Linear HoTT and Quipper

Mitchell Riley
CQTS

20th April 2024

Linear HoTT and Quipper Mitchell Riley

The Goal

» Add linear type formers ®, I, — to DTT.
> Leave the rest of DTT exactly the same.

Linear HoTT and Quipper Mitchell Riley

The Symmetry Proof We Want

Proposition
sym: AR B~B® A

Linear HoTT and Quipper Mitchell Riley

The Symmetry Proof We Want

Proposition
sym: AR B~B® A

Proof.

To define sym: A® B — B ® A, suppose we have p: A ® B.
Then ®-induction allows us to assume p = z ® y, and we have

YR x.

sym:=Apletz®@ybepiny®@z

Mitchell Riley

Linear HoTT and Quipper

The Symmetry Proof We Want

Proposition
sym: AR B~B® A

Proof.

To define sym: A® B — B ® A, suppose we have p: A ® B.
Then ®-induction allows us to assume p = z ® y, and we have

YR x.
sym:=Apletz®@ybepiny®@z

Then to prove [] ;. 455y sym(sym(p)) = p, use ®-induction
again: the goal reduces to z ® y = x ® y for which we have
reflexivity.

inv:= Ap.let z ® y be pinrefl,g,

Linear HoTT and Quipper Mitchell Riley

Colourful Variables

We need to prevent terms like Ax.x @ x: A — A® A, so
variable use needs to be restricted somehow.

Linear HoTT and Quipper Mitchell Riley

Colourful Variables

We need to prevent terms like Ax.x @ x: A — A® A, so
variable use needs to be restricted somehow.

> Every term a has a colour €.
» Every variable binding z : A also has a colour €.

> A variable is only usable when its colour matches the
colour of the term (roughly).

Linear HoTT and Quipper Mitchell Riley

Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

T'tga: A

where I' - € colour is an iterated tensor of ‘primitive colours’
bound in the context.

Linear HoTT and Quipper Mitchell Riley

Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

T'tga: A

where I' - € colour is an iterated tensor of ‘primitive colours’
bound in the context.
Each variable is a term of its own colour:

tvb7p7I : A,y:b B,Z P CFr r: A
tvb7p7$:l‘ A47y:b B7Z :P (7 l_by : B
ub,p, et Ay LB PO bp2z:C

Linear HoTT and Quipper Mitchell Riley

Using Colourful Variables

Building a term, we need to keep track of the current colour. A
context has the form

T'tga: A

where I' - € colour is an iterated tensor of ‘primitive colours’
bound in the context.
Each variable is a term of its own colour:

tvb7p7I : A,y :b B,Z PO l_r r: A

ob,p, e Ay*B 2P Chyy: B

ub,p, et Ay LB PO bp2z:C
Each colour has a copy of all ordinary type formers.

Z(m;A)B(ﬂ?) H(,’I;;/\)B(I) (A\z.D)

indy (2.C x.cq, y.c0,p) ind—(z.2".p.C, 2.c, p)

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 1

» Formation: For closed™ A : U and B : U, there is a type
AR B:U.

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 1

» Formation: For closed™ A : U and B : U, there is a type
AR B:U.

» Introduction: Given a : A with colour 93 and b : B with
colour ‘B, there is a term

a®b: AR B

with colour A ® B.

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 1

» Formation: For closed™ A : U and B : U, there is a type
AR B:U.

» Introduction: Given a : A with colour R and b : B with
colour ‘B, there is a term

a®b: AR B

with colour A ® B.

» Elimination: Any term p: A ® B of colour I3 may be
assumed to be of the form = ® y for some variables
21 A,y® : B where v and b are fresh colours, when
constructing some other term c: C.

(let @y be pinc) : Clp/=]

Linear HoTT and Quipper Mitchell Riley

Eg: Symmetry

Proposition
There is a functionsym: AQ B— B® A

Proof.

Suppose p: A ® B. Then ®-induction on p gives = :* A and
b
y:’ B.

We can form y ® 2 : B® A of colour b ® ... O

Linear HoTT and Quipper Mitchell Riley

Eg: Symmetry

Proposition

There is a functionsym: AQ B— B® A]
Proof.

Suppose p: A ® B. Then ®-induction on p gives = :* A and

y:* B.

