RINGS OF SEPARATED POWER SERIES
by

Leonard Lipshitz & Zachary Robinson

Contents
1. Introduction ........ .o e 5
2. Rings of Separated Power Series .......................... 10
2.1. Definitions . ........coiiiiiiii e 10
2.2. Noetherianness ..., 18
2.3. Weierstrass Division Theorems .................... 22
3. Restrictions to Polydises ............. ...l 28
3.1. Strict and Pseudo-Cartesian Modules ............ 29
3.2. Restrictions to Rational Polydiscs ................ 48
3.3. Contractions from Rational Polydiscs ............ 54
3.4. Restrictions to Open Polydiscs .................... 59
4. The Commutative Algebra of Sy, ...l 66
4.1. The Nullstellensatz ..........cocooiiiiiiiii.., 66
4.2. Completions ...t 70
5. The Supremum Semi-Norm and Open Domains .......... 75
5.1. Relations with the Supremum Seminorm .......... 75
5.2. Continuity and Extension of Homomorphisms ... . 86
5.3. Quasi-Rational Domains .......................... 92
5.4. Tensor Products ......... ... i, 101
5.5. Banach Function Algebras ........................ 105
6. A Finiteness Theorem ..............ccoiiiiiiiiiiiinnnnnn. 109

Supported in part by the NSF. The second author also gratefully acknowledges the support
of the CNR and the hospitality of the University of Pisa. The authors thank Judy Mitchell
for her patience in typing numerous versions of this manuscript and MSRI for its support
and hospitality.



6 LEONARD LIPSHITZ & ZACHARY ROBINSON

6.1. A Finiteness Theorem ..........ccoueiiiinino... 109
6.2. An Application to Quasi-Affinoid Domains ........ 113
References ... 116

1. Introduction

Let K be a field, complete with respect to the non-trivial ultrametric
absolute value |- | : K — Ry. By K° denote the valuation ring, by K°° its
maximal ideal, and by K the residue field K° /K°°. Let K' be an algebraically
closed field containing K and consider the polydisc

A = ((K')°)™ x ((K")*°)".

In 1961, Tate [39] introduced rings T}, of analytic functions on the closed
polydiscs A, 9. These rings lift the affine algebraic geometry of the field
K. In particular, the Euclidean Division Theorem for K [€] lifts to a global
Weierstrass Division Theorem for T,,. The basic properties of T}, that follow
from Weierstrass Division include Noetherianness, Noether Normalization,
unique factorization, and a Nullstellensatz. These results pave the way for
the development of rigid analytic geometry (see [6] and [10]).

Because in its metric topology K’ is totally disconnected and not locally
compact, to construct rigid analytic spaces one relies on a Grothendieck topol-
ogy to provide a suitable framework for sheaf theory. For example, the basic
admissible open affinoids of rigid analytic geometry are obtained by an ana-
lytic process analogous to localization in algebraic geometry (see [6, Section
7.2.3]). The resulting domains, rational domains, satisfy a certain universal
property (see [6, Section 7.2.2]) and therefore give a local theory of rigid an-
alytic spaces. The local data are linked together with a notion of admissible
open cover and Tate’s Acyclicity Theorem. This makes it possible, for exam-
ple, to endow every algebraic variety over K with an analytic structure, that
of a rigid analytic variety.

The representation

App =lim((K')*)™ x (e(K')*)",

where ¢ € (K')°°, yields a ring of analytic functions on A,,, by taking a
corresponding inverse limit of Tate rings. This gives the polydisc A, , the
structure of a rigid analytic variety. But its global functions are, in general,
unbounded. Even if one restricts attention to those functions with finite
supremum norm, the geometric behavior can be pathological. For example,
let {a;}ien C (K')°° be a sequence such that lim;_,« |a;] = 1. Put

Fp) = aip'.
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Then f converges and has infinitely many zeros on Ag;. This follows by
restricting to the closed subdiscs e- A g and applying Weierstrass Preparation.

The rings Sy, ,, defined below, represent Noetherian rings (often, K-Banach
algebras) of bounded analytic functions on A, , with a tractable algebraic and
geometric behavior. We address the issue of the corresponding sheaf theory
in [22].

These rings have been used in various contexts. In [16], where the S, ,
were first defined, they were used to obtain a uniform bound on the number
of isolated points in fibers of affinoid maps. This result was strengthened in
[2] to give a uniform bound on the piece numbers of such fibers. In [11], rings
So,n were used to lift the rings K[p] in order to obtain analytic information
about local rings of algebraic varieties over K. In [17] (and later in [21]),
the S,,, were used to provide the basis for a theory of rigid subanalytic
sets; i.e., images of K-analytic maps. This theory of rigid subanalytic sets
was developed considerably further in [21], [19], [18], [20]. The manuscript
[21] (unpublished) contains a quantifier simplification theorem suitable for
the development of a theory of subanalytic sets based on the Tate rings. That
manuscript was produced in 1995, well before the completion of this paper, and
hence it was written to be self contained. As a result the proofs were rather ad
hoc. In the paper [23] we give a smoother and more general treatment of that
quantifier simplification theorem, based on some of the machinery developed
in this paper, specifically the Weierstrass Division and Preparation Theorems
(Theorem 2.3.8 and Corollary 2.3.9) and the concept of “generalized ring of
fractions” developed in Section 5.

(The theory of the images of semianalytic sets under proper K-analytic
maps was developed by Schoutens in [32]-[36]. Recently in [12], [37] and [13]
Gardener and Schoutens have given a quantifier elimination in the language
of Denef and van den Dries [9] over the Tate rings 7T},, using the results of
Raynaud-Mehlmann [27], Berkovich [3], and Hironaka, [15]. The proof of
their elimination theorem also depends on the model completeness result of
[21], see [23, Section 4].)

The theory of the rings Sy, , was not developed systematically in papers
[16], [17], [18], [19], [20] and [21]. Instead, partial results were proved as
needed. The accumulation of these partial results convinced us that a system-
atic theory of the rings S,,, would be possible and would provide a natural
basis for rigid analytic geometry on the polydiscs A, ,,. The theory developed
in this paper has been applied in [23] to prove a quantifier elimination theorem
which provides the basis for the theory of rigid subanalytic sets based on the
Tate rings, and in [22] which treats the basic sheaf theory of quasi-affinoid
varieties and proves the quasi-affinoid acyclicity theorem. The theory has also
been applied in [31] to yield a global Artin Approximation Theorem for the
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pair of rings H,, , < Smn, where H,, , is the algebraic closure of T}, , in
Sm,n- Here the Sy, ,, play the role of a kind of completion of Tate rings.

The goals of this paper are (i) to develop the commutative algebra of the
power series rings Sy, , (Section 4) and (ii) to develop the ingredients of sheaf
theory for S, ,,-analytic varieties; in particular to show that rational domains
in this setting (which we term quasi-affinoid) satisfy the same universal prop-
erty as affinoid rational domains. This provides a foundation for a relative
rigid analytic geometry over open polydiscs.

In the next few paragraphs we outline the contents of this paper.

In Section 2, we define the rings S, ,, of separated power series, prove that
they are Noetherian and prove two Weierstrass Preparation Theorems as in
[16], [17] and [2], one relative to the variables ranging over closed discs, the
other relative to the variables ranging over open discs. These Weierstrass
Preparation Theorems were crucial in the applications mentioned above. But,
because there are two types of variables, a suitably large collection of Weier-
strass automorphisms does not exist. Thus these Weierstrass Preparation
Theorems do not yield Noether Normalization for quotient rings of the Sy,
(see Example 2.3.5), making the basic theory considerably more difficult to
establish than in the affinoid case.

We are interested in studying properties of quotient rings Sp,,/I. In
affinoid geometry, the key technique is Noether Normalization. The difficulties
stemming from the failure of Noether Normalization for S,,, are overcome in
Section 3 by a careful analysis of the behavior of restriction maps from A, ,,
to closed subpolydiscs and to certain disjoint unions of open subpolydiscs.

Section 4 contains the Nullstellensatz and results on flatness, excellence,
and unique factorization. The Nullstellensatz yields a supremum seminorm
on the maximal ideal space of a quasi-affinoid algebra (i.e., a quotient ring of
Smn)-

In Section 5, we relate the behavior of the supremum seminorm to the
residue norm derived from the Gauss norm on S, ,, patching together uni-
form data that hold on affinoid algebras induced by restriction maps. The
results are used to show that K-algebra homomorphisms of quasi-affinoid al-
gebras are continuous, that all residue norms on a quasi-affinoid algebra are
equivalent (i.e., the topology of a quasi-affinoid algebra is independent of pre-
sentation), and that quasi-affinoid rational domains satisfy an appropriate
Universal Mapping Property. We prove when Char K = 0, and in many cases
also when Char K = p, that on a reduced quasi-affinoid algebra the supremum
norm and the residue norms are equivalent.

