⊗ b)⊗ c

▶ Bad judgement states.
▶ E.g. x :r A ⊢r⊗r x⊗ x : A⊗A

▶ Still pretty ad-hoc.

Linear HoTT and Quipper Mitchell Riley



This Only Works Sometimes

♭-intro
Γ ⊢ s : C ⇒ f(D) Γ ⊢D a : A

Γ ⊢C ♭(a) : ♭A

♭-elim

Γ, zD : ♭A ⊢C C type

Γ, l, s : D ⇒ f(l), x :l A ⊢C c : C[♭(x)/z]
Γ ⊢D p : ♭A

Γ ⊢C let ♭(xl) be p in c : C[p/z]

This “♭” is not left-exact! Variables created by ♭-elim cannot
interact.

func : ♭(A → B) → ♭A → ♭B

func(h, u) :≡ let ♭(f l) be h in let ♭(ar) be u in ♭(f(a))

Linear HoTT and Quipper Mitchell Riley



A Fragment of Quipper

var

Φ, x : A ⊢ x : A

⊗-intro

Φ,Γ1 ⊩ M : A Φ,Γ2 ⊩ N : B

Φ,Γ1,Γ2 ⊩ M ⊗N : A⊗B

⊗-elim

Φ,Γ1 ⊩ M : A⊗B Φ,Γ2, x : A, y : B ⊩ N : C

Φ,Γ1,Γ2 ⊩ let x⊗ y be M inN : C

!-intro
Φ ⊩ M : A

Φ ⊩ liftM : !A

!-elim
Φ,Γ ⊩ M : !A

Φ,Γ ⊩ forceM : A

Linear HoTT and Quipper Mitchell Riley



A Fragment of Quipper

var

x : A ⊢ x : A

⊗-intro

Γ1 ⊩ M : A Γ2 ⊩ N : B

Γ1,Γ2 ⊩ M ⊗N : A⊗B

⊗-elim

Γ1 ⊩ M : A⊗B Γ2, x : A, y : B ⊩ N : C

Γ1,Γ2 ⊩ let x⊗ y be M inN : C

!-intro
· ⊩ M : A

· ⊩ liftM : !A

!-elim
Γ ⊩ M : !A

Γ ⊩ forceM : A

Linear HoTT and Quipper Mitchell Riley



Translating from Quipper

A Quipper term x : A, y : B ⊩ c : C is translated to

ϕ :cϕ I, x :cx JAK, y :cy JBK ⊢cϕ⊗cx⊗cy JcK : JCK

JxK :≡ let ◊i be ϕ in unitori(x)

JA⊗BK :≡ JAK ⊗ JBK
J(M,N)K :≡ JMK ⊗id unitorinvi(JNK[◊i/ϕ])

Jlet (x, y) be M inNK :≡ let xcx ⊗s y
cy be JMK in (id⊗ s)∗(JNK[◊i/ϕ])

J!AK :≡ I × ♮(I → JAK)

JliftMK :≡ (ϕ, (λs.JMK[s/ϕ])♮)
JforceMK :≡ let (ϕ′, f) be JMK in f♮(ϕ′)

Linear HoTT and Quipper Mitchell Riley



Translating from Quipper

A Quipper term x : A, y : B ⊩ c : C is translated to

ϕ :cϕ I, x :cx JAK, y :cy JBK ⊢cϕ⊗cx⊗cy JcK : JCK

JxK :≡ let ◊i be ϕ in unitori(x)

JA⊗BK :≡ JAK ⊗ JBK
J(M,N)K :≡ JMK ⊗id unitorinvi(JNK[◊i/ϕ])

Jlet (x, y) be M inNK :≡ let xcx ⊗s y
cy be JMK in (id⊗ s)∗(JNK[◊i/ϕ])

J!AK :≡ I × ♮(I → JAK)

JliftMK :≡ (ϕ, (λs.JMK[s/ϕ])♮)
JforceMK :≡ let (ϕ′, f) be JMK in f♮(ϕ′)

Linear HoTT and Quipper Mitchell Riley



Translating from Quipper

A Quipper term x : A, y : B ⊩ c : C is translated to

ϕ :cϕ I, x :cx JAK, y :cy JBK ⊢cϕ⊗cx⊗cy JcK : JCK

JxK :≡ let ◊i be ϕ in unitori(x)

JA⊗BK :≡ JAK ⊗ JBK
J(M,N)K :≡ JMK ⊗id unitorinvi(JNK[◊i/ϕ])

Jlet (x, y) be M inNK :≡ let xcx ⊗s y
cy be JMK in (id⊗ s)∗(JNK[◊i/ϕ])

J!AK :≡ I × ♮(I → JAK)

JliftMK :≡ (ϕ, (λs.JMK[s/ϕ])♮)
JforceMK :≡ let (ϕ′, f) be JMK in f♮(ϕ′)

Linear HoTT and Quipper Mitchell Riley



Translating from Quipper

A Quipper term x : A, y : B ⊩ c : C is translated to

ϕ :cϕ I, x :cx JAK, y :cy JBK ⊢cϕ⊗cx⊗cy JcK : JCK

JxK :≡ let ◊i be ϕ in unitori(x)

JA⊗BK :≡ JAK ⊗ JBK
J(M,N)K :≡ JMK ⊗id unitorinvi(JNK[◊i/ϕ])

Jlet (x, y) be M inNK :≡ let xcx ⊗s y
cy be JMK in (id⊗ s)∗(JNK[◊i/ϕ])

J!AK :≡ I × ♮(I → JAK)

JliftMK :≡ (ϕ, (λs.JMK[s/ϕ])♮)
JforceMK :≡ let (ϕ′, f) be JMK in f♮(ϕ′)

Linear HoTT and Quipper Mitchell Riley



The Simplest Circuit

object Qubit

gate H : ! (Qubit -> Qubit)

circuit : ! (Qubit * Qubit -> Qubit * Qubit)

circuit n p = let (x, y) = p

in (H x, y)

Then

JHK : I × ♮(I → (Qubit ⊸ Qubit))

JcircuitK : I × ♮(I → (Qubit⊗ Qubit ⊸ Qubit⊗ Qubit))

Linear HoTT and Quipper Mitchell Riley



The Simplest Translation

Generally, there is a map e : I × ♮(I → (A ⊸ B)) → (A → B)

e(JcircuitK) = ... = λp.let x⊗ y be p in e(JHK)(x)⊗ y

Then:

e(JcircuitK) ◦ e(JcircuitK)
= ...

= (λp.let x⊗ y be p in e(JHK)(x)⊗ y)

◦ (λp.let x⊗ y be p in e(JHK)(x)⊗ y)

≡ λp.let x⊗ y be (let x′ ⊗ y′ be p in e(JHK)(x′)⊗ y′) in e(JHK)(x)⊗ y

= λp.let x′ ⊗ y′ be p in (let x⊗ y be e(JHK)(x′)⊗ y′ in e(JHK)(x)⊗ y)

≡ λp.let x′ ⊗ y′ be p in e(JHK)(e(JHK)(x′))⊗ y′

= λp.let x′ ⊗ y′ be p inx′ ⊗ y′

= λp.p

Linear HoTT and Quipper Mitchell Riley



Thanks!

Linear HoTT and Quipper Mitchell Riley



References I

Linear HoTT and Quipper Mitchell Riley