We can form y ® 2 : B® A of colour b ® ... DJ

But now we are stuck, the term y ® x has colour b ® v rather
than p so we can’t write

sym:= Ap.let r Q@ y be piny ® x

Linear HoTT and Quipper Mitchell Riley

2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

REWRITE ——————— — — — — — — ——

Linear HoTT and Quipper Mitchell Riley

2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

REWRITE ——————— — — — — — — ——

With axioms:

sym: CRD=9x¢ assoc: (CRD)RE=LCER (DR E)
s;t:C=€Efors:C=9,t:D = ¢

sRTL:CRE=>DRFfors: C=D,t:E=F

Linear HoTT and Quipper Mitchell Riley

2-cells

We need a judgement describing how colours relate to each
other. There will be an admissible principle

REWRITE ——————— — — — — — — ——

With axioms:

sym:€RD=9xC assoc: (CRD)RE=CR (D ® €)
s;t:C=€Efors:C=9,t:D = ¢
sRTL:CRE=>DRFfors: C=D,t:E=F
zero: € =23

etc.

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 2

» Formation: For closed® A : U and B : U, there is a type
AR B:U.

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 2

» Formation: For closed® A : U and B : U, there is a type
AR B:U.

» Introduction: Given a : A with colour A and b : B with
colour B, and a 2-cell s : 3 = 91 ® B, there is a term

1®sb: AR B

with colour ‘.

Linear HoTT and Quipper Mitchell Riley

Rules for ®, Take 2

» Formation: For closed® A : U and B : U, there is a type
AR B:U.

» Introduction: Given a : A with colour A and b : B with
colour B, and a 2-cell s : 3 = 91 ® B, there is a term

1®sb: AR B

with colour ‘.

> Elimination: Any term p: A ® B of colour ¥ may be
assumed to be of the form x ®; y for some variables
x: A,y :* B where v and b are fresh colours and there is a
fresh 2-cell s : 3 = v ® b, when constructing some other
term ¢ : C.

(let » @5y be pinc) : Clp/ =]

Linear HoTT and Quipper Mitchell Riley

Eg: Symmetry

Proposition
There is a function sym: AQ B— B® A

Proof.

Suppose p : A ® B. Then ®-induction on p gives = :* A and
y:* B, so that s : p = t ® b. There is a 2-cell
(s;sym) :p=>b®1, 50 Yy Qgsym © : B A.

sym = Ap.let © ®; y be piny Rg.sym =

Linear HoTT and Quipper Mitchell Riley

Eg: Symmetry

Proposition
There is a function sym: AQ B— B® A

Proof.

Suppose p: A ® B. Then ®-induction on p gives = :* A and
y:* B, so that s : p = t ® b. There is a 2-cell
(s;sym) :p=>b®1, 50 Yy Qgsym © : B A.

sym = Ap.let © ®; y be piny Rg.sym =

To prove [],. agp) sym(sym(p)) = p, use ®-induction again: the
goal reduces to r ®s y = = ®s y for which we have reflexivity.

inv:= Ap.let @,y be pinrefl,g,,

Linear HoTT and Quipper Mitchell Riley

The Resource Interpretation

» Linear H
» There is

oTT is a bunched type theory.

no notion of ‘linear variable’ which may only be

used once. Instead, colours denote permission to use a

resource.

» When we have access to a variable, we can use it any

ordinary

way we like.

f:A®B— A® (B x B x B)
[:=Aplet @y bepine @ (y,y,y)

g:A®B — (A® B) x (A® B)
g:=Apletr®@ybepin(r®y,r®y)

Linear HoTT and Quipper

Mitchell Riley

Formal Rules and a Stupid Trick

[A type It B type
I'F¢ A® B type

®-FORM

Il'kFs: €= LR
I'kea: AL/ I'Fx b: B[R/t
'r¢a®sb: AR B

&®-INTRO

[,z:° A® Fe C type
DLe,s: D=tz Ay Blec: Clz®sy/z
I'Fop: A® B

®-ELIM 0 -
I'Feletz' ®sy° bepine: Clp/z]

Linear HoTT and Quipper Mitchell Riley

Comparison with Old Rules

Pros:
» No more baroque rules for “splits”.

> Simpler crisp induction principles without complicated
pattern matching.

» No context clearing/manipulation in modal rules.

Linear HoTT and Quipper Mitchell Riley

Comparison with Old Rules

Pros:
» No more baroque rules for “splits”.
> Simpler crisp induction principles without complicated
pattern matching.
» No context clearing/manipulation in modal rules.
Cons:

> Explicit 2-cell manipulation.
» Mostly inferable?
» Conversion checking seems harder.
> Eg., (sym®id)*((a®b) @ c) =sym*(a®@b) @ ¢
> Bad judgement states.
> Eg r'AFgrr®@r: AQ A
> Still pretty ad-hoc.