Section 6 contains some finiteness theorems, in particular it contains a weak
analogue of Zariski’s Main Theorem for quasi-finite maps, which is applied to
show that quasi-affinoid subdomains are finite unions of R-subdomains.
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We employ three different sorts of argument in this paper. The first sort
of argument, “slicing”, combines a generalization of the notion of discrete
valuation ring (DVR) and a generalization of the notion of orthonormal basis.
Each “level” of a formal power series ring over a DVR projects to a formal
power series ring over a field, whose algebraic properties can often be lifted.
Similar arguments were employed in [14] and in [4]. The second sort of
argument exploits the relation between residue order and restrictions to closed
polydiscs. A special case of this type of argument was used in [5]. To treat the
case of a discretely valued ground field we must understand how generating
systems of modules behave under ground field extension. Here we use the
notion of stable fields (see [6]). The third sort of argument uses techniques
of commutative algebra to extract information from completions at maximal
ideals.

Following is a telegraphic summary of the principal results of this paper.

Theorem 2.1.3. If K is algebraic over E then

Sma(B,K) = K&pE()[p].

Corollary 2.2.4. Sy, ,, is Noetherian.

Theorem 2.3.2 and Corollary 2.3.3. Weierstrass Division and Prepa-
ration Theorems for Sy, .

Theorem 2.3.8, and Corollary 2.3.9. Weierstrass Division and Prepa-
ration Theorems for A(&)[p]s.

Theorem 3.1.3. Submodules of (Sm,n)é are v-strict. In particular, ideals
of Sm,n are strictly closed.

Theorem 3.2.3. Strictness of a generating system is preserved under
restriction to suitably large rational polydiscs.

Corollary 3.3.2. For a submodule M C (Sy)", and € large enough

1o (e (M) - T (€)) = M.

Theorems 3.4.3, 3.4.6. The restriction of a quasi-affinoid algebra to a
suitably chosen finite union of open polydiscs is an isometry in residue norms.

Theorem 4.1.1. The Nullstellensatz for Sy, p.

Corollary 4.2.2. Sy, ,, is a regular ring of dimension m + n.

Proposition 4.2.3. If Char K = 0, S, ,, is excellent.

Proposition 4.2.5. S, ,, is often excellent when Char K = p # 0.

Theorem 4.2.7. Sy, , is a UFD.

Theorem 5.1.5. For a quasi-affinoid algebra, the ring of power-bounded
elements is integral over the ring of elements of residue norm < 1.

Corollary 5.1.8. Characterization of power-boundedness, topological nilpo-
tence and quasi-nilpotence in terms of the supremum seminorm.

Theorem 5.2.3, Corollary 5.2.4. Quasi-affinoid morphisms are continu-
ous. In particular all residue norms on a quasi-affinoid algebra are equivalent.



10 LEONARD LIPSHITZ & ZACHARY ROBINSON

Theorem 5.2.6. Homomorphism Extension Lemmoa.
Proposition 5.3.2. Generalized rings of fractions are well-defined.
Theorem 5.3.5. Quasi-rational domains satisfy the appropriate universal

mapping property.
Proposition 5.4.3. Tensor products exist in the category of quasi-affinoid

algebras.
Theorems 5.5.3, 5.5.4. In characteristic zero, and often in characteristic

p, the residue norm and the supremum norm of a reduced quasi-affinoid algebra

are equivalent.

Theorem 6.1.2. A quasi-affinoid map that is finite-to-one is piecewise
finite.

Theorem 6.2.2. A quasi-affinoid subdomain is a finite union of R-
subdomains.

Corollary 6.2.3. Quasi-affinoid subdomains are open.
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2. Rings of Separated Power Series

In this section, we define the rings Sy, , = Sy n(F, K) of separated power
series, prove that these rings are Noetherian (Corollary 2.2.4) and that they
satisfy Weierstrass Preparation and Division theorems (Corollary 2.3.3 and
Theorem 2.3.2), but not (Example 2.3.5) Noether Normalization.

2.1. Definitions. — Let K be a field, complete with respect to a non-trivial
ultrametric absolute value |-|: K — Ry, let K° denote the valuation ring of K,
let K°° denote its maximal ideal and let ~: K° — K := K°/K°° denote the
canonical residue epimorphism. Throughout this paper, we will be concerned
with power series whose coefficients lie in certain subrings B of K° called
quasi-Noetherian rings.

Let B be a valued subring of K° such that each z € B with |z| = 1 is
a unit of B (such rings are called B-rings.) It follows from the ultrametric
inequality that B is a local ring. The ring B is called quasi-Noetherian iff
for each ideal a of B there is a zero-sequence {z;};cn C a (called a quasi-
finite generating system) such that each a € a can be written in the form
a = Y b;jz; for some elements b; € B. However, not all such sums need belong

i>0
to a. (See [6, Section 1.8] and [14].)

We will make use of the following properties of quasi-Noetherian rings
without further reference. Clearly, any subring B C K° which is a DVR
is quasi-Noetherian, since it is Noetherian. Let B C K° be quasi-Noetherian.
For any zero sequence {a;}ien C K°, the local ring

A= B[GO’ at, ... ]{aGB[ao,al,...}:\a\zl}

is quasi-Noetherian ([6, Proposition 1.8.2.4]). The completion of B is itself
quasi-Noetherian ([6, Proposition 1.8.2.2]). The value semigroup |B \ {0}| C
Ry \ {0} is discrete ([6, Corollary 1.8.1.3]). Therefore, there is a sequence
{bi}ieN C B \ {0} with |B\{0}| = {|bz|}zeN and 1 = |b0| > |b1| > ---. The
sequence of ideals
Bi:={be B:|b <|bl|}, i€ N

is called the natural filtration of B. Note that B is the unique maximal ideal
of B. By B denote the residue field B/Bj of B. For i € N, put EZ = Bi/BH_l;
then B = Eg C K. Since By - B; C B;y1, the B-modules EZ can be viewed
in a canonical way as B-vector spaces. FEach B vector space EZ is finite-
dimensional; in fact, this property characterizes the class of quasi-Noetherian
rings ([6, Theorem 1.8.1.2]). For i € N we may identify the B-vector space B;

with the B-vector subspace (bi_lBi)N of K via the map

T - (a +Bi+1) — (b;la)N .
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When 4 > 0, this identification of EZ with a B-vector subspace of K is not
canonical; it will, however, be used frequently.

Let R be a ring and let {a)},cs be an inverse system of ideals of R. When
we endow R with the topology induced by taking {a)}xcs to be a system of
neighborhoods of 0, R is said to be a ring with a linear topology. In this
subsection, we will assume that R is complete and Hausdorff in this linear
topology. For example, let R be a subring of K°; then the topology induced
on R by the absolute value | - | is a Hausdorff linear topology.

Let & = (&,...,&n) be variables. A formal power series ) a,¢* with
coefficients in R is called strictly convergent iff {a,},cnm= is a zero-sequence
in R. By R(£), we denote the collection of all strictly convergent power series;
it is a subring of the formal power series ring R[¢]. The ring R(¢) is complete
and Hausdorff in the uniform topology; i.e., in the linear topology given by
the system of ideals {a) - R({)}rcr. In case R = K°, by K(¢), we denote the
K-algebra K ®@p R(£) of strictly convergent power series over K.

Let p = (p1,...,pn) be variables. Then

R(E) [Pl = RIPIE

when we endow R|[[p]] with the product topology; i.e., the topology induced
by the inverse system of ideals

{01+ S oot}
lv|<d deN
In case R carries the discrete topology, R(£) = R[] and

R[E][pll = R[pIE)

where R[p]] carries the (p)-adic topology. If R C K° then the absolute value
|| on R induces a linear topology, and |-| extends to an R-module norm on
R(&)[[p] called the Gauss norm, given by

Z f/u/gupy
uv

These definitions will be used in Subsection 2.3 where we discuss Weierstrass
Division Theorems.

== sup | fu|-
j15%

Definition 2.1.1. — Fix a complete, quasi-Noetherian subring £ C K°
and, if Char K = p > 0, assume in addition that £ is a DVR. Let & =
(&1,...,&m) and p = (p1,...,pn) be variables. We define a K-subalgebra
Smn(E,K) of K[&,p]], called a ring of separated power series.

Let %5 be the family of quasi-Noetherian subrings of K° which consists of
all local rings of the form

~

(Elag, a1, - - . [{eeklao.ar,... J-lal=1})
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where  denotes completion in |-|, and where {a;};cny C K° is a zero-sequence.
Then put

Sm,n = m,n(EaK) =K Qo <h_n>1B<£> [[P]]) )

BeB
S = 1m B} o],
BeB

590 = K. 8¢

m,n?

gm,n = %ﬂé[f] [o].

Bes

For f =3 aué&"p” € Sim,n we define the Gauss norm of f by

151= sup .
v

Note that Sy, contains the Tate ring T;,1,(K) = K(& p) and Sy,
coincides with T;,,. In case K = Q,, the field of p-adic numbers, we have
Smm = Qp ®z, Zp(€) [p]], where Z,, denotes the ring of p-adic integers. When
K is algebraically closed and E is a DVR with E C K° and F = K, the rings
Smn(E, K) are the rings defined in [17]. Following the usage in [17], when F
is understood, we may write

K(&) [pl; == Smn(E, K).