Linear HoTT and Quipper Mitchell Riley

This Only Works Sometimes

Its:¢=f®) Tktpa:A

P-INTRO T Feb(a):bA

[,2° :hAte C type
D, Ls:D=f(l),z:" A c: Ch(z)/2]
I'kpp:bA

b-ELIM
I k¢ let b(z') be pinc: Cp/z]

This “b” is not left-exact! Variables created by b-ELIM cannot
interact.

func:b(A — B) - bA —bB
func(h,u) == let b(f") be hinlet b(a®) be winb(f(a))

Linear HoTT and Quipper Mitchell Riley

A Fragment of Quipper

VAR ®-INTRO
ST IFM: A d Ty IFN: B
b xr:AFx: A I, I9IFM®RN:A® B
®-ELIM

oI IFM:A®B &, Ty,x:Ay:BIFN:C
&I, IslFletz®@ybe MinN :C

I-INTRO I-ELIM
dIFM:A O I'IFM:!A

D IF1ift M : 1A ® I'IFforceM : A

Linear HoTT and Quipper Mitchell Riley

A Fragment of Quipper

VAR ®-INTRO
MIFM:A I'bFN:B
z: ARz A I'N,I'yFM®N:AxQ B
®-ELIM

IMIFM:A®B Ty,z:Ay:BIFN:C
I'y,Telkletz®@ybe MinN : C

I-INTRO l-ELIM
FMA TIFM:1A
RLift M 1A 'l force M : A

Linear HoTT and Quipper Mitchell Riley

Translating from Quipper

A Quipper term x : A,y : BlF ¢: C is translated to

¢ Iz [Al,y:% [B] Feyeewe, [c : [C]

Linear HoTT and Quipper Mitchell Riley

Translating from Quipper

A Quipper term x : A,y : BlF ¢: C is translated to

¢ Iz [Al,y:% [B] Feyeewe, [c : [C]

[x] := let =1; be ¢ in unitor;(z)

Linear HoTT and Quipper Mitchell Riley

Translating from Quipper

A Quipper term x : A,y : BlF ¢: C is translated to

¢ Iz [Al,y:% [B] Feyeewe, [c : [C]

[x] := let =1; be ¢ in unitor;(z)

[A@ Bl :=[Al ©[B]
[(M,N)] := [M] ®ig unitorinv;([N][x;/¢])
[let (x,y) be M in N] :=let 2°* @, y* be [M]in (id ® s)*([N][=:/¢])

Linear HoTT and Quipper Mitchell Riley

Translating from Quipper

A Quipper term x : A,y : BlF ¢: C is translated to

¢ Iz [Al,y:% [B] Feyeewe, [c : [C]

[x] := let =1; be ¢ in unitor;(z)

[A® B] =[] © [B]
[(M, N)] := [M] ®iq unitorinv; ([N][x/¢])
[let (z,y) be Mln NJ] :=let 2 @,y be [M]in (id ® s)*([N][=:/¢])

A = I x 5(I — [A])

[lift M] := (¢, (As.[M][s/¢])")
[force M] := let (¢, f) be [M]in fy(¢')

Mitchell Riley

The Simplest Circuit

object Qubit

gate H : ! (Qubit -> Qubit)
circuit : ! (Qubit * Qubit -> Qubit * Qubit)
circuit n p = let (x, y) = p
in (H x, y)
Then

[H] : I x 5(I — (Qubit — Qubit))
[circuit] : I x §(I — (Qubit ® Qubit — Qubit ® Qubit))

Linear HoTT and Quipper

Mitchell Riley

The Simplest Translation

Generally, there is amap e: I x §(I — (A — B)) — (A — B)
e([circuit]) = ... = Ap.let 2 ® y be pine([H]) () ® y
Then:

e([circuit]) o e([circuit])
= (A\p.let 2 @ y be pine([H])(z) ® y)
o (Ap.let x ® y be pine([H])(7) @ y)
= \p.let 2 ® y be (let 2’ @3y be pine([H])(+") @ v') ine([H])(2) @ y
= A\p.let 2’ @ v/ be pin (let + @ y be e([H])(+") @ v ine([H])(x) ® y)
= \p.let 7' ®@ v/ be pine([H])(e([H])(+")) @ o/
=Mplet 2’ @y bepind’ @y
= A\p.p

Linear HoTT and Quipper Mitchell Riley

Thanks!

References |