(The subscript s stands for “separated”.) In the case that F = K the rings
So,n and their quotient rings are the formal completions considered in [11,
Section 2.3.2,], and used to derive properties of the formal localizations. The
description of these rings given in Definition 2.1.1 is due to Bartenwerfer [2].

The family B, described in Definition 2.1.1, satisfies the following proper-
ties, which we use without further reference.

(a) B forms a direct system under inclusion,
(b) lim B = K°,
Be's
(c) for each B € 9B and b € B there is some B’ € B with (b~'BNK°) C B,
and

(d) for any B € B and any zero-sequence {a;}ien C K°,
(Blao, a1, - - . l{eeBlagar,...]-lal=1}) € B.
If EC E' and K C K' then
Smn(E,K) C Sm,n(E’, K').
If K' is a finite algebraic extension of K then Sy, ,(E, K') = K'®x Spn(E, K).
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Remark 2.1.2. — The following are easy consequences of the properties of
B-rings (cf. [2] and [17]).

(i) Iff=3au,'p” € Sy then

171 = s | = max e

i.e., the supremum is attained.
(i) We have the following characterizations of the subring Sy, ,,, the ideal

m,n’

Sy . and the residue ring §m,n:

S;)n,n = {fe Smn : £l <1},
Smn = {f € Smu: |Ifll <1} and

_ e} 00
Sm,n - Sm,n/Sm,n'

As in [6, Corollary 1.5.3.2], the Gauss norm || - || is an absolute value on Sy, ,,
extending that on K.

The canonical residue epimorphism ~: K° — K extends to the residue
epimorphism ~: S5, = Syp 0 DS @€t p” = Y@t p”. Let I be an ideal of
Smn, and put I°:= S5 N1I. Since ~: Sp, |, — §m7n is surjective, the image
of I° under ~ is an ideal of §m,n, which we denote by I.

In general the S, ,(E, K) are not complete in || - ||. However, for many
choices of F C K they are. When K is algebraic over E, we will show that

Sma(E,K) = K&pE()[s],

where ® denotes the complete tensor product of normed E-modules (see [6,
Section 2.1.7]). This situation is clarified in the next theorem. Observe that
the natural map

0K op B[] > K[E]: > 0;® fi > > aifi

is injective. Indeed, it is easy to see that the field of fractions Q(FE) of E is
a flat E-algebra. Hence, K[, p], being a Q(FE)-vector space, is also a flat E-
algebra. It now follows from [25, Theorem 7.6], that Keroc = (0). The image
of o is contained in Sy, ,(E, K). Moreover, since o is contractive, it extends
to a map

5 : KQpE(©)[p] — KI[£, pl.

It is not hard to see that the image of o is contained in Sy, ,(F, K), when
Smn(E, K) is complete (see below).
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Theorem 2.1.3. — Letn>0. (i) Smn(E, K) is || - [[-complete if, and only
if, K has finite transcendence degree over E In that case let E' C K° be a
finitely generated extension of E such that K is algebraic over E'. Then

Sm,n(Ea K) = Sm,n(E,aK) = K@)E/EI(f)[[p]],

where g denotes complete tensor product of normed E'-modules (see [6,
Section 2.1.7]).

(ii) There is a quasi-Noetherian ring E', E C E' C K°, such that Sp, ,(E', K)
is || - ||-complete (and contains Sy, (E, K)).

(iii) §m,n(E, K) is (p)-adically complete if, and only if, K is a finitely
generated field extension of E.

(iv) Spn(E,K) is (p)-adically complete if, and only if, K is a finitely
generated field extension of E and K is discretely valued. (In which case
we may take E = K°.)

Proof. — (i) Suppose that K has infinite transcendence degree over E. Let
t; € K° i € N, be such that the #; are algebraically independent over E. Let
fi=2>272 Zp{ € So,1 C Smpn (n > 0). Choose a € K*° (ie., |a] < 1). The
series f = > 1 € a'f; is Cauchy in || - || but does not belong to Smn- Indeed
for any B € B, Bisa finitely generated field extension of E and for i > 1, B;
is a finite dimensional vector space over B. Hence f & Blp1]-

For the converse, assume that K is of finite transcendence degree over
E. Note that if E’ € B then Spn(E,K) = Smn(E',K). Hence we may
assume that K is algebraic over E. Let f; € Sm.n With || fil — 0. There
are a; € K° with |a;| = || fill and B® € B such that L f; € BO(&)[g], ie.,

fi € a;B ( )p]- Let
B = B{) 5 B 5

be the natural filtration of B®. Since K is algebraic over E, each field

ééi) = é(i), and hence each B( ), is a finite-dimensional E-vector space.
Let éj(z) be genfrated over E by the residues modulo B](-le of b € B](-i),
Ek=1,..., dimB(l). Let {c;i}ien be a rearrangement of {a;b;j, : i € N,j €

NkE=1,.. dlmB } in non-increasing size. (Recall that a; — 0.) Putting

B:= (E[C(]a C1y... ]{aGE[CO,cl,...]:\a|:1})/\€ B

yields a;B%) C B for alli and 3", f; € B(¢)[p]. Hence Sy, (E, K) is complete.
As we observed above, there is a map o K®EE( el = Smpn. If K is
algebraic over E then for every B € B, B and the B are all finite-dimensional



16 LEONARD LIPSHITZ & ZACHARY ROBINSON

E vector spaces. Hence for each B € B, there is a map

7 BO)[p] —» K@rE()]p],

which is a left inverse of .

(ii) Repeated use of [6, Proposition 1.8.2.3 and Theorem 1.8.1.2], shows that
there is a quasi-Noetherian ring E', E C E' C K°, such that K is an algebraic
extension of E'. Hence Smn(E,K) C Spn(E',K) and by (1) Spa(E', K) is
complete.

(iii) If Kisa finitely generated field extension of E then replacing E by a
suitable finitely generated extension we may assume that E = K. But then

§m,n = E[f] [[:0]]7

which is (p)-adically complete.

If, on the other hand, there are t; € K such that tiv1 & E(t~1, ...,t;) then
f = Zipzl <4 §m,n, since for every B € ‘B, Bisa finitely generated field
extension of E.

(iv) If K is not discretely valued there are a; € K° with |a;| < |aj+1] < 1
fori=0,1,2,.... Then ), aipzi & Smmn- On the other hand, if Kisa finitely
generated extension of E and K is discretely valued, then K° € 9B. O

Remark 2.1.4. — (i) Suppose Char K = p # 0. In this case we require E to
be a complete DVR. By the Cohen Structure Theorem ([25, Theorem 29.4]),
E has a coefficient field (i.e., an isomorphic copy of EC E) which we also
denote by E’) If 7 is a prime of F then ECE-= E[W]A Thus Sy, n(E, K) =
Smm(E,K ). Hence we could have required in the equicharacteristic p case
that £ C K be a field, without loss of generality.

(ii) Let K be a perfect field of characteristic p, and let E C K° be a
subfield. Then there is a field £, E C E' C K°, with E' perfect and K
algebraic over E'. Hence, using (i) above, for any DVR E C K° there is a
field E' C K° such that Sy, ,(E,K) C Spn(E',K), Spn(E',K) is complete
in ||-|| and Sy, n(E', K) is a finite Sy, , (E', K)P—module. (The monomials £*p”
with 0 < p; < p, 0 <wv; < p, form a basis.)

By definition, Sy, ,, is the direct limit of complete rings (the B(£)[p]). Next
we show that while S,, , may not be a complete K-algebra it is the direct
limit of complete F-algebras for some complete, nontrivially valued subfield
F of K. This decomposition will be used in Subsection 5.2. B

Let F' be a complete subfield of K such that F° is a DVR and F is finitely
generated as a field. (For example, in the mixed characteristic case let F' = @,
the field of p-adic numbers, and in the equicharacteristic case let F' be the
fraction field of Q[¢] or F,[¢], depending on the characteristic of K, where
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t € K°°.) Let B' € B. There is a B € B such that B'U F° C B. Consider
the F-algebra

F&poB(E)[p].
By the definition of the complete tensor product ® this is an F-Banach
algebra (i.e., is complete in || - ||). In general there is no B” € B such that

(F®peB(&)[p])° C B"(€)[p]. However, the natural map

0 F@po BOI] = S = Y i ® fi = > aif;

is an isometry because F°®po B(£)[p] = B(¢)[p]. The next proposition shows
that o extends to F®po B(¢)[p].

Proposition 2.1.5. — With the above notation,
Indeed

Sma= lim F&pBE)p].
FoCBeB

Proof. — Tt is sufficient to show that if f € F&poB(£)[p] and ||f|| < 1 then
there is a B" € B such that f € B"(¢)[p]. Let f € F®poB(£)[p] with
Il < 1. Then there are f; € B(£)[p] and m; € N such that f = > 7~ f;,
where 7 is a prime of F°, and |77 f;]| — 0. Hence for each ¢ there is a
nullsequence {a;;}jen with #=™ f; € B'(£)[p], where
B':= (Blaij : j € N[{aeBlai; :jeN:la|=1})

and |a;;| < ||7=™ f;|| for all ¢ and j. Since ||[7~™ f;|| — 0, any rearrangement
of the double sequence {a;;} jen as a sequence will be a null-sequence. Let
{ci}ien be such a rearrangement. Then if

~

B" := (B[C()a Cly. .. a]{aEB[co,cl,...}:M:l}) )
f e B"(&)Ipl- O

In general the F-Banach Algebras F®po B{(£)[p] C Sm.n constructed above
are not Noetherian and the Weierstrass Preparation and Division Theorems
need not hold in them. An argument similar to the proof of Proposition 2.1.5
shows that we can write

~

Smn(E, K) = lim (K - B{)[p])
Be's
as the direct limit of K-Banach Algebras. These K-Banach algebras likewise
may fail to satisfy the Weierstrass Preparation and Division Theorems of
Subsection 2.3.
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Remark 2.1.6. — (i) The rings S, , = Sy (E, K) can have quite different
properties depending on the choice of E. As we saw in Theorem 2.1.3, if B
is large enough the Sy, ,(E, K) will be complete and the S, , may even be
(p)-adically complete. On the other hand if E C K is small, the Sm,n will be
far from complete and the gm,n far from (p)-adically complete. Nevertheless,
for all choices of E, Sy, , is, by definition, the direct limit of the || - [|-complete
and (p)-adically complete rings B({)[p], and this key property allows the
development of the theory.

(ii) There is a larger class of power series rings in which many of the results
and proofs of this paper remain valid. This larger class is defined as follows.
Fix a family 8 of complete, quasi-Noetherian subrings B C K° that satisfy
the properties (a), (b), (¢) and (d) listed after Definition 2.1.1, and put

Smn = Smn(B, K) := K ®ke lim B({)[p]-
BeB
Example 2.1.7 shows that this definition is more general.

(iii) If we wished to work over complete rings we could also have pro-
ceeded as follows: Form the rings Sy, ,,(F,K) as in Definition 2.1.1, or the
rings Sy, (B, K) defined above, and then take their completions SmA, n =
Smn(E,K) or Syn(B,K) . In general the rings Sy, ,(E, K) would be dif-
ferent from the rings Sy, ,(E’, K) for any E'. However all the results of the
paper are true for these rings Sn; n- The proofs that use “slicing” arguments
may be modified as follows. Though an arbitrary f € (Sn: n)° need not belong
to B(£)[p] for any B € B, there is an increasing sequence B(®) ¢ B c ..,
from B and f®) € BO(¢)[p] such that ||f — @] — 0.

Example 2.1.7. — We give an example of a B, as in Remark 2.1.6(ii),
such that there is no E with Sy, ,(8,K) C Syn(E,K). Consider F =
Fy (t1,t2,...)(z) with absolute value derived from the (z)-adic valuation and
let K be the completion of the algebraic closure of F'. Let {a;} be a sequence
of positive rationals converging to zero, and define inductively

Ey:=Fpy(t; +2%,i €N)
e Y ~
E; := <Ezl[ti tn € N]{aeEi_l[tgfn: et a|:1}>

Let B; be the family of all quasi-Noetherian rings of the form

~

(Ei[a()a at, ... ]{aeE’i[ao,al...Ha\:l})
where {a;}ien is a null sequence from K°, and let

B = U,;’B;.
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We will show that for n > 0 there is no complete DVR E C K° such that
S (B, K) C Sypn(E, K). Suppose that Sy, ,(B,K) C Sy, n(F, K). Since K
is algebraically closed, by Remark 2.1.4 we may assume that E C K° is a field
and that £ = K.

Note that E; has a countable dense subset {cg,c1, ... }. Hence

" cip} € Spn(B, K) C Spn(E, K).

Therefore for each i € N there is a zero sequence {aj,as,...} from K° such
that

E; C (Elay,a2 .. J{acElay 0, al=1}) =: Bi.

Since E = K we may assume that laj| < 1 for all j. Since tf_n € E;, there are
enj € E} with epg € E such that

(o)
tpin _ + 1
. = €no enja;.
ji=1

Then

o0
" p" p"
t; = e, + g T
Jj=1

Since |a;j| < 1 for all j, we see that the sequence eﬁg converges to t;. Since
E C K° is afield the absolute value is trivial on E and hence t; € E. The quasi-
Noetherian ring Ej contains both E and Ej. Thus it contains the elements
z%, 1 € N. Since |2%| = p~® this contradicts the discreteness of the value
semigroup of E{. One can construct a similar counterexample in characteristic

7Zero.

Remark 2.1.8. — We will use the term affinoid to refer to objects defined
over the Tate rings and the term quasi-affinoid to refer to objects defined
over rings of separated power series. Hence, for example, an affinoid algebra
is a quotient of a T},, and a quasi-affinoid algebra is a quotient of an Sy, .

2.2. Noetherianness. — In this subsection, we lift the Noetherian property
of the residue rings S, 5, to the Sy, , by lifting generators of ideals. This also
yields the property that ideals of S, , are strictly closed in || - ||, a property
that will be further analyzed in Subsection 3.1.

Lemma 2.2.1. — Suppose A = lim Ay is a Noetherian ring which is the
direct limit of the rings Ax. Put A :=lim A\[p]] C A[lp]. The following are
equivalent:

(i) A is Noetherian.

(ii) A[lp] is a flat A-algebra.
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(iii) A[p] is a faithfully flat A-algebra.

(iv) Each ideal of A is closed in the (p)-adic topology.
If each Ay is Noetherian and if for every \ there is some u > X such that A
is a flat A,-algebra, then A[lp] is a flat A-algebra.

Proof. — Tt is no loss of generality to assume that each Ay, C A. We first
show (i) = (ii) = (iii) = (iv) = (i).

(i) = (ii). Let I be the ideal of A generated by the variables p1,...,pp.
Since A[[p] is Noetherian and since I- A[[p]] is contained in the Jacobson radical
of A[lp]], A[[p] is I-adically ideal separated as an A-module. Since for every
teN

AJT = ATl / ()",
(ii) follows from (i) by the Local Flatness Criterion ([25, Theorem 22.3]).

(ii) = (iii). Let I be any ideal of A; then I - A[[p] is the unit ideal if, and
only if, for some fi,..., fr € I and a1, ...,y € A, the constant term of > «; f;
is a unit. The latter condition holds if, and only if, I generates the unit ideal
of A. Therefore (iii) follows from (ii) by [25, Theorem 7.2].

(iii) = (iv). Since A[p]] is Noetherian and since (p) - A[[p]] is contained in
the Jacobson radical, each ideal of A[[p] is closed in the (p)-adic topology by
the Krull Intersection Theorem ([25, Theorem 8.10 (i)]). Let I be any ideal
of A; then the (p)-adic closure of I in A is equal to I - A[[p]] N .A. Hence to
prove (iv), we must show that I = I- A[[p]| N.A. If A[[p] is faithfully flat over
A, this follows from [25, Theorem 7.5].

(iv) = (i). Let I be an ideal of A. Since A[[p] is Noetherian, there are
finitely many elements f; ..., f; of I which generate the ideal I - A[[p]]. Let J
be the ideal of A generated by fi,..., f;. To prove (i), we show that J = I.
If each ideal of A is closed in the (p)-adic topology, then, as above,

I = ANI-A[p]
AnJ- Alp]
= J
proving (i).
Now suppose that each Ay is Noetherian and that for every A there is some

p > A such that A is a flat A,-algebra. We show that A[[p] is a flat A-algebra.
If Ais a flat A, -algebra then

Alp] = A®a, Aulp]

is a flat A,[p]-algebra. Since, in addition, A is Noetherian, by the Artin-
Rees Lemma ([25, Theorem 8.6]), the A, [p]-module A[p] is (p)-adically ideal-
separated. Since A, [p] is Noetherian, by the Local Flatness Criterion ([25],
Theorem 22.3), for every £ € N, A[p]/(p)* is a flat A,[p]/(p)’-algebra. Since
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AR/ () = Alp)/(p)* and AT/ (9) = Aulpl/(p), and since py,....,pn
are contained in the Jacobson radical of A[[p]], by another application of the

local flatness criterion, A[[p]] is a flat A, [[p]-algebra. To show that A[p] is
a flat A-algebra, we use [25], Theorem 7.6. Suppose fi,..., f; € A; then for
some p such that A[[p]] is a flat A,[[p[-algebra, fi,..., fo € A,[pll. Suppose,
furthermore, for some g1,...,9¢ € A[p] that Y g¢;fi = 0. Since A[p] is a
flat A, [[p]-algebra, there are r € N, ¢;; € A, [[p]] and v; € A[lp]], 1 <3 < ¥,
1 <7 < r, such that

> figij =0for all j, and gi =  ¢ijv; for all 4.
i J
Since A, [[p]] C A, it follows immediately that A[p] is a flat A-algebra. O

The following is an immediate consequence of Lemma 2.2.1, taking the A
to be the B[¢], B € B.

Corollary 2.2.2. — The residue rings §m,n are Noetherian; each ideal of
Sm.n s closed in the (p)-adic topology.

The next lemma allows us to lift generators of an ideal I of §m,n to gener-
ators of the ideal I of Sy, .

Lemma 2.2.3. — Let I C Sy, be an ideal and let g1,...,9, € I° be such
that {g1,...,9r} generates I. Let f € Sy, and choose B € B such that

fr91,---,9r € B(E)[pll- Suppose that ||f —hl| < ||[f|| for some h € I. Then
there are f1,..., fr € B(§)[p]] with

‘f =Y figi

=1

(2.2.1) < Il

and || f|| = max || fi].

1<i<r
Proof. — Let B = By D By D --- be the natural filtration of B, and suppose

€ Bp(&) P\ Bp1(&) []l -

Find b, € B with B, = {b € B : |b| < [b,|}, let 7, : B, = B, C K be the
B-module residue epimorphism a — (b, 'a)™, and write

K=B,aoV
for some B-vector space V. This implies that

(2.2.2) K [€][o] = B, [é11p] @ V€] [o]
as B¢][[p]-modules. (This useful decomposition can be found in [14].)
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Since ||f — h|| < ||f|| for some h € I, we have my(f) € I. Since gi,..., G,
generate I, we have

m(f) = Y fidi € Byl€]lp]
i=1
for some fl,...,fr € E[{][[p]] By (2.2.2), we may assume fl,.;.,fr €

Ep [€][pll. Thus there are f1,...,fr € By(§)[p]] corresponding to fl,...,fr
under the residue map m,. Clearly, ||f — > fig;ll < |||l O

Since each B € B has discrete value semigroup and since B(&)[p] is
complete in ||-||, Lemma 2.2.3 implies that the separated power series rings
are Noetherian.

Corollary 2.2.4. — (cf. [17], Proposition 2.6.2.) The rings Sy, ,, are Noethe-
rian. Indeed, let I C Sy, be an ideal and suppose the residues of g1,...,gr €
I° generate I in Sy, . Then for every f € I there are fi,..., fr € Sy with

f=>" figi,
i=1

and ||fll = maxi<i<, |fill. Moreover, if for some B € B, f,g1,...,9» €
B{¢)[[p]l, then fi,..., fr may also be taken to lie in B(&)[p])-

In fact, Lemma 2.2.3 yields the slightly stronger result, Corollary 2.2.6.

Definition 2.2.5. — (cf. [6, Definition 1.1.5.1].) Let (A4, v) be a multiplica-
tively valued ring. An ideal I of A is called strictly closed in v iff for every
f € A there is some g € I such that v(f —¢g) < v(f — h) for every h € I.

Corollary 2.2.6. — Ideals of Sy, are strictly closed in |-||. Indeed, let
I C Sy, be an ideal and suppose the residues of gi,...,g9, € I° generate I in
Smun- Then for every f € Sy, there are f1,..., fr € Spmp with

Hf - figi

=1

<|If = Al

for every h € I, and || f|| > maxi<i<, ||fil|. Moreover, if for some B € B,
fr91,---,9r € BE)[pll, then fi1,..., fr may be taken to lie in B(&)[p]-

Taking n = 0 in the above, we obtain [6, Corollary 5.2.7.8].
In Subsection 3.1, we will be interested in some refinements of Corol-
lary 2.2.6.
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Definition 2.2.7. — Let I be an ideal of Sy, ,. For f € Sy, ,, we define the
residue norm

1£lly = inf{[[f = hll : h e I}.
From Corollary 2.2.6, it follows that there is some h € I such that || f||, =
If = Al

The direct sum (S, ,/I)* is a normed (S, ,/I)-module via

s S/ D = Rt (Frsee s f0) = a1l

We will be concerned with submodules M of (S, /)¢, which will be endowed
with the norm | - ||;. Residue modules play an important role.

Definition 2.2.8. — Let (M, |-]) be a normed K-module. By M° and M°°
denote, respectively, the K°-modules

M°:={feM:|f|<1} and

M :={feM:|fl <1}
We define the residue module M by

M = M°/M°°.
It is a K-module.
From Corollary 2.2.6, it follows that
(Smn/T)° = S5/ T° and (Smn /D)™ = Spn/T.

2.3. Weierstrass Division Theorems. — We recall in Theorem 2.3.2 the
Weierstrass Division Theorems for the rings Sy, , (see [16] and [17]) in the
form given in [2, Section 1.2]. These will be used in Section 4 and extensively in
Section 5. In Theorem 2.3.8, we prove an extension of these division theorems
to handle Weierstrass divisors with coeflicients in a quasi-affinoid algebra. The
statement and proof of Theorem 2.3.8 rely on results of Sections 4 and 5, but
the theorem itself is only used in Section 6 and in [23].

Definition 2.3.1. — (cf. [17, Sections 2.3 and 2.4].) An element f € §mn
is regular in ¢, of degree s iff for some ¢ € K , ¢f is congruent modulo
(p) - §m,n to a monic polynomial in &, of degree s. An element f € §mn is
regular in p, of degree s iff f(£,0,...,0,p,) = p5 - g(§, pn) for some unit
g € K[¢][pn]- An element f € Smn \ {0} is regular of degree s in ¢,
(respectively, p,,) iff for some ¢ € K, (¢f)™ € gm,n is regular of degree s in &,
(respectively, pp).
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The formal power series ring B[¢][p], whence §m,n, has the usual local
Weierstrass Division Theorem for elements regular in p, as in [41, Theo-
rem VL1.5]. As in [1, Section 2.2] or in [17, Proposition 2.4.1], this lifts
to the complete, linearly topologized ring B({)[p]. As explained in Subsec-
tion 2.1, B[¢][p] is equal to the strictly convergent power series ring B[p](¢).
The Euclidean Division Theorem for B[¢] lifts to a Weierstrass Division The-
orem in B[p](¢) for elements regular in ¢, as in [6, Theorem 5.2.1.2]. This
may be lifted to B(¢)[p] as in [17, Proposition 2.3.1], or as in [2, Section 1.2],
using the Hensel’s Lemma of [8, Section 4]. This yields the following theorem.

Theorem 2.3.2. — (Weierstrass Division Theorem, cf. [17, Proposi-
tions 2.3.1 and 2.4.1].) Let f,g € Sy, ,, with ||f|| = 1.
(i) If f is regular in &y of degree s, then there exist unique q € Sy, ,, and
r € Sp_1nlém] of degree at most s—1 such that g = qf +r. Ifg € I-S;, ,,
for some (closed) ideal I of Sy, 4 ,,, then q,r € I- Sy, .
(ii) If f is regular in py, of degree s, then there ewist unique q € Sy, , and
T € S, n_1lon] of degree at most s—1 such that g = qf +r. Ifg € I-S}, ,
for some (closed) ideal I of Sy, 4, then q,r € I-Sp, .
Moreover, if f,g € B(&)[[p]] for some B € B, also, q,r € B(&)[[p]-

N

Dividing &, (or p;;) by an element f € S, , regular in &, (or p,) of degree
s, we obtain the following corollary.

Corollary 2.3.3. — (Weierstrass Preparation Theorem) Let f € Sy, ,
with || f]] = 1.

(i) If f is regular in &, of degree s, then there exist a unique unit u of
Smn and a unique monic polynomial P € Sp,_, [€m] of degree s such
that f = w - P; in addition, P is regular in &, of degree s.

(ii) If f is regular in py, of degree s, then there exist a unique unit u of
S and a unique monic polynomial P € Sy, 1 [pn] of degree s such

that f = w - P; in addition, P is regular in py, of degree s.
Moreover, if f € B(&)[[p]] for some B € B, also u, P € B{&)[[p].

Unlike the rings B[¢, p]] and B(¢, p), there may be no automorphism of
Sm,n under which a given element f with ||f|| = 1 becomes regular (see
Example 2.3.5).

Definition 2.3.4. — (cf. [17, Section 3.12].) An element f =) f,(p)&" €
§m,n is preregular in ¢ of degree yq iff f,, # 0 modulo (p) - §mn and
fu = 0 modulo (p)- §m7n for all i lexicographically larger than pg. An element
F=>fu&p" € §m7n is preregular in p of degree vy iff f,, € K \ {0} and
for all lexicographically smaller indices v, f, = 0. An element f € Sy, , \ {0}
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is preregular in ¢ of degree y( (respectively, in p of degree 1)) iff for
some ¢ € K, (¢f)™ € Sy is preregular of the same degree.

If f is preregular in ¢ (respectively, p) then after an automorphism of
the form p = Py £m = £ma £Z = £Z + grcrlz (respeCtiveIYa g = ga Pn = Pn,
[ . .
pj — pj + pi) f becomes regular in &, (respectively, p,) of some degree s.
Such automorphisms are called Weierstrass automorphisms.

Example 2.3.5. — The element {-p € 511 is not preregular. Indeed, there
is no finite monomorphism S, , — S1,1/(£p) for any m,n € N. Since the map
S1,0® So1 = S1,1/(§p): (f9) = f+g
is surjective and dim S; o = dim Sp; = 1 (see Corollary 4.2.2), we must have
dim(S1,1/(¢p)) = 1. Thus, if there were a finite monomorphism

@ Smm — S1,1/(€p),

either m =1 and n =0, or m = 0 and n = 1. We treat the case m = 1 and
n =0. Let

a 51’1/(5,0) — SO,I = 51,1/(5,0,6)

be the canonical projection. Since « is surjective,
aop: Sl,g — S(),l

is finite. Since dim Sp; = 1, @op must be injective. By [6, Proposition 3.8.1.7],
we can reduce modulo K°° to obtain a finite K-algebra homomorphism

(o)™ : K[€] = So,.

But such a map cannot exist, since the transcendence degree of Sy ; over K is
infinite.

Remark 2.3.6. — For every nonzero f € Sp,, there is a Weierstrass au-
tomorphism of Sy, under which f becomes regular in p, of some degree.
Therefore, arguing as in [6, Theorem 6.1.2.1], one proves the following version
of Noether Normalization: Let d be the Krull dimension of Sy ,,/I; then there
is a finite K-algebra monomorphism ¢ : Sp 4 — So /1.

In Definition 5.2.7, we will define the ring A(¢)[p]s C A[€, p] of separated
power series with coefficients in a quasi-affinoid algebra A. Using the results of
Subsection 5.2, we state and prove here relative Weierstrass Division Theorems
for such rings. These theorems will be used only in Section 6 and in [23].

Definition 2.3.7. — Let A be a quasi-affinoid algebra. By the Extension
Lemma, Theorem 5.2.6, for each € Max A, there is a unique homomorphism

eet Al &m)pts - pulls = Smn(E, A/ x)
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extending the map A — A/xz and preserving the variables £ and p. An element
[ € A{&)[p]s is regular in &, (respectively, p,,) of degree s iff for each
z € Max A, e,(f) € Spn(E, A/z) is regular in &, (respectively, py,) of degree
s. Preregular elements are defined similarly.

Theorem 2.3.8. — (Weierstrass Division Theorem) Let A be a quasi-

affinoid algebra, and let f,g € A(&)[p]s-

(i) If f is reqular in &, of degree s, then there exist unique q € A{€)[p]s
and r € A(E")[p]s[€m] of degree at most s —1 such that g = qf +r (where

=&, 6m-1).)
(i1) If f is regular in p, of degree s, then there exist unique q € A{&)[p]s
and r € A(EYp']spn] of degree at most s — 1 such that g = qf +r (where

pl=(p1,--spn-1)-)
Proof. — (i) Ezistence. Write
= aup” = fill,
W,y 1>0

Since f is regular in &,, of degree s, for each x € Max A, £,(fs) is a unit of
Sm-1n(E,A/z). It follows by the Nullstellensatz, Theorem 4.1.1, that f is
a unit of A(&)[p]s. Since e,(f; ) - €x(f) is regular in &, of degree s for each
x € Max A, we may therefore take fs = 1. It follows that

851?(f2) € S;)n—l,n(EaA/x)a P <,
and
851?(f2) € (p) fn—l,n(Ea A/$) + S;)rf—l,n(EaA/x)a P> S,
for every © € Max A. By Corollary 5.1.8, f; is power-bounded for 7 < s and
fi is quasi-nilpotent for 7 > s.
Write A = Sy /1 and consider the canonical projection
@t Smtm mant — A(E)[pls

modulo I - Sy, 4m pin- Let

F=Y" Fg,
be a preimage of f, where each F; € Sy,—14m/ nyn. By Lemma 3.1.6, there is
an r so that for i > s,

,
Fy =) Hj;Fyy;,
i=1

where | Hyl,..., || Higl| < 1.
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By the Extension Lemma, Theorem 5.2.6, there is a K-algebra homomor-
phism %) such that

Sm+m’,n+n’ — Sm+m’+s,n+n’+r
14

A(&)[ols

commutes, and

p(&) =& 1<i<m;  PEmyi) = @Emri), 1<i<ms
Y(Emym i) = fic1, 1<i<s,

and
b(pi) =pi, 1<i<n;  P(ppyi) = plpnti), 1<i<ns
Y(pntn+i) = fspi, 1<i <

Note that f is the image under ¢ of

s—1 r
F2=) im0+ 0 | D Hijpninti
i=0 1>s j=1
and f* € Spyym/4sn4n/+r is regular in &, of degree s.
Let G € Sytm/+s,n+n'+r be a preimage of g under +). By Theorem 2.3.2,
there are unique Q € Sy m/+sntn/+r A0d R € Sp_14m/+5,nn/+r[Em] of degree
at most s — 1 with

G=Qf"+R.
Putting ¢ = ¢ (Q) and r = ¢(R) satisfies the existence assertion of part (i).
Uniqueness. Let ¢ € A(&)[p]s and let r € A(E")[p]s[€m] be of degree at most
s — 1. Suppose
0=gqf +r;

we must show that ¢ = r = 0. Let Q € Spim/4spin4r and R €
Sm—14m/+sntn'+r[&m] with deg R < s — 1 be preimages under ¢ of ¢ and
r, respectively. Then

G:=Qf " +ReKeryp=1- Smm’ +s,n+n/+r-

The ideal I is closed by Corollary 2.2.6; hence by Theorem 2.3.2 (i), Q,R €
Ker v, as desired.
(ii) The proof of this part is entirely analogous to the above. O

The corresponding Weierstrass Preparation Theorem follows in the usual
way.
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Corollary 2.3.9. — (Weierstrass Preparation Theorem) Let A be a
quasi-affinoid algebra, and let f € A(&)[p]s.
(i) If f is regular in &, of degree s, then there exist unique unit u €
A(&)pls and monic polynomial P € A(E")[p][ém] of degree s such that
f =uP. Furthermore P is regular in &, of degree s.
(ii) If f is regular in p, of degree s, then there exist unique unit u €
A(&)pls and monic polynomial P € A(E)[p]slpn] of degree s such that
f € uP. Furthermore P is reqular in p, of degree s.
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3. Restrictions to Polydiscs

In this section, we study the restriction maps from A,,, (see Introduc-
tion) to “closed” (and to “open”) sub-polydiscs, and show how to transfer
information from their (quasi-)affinoid function algebras back to Sy, .

The closed subpolydiscs with which we are concerned in this section are
Cartesian products where the first m factors are closed unit discs and the
next n factors are closed discs of radius ¢ € /|K \ {0}|. Such products are
K-affinoid varieties, and we denote their corresponding rings of K-affinoid
functions by Tp, ,, (e, K).

To transfer algebraic information from the affinoid algebras T, ,(¢) to
Sm.n, we analyze the metric behavior of the inclusions tc : Sy = Tinn(e)
as ¢ — 1. We carry out our computations by reducing to the case that
e € |K \ {0}]. In the case that K is discretely valued, this entails working
with certain algebraic extensions K' of K and understanding the inclusion
Smn(E,K) = Spn(E,K'). The reader interested only in the case that K is
algebraically closed may omit the complications arising from field extensions.

We are interested in studying properties of quotient rings Sy, ,/I. We study
such quotient rings by studying metric properties (e.g., pseudo-Cartesian and
strict) of generating systems of submodules of (Sy, ), and how they transform
under restriction maps to rational sub-polydiscs.

In Subsection 3.1, we introduce metric properties of generating systems of
submodules of (S, )¢ and of (S, ). In particular we introduce a valuation,
the total value v, on Sy, ,, which lifts the (p)-adic valuation on §m7n and refines
the Gauss norm on S, ,. This allows us to formulate the “slicing” arguments
whereby (p)-adic properties of §m7n are seen to lift to Sy, . The valuations
| - || and v induce norms || - || a7 and v on a quotient module (Sy, )¢ /M. We
prove a number of estimates.

In Subsection 3.2, we study restrictions to closed subpolydiscs. The main
result is Theorem 3.2.3, which says that if € is suitably large, then a strict
generating system remains strict under restriction.

In Subsection 3.3, we transfer information from T}, 5, (¢) back to Sy, . The
main results are Theorem 3.3.1 and its corollaries, which show, roughly speak-
ing, how to replace powers of ¢ with powers of (p) for € near 1. More precisely,
they establish a key relation between vy and || - ||,. (ar).7;,., (c) uniformly in e
for € suitably large, which is used extensively in the rest of this paper. This
is how we overcome the difficulties stemming from the failure of Noether nor-
malization for Sy, .

In Subsection 3.4 we study restrictions from A, ,, to certain disjoint unions
of open subpolydiscs. When the centers of the polydiscs are K-rational,
these maps have the form ¢ : Sy, , — @;ZOSO,HJFm. In the case of non-K-
rational centers, the restriction maps are only slightly more complicated. We
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show in Theorems 3.4.3 and 3.4.6 that such restrictions are isometries in the
residue norms derived from || - || and respectively I and ¢(I), provided the
finite collection of open polydiscs is chosen appropriately. Theorems 3.4.3 and
3.4.6 will be used in Subsection 5.5 to derive the fact that on certain reduced
quotients Sy, /I, the residue and supremum norms are equivalent from the
simpler case of reduced quotients So sy /1.

3.1. Strict and Pseudo-Cartesian Modules. — We introduce metric
properties of generating systems of submodules of (S,,,)¢ and (S,,,)¢ and
their quotients. We introduce a valuation, the total value v, on S, , which

lifts the (p)-adic valuation on §m,n and refines the Gauss norm on Sy, ,,. The
lemmas of this subsection show how certain metric properties of generating
systems of modules lift from residue modules and transform under maps and
ground field extension.

Let (A,v) be a multiplicatively valued ring, and let (N, w) be a normed
A-module; i.e.,

w(an) < v(a)w(n)

for alla € A, n € N. Let M be an A-submodule of N. A finite generating
system {g1,...,9-} of M is called w-strict iff for all f € N there exist
ai,...,ar € A such that

w(f) > lrg%v(ai)w(gi), and

(3.1.1) r
w(f=> aigi| <w(f—h)forallheM.
i=1
The generating system {g1, ..., g, } is called w-pseudo-Cartesian iff (3.1.1)
is only assumed to hold for all f € M; i.e., iff for all f € M there exist
ai,-..,a, € A such that

w(f) > lrg%v(ai)w(gi), and

.
f=Y"aigi.
i=1

An A-module M C N is called w-strict (w-pseudo-Cartesian) iff it has a w-
strict (w-pseudo-Cartesian) generating system. Usually, N will be a quotient
of the /-fold norm-direct sum of Sy, .

Along with the Gauss norm, we will be interested primarily in two other
valuations. One, the residue order, is a rank-one additive valuation on S, ;.
The other, the total value, is a rank-two multiplicative valuation on S, .
These valuations are defined below.
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Assume n > 1, and define the map 6 : Sy, ,, = Z U {oo} as follows. Put
5(0) := o0, and for f € Sp,p \ {0}, put 5(f) := £, where f € (p)*\ (p)**!. It
will not lead to confusion if we also define the map o : Sy, , = Z U {oc0} by
0(0) := o0, and for f € Sy, \ {0}, 0(f) := 0((cf)™), where ¢ € K satisfies
llef]| = 1. The map © is called the residue order. The residue order is an
additive valuation on §m,n.

Consider (R \{0})? as an ordered group with coordinatewise multiplication
and lexicographic order. Define a map v : Sy — (Ry \ {0})2 U {(0,0)} as
follows. Put v(0) := (0,0), and for f € Sy, ,, \ {0}, put

o(f) = (71,2790,

Then v is a multiplicative valuation on S, ,, called the total value. Note
that v extends the absolute value on K in an obvious sense.

The total value yields information on elements f(&,p) € Sy as |p| = 1,
in a sense to be made precise in Subsections 3.2 and 3.3. Our aim in this
subsection is to establish an analogue of Corollary 2.2.6 for the total value.
This analogue will be established by lifting a similar result for the residue
order from the residue ring S, ;.

Let M C (Sy,,)° be a submodule. Put M° := (S’;’n’n)éﬂM and let M be the
image of M° under the canonical residue epimorphism ~: (an’n)e — (§m,n)£.

The next lemma establishes a basic lifting property of o-strict generating

systems. The lemma ensures that the lifting behaves well with respect to
restrictions. More precisely,

lai(¢, ¢ - p)Il = 1ef*“las]

for any ¢ € K°\ {0} and any a; € Sy, ,, that satisfies condition (i). Condition
(ii) stems from the definition of strictness. And condition (iii) says that we’ve
done the whole slice.

Lemma 3.1.1. — Let M be a submodule of (Sy)t. Let B € B and let
{g1,---, 9.} C (BEI[p)’ N M satisfy ||gi|| = 1 fori =1,...,r. Suppose
{91,...,9r} is an O-strict generating system of M. Let B = By D By D ...
be the natural filtration of B and suppose f € (Bp(E)p)’ \ (Bp+1(E)Ip]])’-
Then there are ay,...,a, € By(€)[[p]] such that

(i) fori=1,...,r if a; # 0 then a; € (p)° @ By(E)[[p]] \ Bp+1(E)[[p]],

(ii) v(f) > maxi<i<rv(aigi), and

(iii) if v(f—h) <v(f—=>"I_, aigi) for some h € M, then || f=3"_, aigi|]| <

171]-

(When condition (1) holds, to verify (ii), it suffices to verify

(i) o(f) < mini<ij<, 6(a;g;),
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since ay,...,a, € Bp(&)[p].)

Proof. — Let m, : B, — ﬁp C K be the B-module residue epimorphism
a > (b,'a)™ and write K = B, @ V for some B-vector space V. Then

(3.1.2) K[E][lell = By[Elllell @ VIEI[lel]

as B[¢][[p]]-modules, and &(a + b) = min{o(a),5(b)} when a € B,[¢][[p]] and
b e VI¢][[p]]- Since {g1,...,gr} is O-strict, there are cy,...,¢, € §mn so that

313) 31 < in 565) and 5(mlf) 305G ) 25l )
- i=1
for all h € M. ~ _ ~
By (3.1.2), we may write ¢; = a; +b; where a; € B,[¢][[p]] and b; € VE][[p]],
L <i<r Sinceg,....5 € (BEp]), by (3.12)

() - i) 2 0( () - 6 ) and

(55 S minS(Ea.
lrélilgro(azgz) = 1?1’1?7«0(0191)
Thus, (3.1.3) holds with @; in place of &. Now for any a € B,[€][[p]], if @ # 0
then @ € (p)°@ B, [¢][[p]]. Hence there are ay,...,a, € B,(¢)[[p]] such that for
1<i<r, mpla;) =ai, a; =0 if @; = 0 and a; € (p)°@) B, (¢)[[p]] if a@; # 0. Tt
is clear that aq,...,a, satisfy the lemma. O

We show in Theorem 3.1.3 that every submodule of (Sm,n)é is v-strict. In
light of Lemma 3.1.1, the next lemma reduces this to showing that every
submodule of (Sy, )" is G-strict.

Lemma 3.1.2. — Let M be a submodule of (Sy.)" and suppose {g1,...,g:} C
M? satisfies gi,...,9r 7 0. Then {g1,...,gr} is a v-strict generating system of
M if and only if {g1,...,9r} is an O-strict generating system of M. Moreover

() if {g1,...,gr} is v-strict and f,g1,...,9, € (B{&)][p]) then there are
hi,..., hy € B(&)]p] such that

v <f - th—gz) <w(f —h)

=1
for allh € M and

> .
U(f) = fg?;ﬂv(hzgz)a

and
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(ii) if {g1,...,9r} is O-strict and Fodt,---.9r € (BIEN[p])! then there are

hi,..., hy € B[¢][p] such that
o (}“— ZE@-) >5(f — h)
=1

for all h € M and

~ oy < . o~ N.N. .
O(f) = 1%1£r0(hlgl)

Proof. — (=) Let f € (§m,n)£ \ {0} and lift f to an element f € (S,‘fn’n)l.
Find a1,...,a, € Sy, ,, such that v(f) > maxi<;<,v(a;g;) and

(3.1.4) v(f - i%m) <wo(f —h)

=1

for every h € M. Since || f|| = 1, we must have that
6(f) < min{0(a;g;) : [|aigil| = 1}.

Thus 5(f) < miny<ic, 5(@g;)- I [|f =Y aigill < 1then f = Y7_ @i € M
and we are done. Otherwise, assume ||f —>"7_, a;g;|| = 1. Let h € M and lift
h to h € M°. Hence, by (3.1.4), ||f — h|| =1 and

a(f— 2;'&5) - 5<f - 2“9> > 5(f — ) = 5(F — B,

and we have proved that {g1,...,g,} is O-strict.

(<) Parts (i) and (ii), as well as (<) follow immediately from Lemma 3.1.1
using the facts that ||Sy, »|| = | K|, |[B\{0}| C R} \ {0} is discrete and B(€)[[p]]
is complete in || - || for every B € B. O

Now the proof of Theorem 3.1.3 reduces to a_computation involving the
Artin-Rees Lemma for the (p)-adic topology on (S, )¢

Theorem 3.1.3. — Fach submodule of (Smm)l 1s v-strict. Each submodule
of (Smn)t is 0-strict.

Proof. — By Lemma 3.1.2, we need only prove the last assertion. Let M C
(Sm.n)t be a submodule.

Claim (A). — If{g1,...,9r} is an 6-pseudo-Cartesian generating system of
M then it is o-strict.
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The ideal (p) is contained in the Jacobson radical of §mn = hgg €11lp]]-
Hence by the Krull Intersection Theorem ([25, Theorem 8.10]), the o-topology
on (gm,n)é is separated and M is a closed set.

Let f € (§m7n)l. Since M is closed and since 6((§m7n)£) = NU{oo} there
is some fy € M such that

o(f — fo) >0(f —h)
for all h € M. Putting h = 0 in the above we have 6(fy) > o(f) by the
ultrametric inequality. There are a1,...,a, € §m7n such that

.
o(fo) = lféliiélﬁ(aigi) and fo = z;aigi-
1=

Thus, we have that 6(f) < 06(fp) = min 6(a;g;) and
1<i<r

(s - Zlg) > 3(f — h)

for all h € M. This proves the claim.
For 7 € N, put

M;:={feM:o(f)>i}.
We have M = My D M; D .... By the Artin-Rees Lemma ([25, Theorem 8.5])
there is some ¢ € N such that for all < > ¢
(3.1.5) M; = (p)' °M,.

Each quotient M;/M;; is a finite module over §m7n/(p) =T,. Findr € N
sufficiently large so that each M;/M;; can be generated by r elements for
0 <i<e Bym: M, — M;/Mi1, denote the canonical projection. For
each 1 <14 <¢, choose g;j € M; \ M1, 1 < j <r, so that m;(gi1),...,7(gir)
generate the T,,-module M; /M.

Claim (B). — {gi;} is an o-strict generating system of M.

By Claim A, it suffices to show that {g;;} is an o0-pseudo-Cartesian gener-
ating system. B

Let f € M, and let B € B be such that {f} U {g;;} C (B[¢][[p]])*. Write
K = B&V for some B-vector space V. Then

(3.1.6) K[¢][lp]) = B[] ® VIE]llP]

as B[¢][p]-modules, and o(a + b) = min{o(a),0(b)} when a € BI¢][p] and
b € VIEp]]- Put N := (B[¢][[p]])* N M; and for i € N, put

N = {h € N :5(h) > i} = (BIE)[[PI)' N M.
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It follows from (3.1.6) that m;(gi1), . . . , mi(gir) generate the B[¢]-module N; /Ny
for 0 <4 < c. Furthermore, by (3.1.5), {7i(p"gcj) }1<j<r,|v|=i—c generates the
Bl¢]-module N;/N; for i > c. Since 0(gi;j) =% and since BI€][[p]] is complete
in 0, the claim follows. O

Lemma 3.1.4. — Let M be a submodule of (Smn)’ and suppose that
{91,---,9-} C M° satisfy g1,...,9r # 0. Then {gl,...,gr}is a ||-||-strict
generating system of M if, and only if, {g1,...,g-} generate M. In particu-
lar, since §m7n is Noetherian, each submodule of (Smn)" is ||-||-strict.

Proof. — As in Lemmas 3.1.1 and 3.1.2. O

It follows from Theorem 3.1.3 and Lemma 3.1.4 that we may make the
following definitions.

Definition 3.1.5. — (cf. Definition 2.2.7.) Let M be a submodule of
(Sn)’. For f € (Syn)’ we define the residue norms

op(f) = inf{v(f —h): h € M}, and

Ifllar = nf{lf —hll: h e M}.
There is some h € M such that va/(f) = v(f — k) and [[f|;; = [|f — Al Let

M be a submodule of (Sp, )¢ For f € (Smn) we define
o (f) :=sup{o(f —h): h e M}.
There is some h € M such that 6 (f) = o(f — h).

It follows from Lemma 3.1.4 that || - ||as is a norm on (Spmn)¢/M. If E is
such that Sy, , = Sy n(F,K) is complete in || - || (see Theorem 2.1.3) then
(Syn)’/M is complete in || - || .

The following lemma is an application of Theorem 3.1.3. It is used in

Theorem 2.3.8. In the statement of the lemma, the set A will usually consist
of the coefficients f; of a power series

F=>"fi(¢,p)A € B(& N)p] (respectively, B(&)[p, A]).
i>0
The lemma allows us to write all the coefficients of F' as linear combinations
of the first few:

r
F=3 > hifiX
i>0 j=1
in such a way that each power series

Fj = hij\' € B'(¢, \)]p] (respectively, B'(¢)[p, A]),
i>0
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for some B C B' € B. Although B(¢)[p] is not in general Noetherian, we are
still able to do this. The estimate in the lemma is sufficient to guarantee
convergence of Fj in the (B; + (p))-adic (respectively, (Bi + (p, A))-adic)
topology.

Lemma 3.1.6. — Let B € B and A C B({)[p]. Then there are
fi,....fr€A, {y,c,e€N, and BC B'€B

with the following property. Let B' = B D B} D ... be the natural filtration
of B'. For each f € A there are hy,...,h, € B'(¢)[p] such that

f=> " hifi
=1
If, in addition,
f € By&)[p] + (0)**“**B'(&)[r]
for some £ > £y, then we may choose hy,...,h, such that
by he € By(€) ol + (0)B'(€) o]

Proof. — Put I := A- Sy, ,, and let {g1,...,94} C Smn \ {0} be a v-strict
generating system of I. Since Sy, is Noetherian, there are fi,..., fs € A and
hij € Sy, such that

S
9= hijfi, 1<i<d.
=1

Without loss of generality, we may assume that all g;, h;; € Sy, ,, and
lgill = -+ = llgall = lal,
for some o € K°\ {0}. Find B C B’ € B such that

égla R égd € BI<€>[[p]]

Let B’ = B D Bj,... be the natural filtration of B’ and find 4 so that
o € By, \ By, 1.
Put

e:= lrgzagxd 0(gi).

To find a suitable ¢ € N, consider the ideal
7= A- (BB}, )E]ll
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The ring (B'/By,)[€][p] is Noetherian, so the Artin-Rees Lemma, [25, Theo-
rem 8.5], yields a ¢ € N such that for all ¢ > ¢,

JN(p)* (P T

Find fs41,..., fr € A so that the images of fi,..., f in (B'/By, )[¢][p] gener-
ate J.
Let f € A with

f € Bi&Tpl + (0)** B ()]
There are Hy,..., H, € B'(¢)[p] such that

,
f=> Hifi=: "€ By (&lpl-
i=1
By choice of ¢, if £ > £y, we may assume that
Hla s 7HT € (p)248 ' B,<§>[[IO]]
We have
f" € By, ()l

and if £ > ¢y, we have moreover that

' € BUOTPl + () By, (6) o]
Let

Try Béo — Eéo cK
be any residue epimorphism. Note, by choice of B’, that
{(@7g)™,..., (e ga)~} C B'[E][p]

is an_o-strict generating system of I. Thus by Lemma 3.1.2, there are
H H,....H, € By [€][p] such that

71'@0 Z 1 o gz
If £ > ¢y, we have, moveover, that
Hiy, ... Hy € (0)*° By [€]]p]-
Lift fI{l, . ,fI,’ﬂ to elements Hj,,... Hc,u € By, (§)[p] such that for each 1,

Hj, € (p)° ") By ()]l
Put

d
= - ZHZ{19i € By, 11(6)[pl,
i=1
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and observe that if £ > ¢,
" € By&)pl + (p)** By 11 (6) o]

Iterating this procedure £ — £, times, we obtain sequences

Hj; € (p)** 7By, , ;(O)]p]
such that

d (—{y
"= =)0 Y Higgi € Bl
7=1

=1

Finally, since {g1,..., 94} is a ||-||-strict generating system for I, by Lemma 3.1.2,
there are HY,..., H € B)(¢)[p] such that

= g
Put
hi = H;+ > (Hp; + H))h
D,J
O

The next five lemmas give criteria under which a generating system of
a module is strict and under which strictness is preserved by contractive
homomorphisms and field extensions. For technical reasons, we work over
a quotient ring Sy, ,/I. The modules M we consider will carry the residue

norm || - ||;. We will also consider residue modules M (see Definition 2.2.8).

Lemma 3.1.7. — Let M be a submodule of (Sy,.)¢/N and suppose that
g1, ---,9r € M° satisfy g1,...,9r #0. Then:
(i) {g1,---,9r} is a || - ||n-strict generating system of M if, and only if,
{91,...,9-} generates M.
(i) {g1,..-,9r} s a vy-strict generating system of M if, and only if,
{91,...,9r} is an On-strict generating system of M.
Hence each submodule of (Smn)*/N is || - || n-strict and vy-strict. Each sub-
module of ( mn) /N s O -strict.

Proof. — (i) (=) Lift an element f € M\ {0} to an element f € M with
| fll~v = 1. Since {g1,...,9,} is || - || w-strict, there are hq,..., h, € Sy, with

f=>i_19ihi and
L=|fllxy = lrg%llgillzvllhill = lrg%llhill-

Hence f: Yoy gﬁz, ie., {g1,...,0r} generates M.
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(<) Put
M :={f € (Smn): f+N e M}.

Find Aq,...,A; € N° and G4,...,G, € M such that {ﬁl,,, A, } generates
N and g; = Gi+ N, 1 < i < r. By Lemma 3.1.4, we may assume that

IGill = llgillnv = 1, 1 < i < r. Tt follows that {Al, L Ag G, G}
generates M; hence by Lemma 3.1.4, {A1,...,As,Gq,. .., Gr} isal - ||—strict
generating system of M.

Let f € M. By Lemma 3.1.4, there is a F' € M such that f = F + N and
IE|l = |Ifllnv. We may write

T S
F = Z Gih; + Z Aihyyi
i=1 i=1
for some hy,...,hp 15 € Sy With

1P = 1f = max L

Hence
.
f= z;gihz‘ and || fllxv = max gill v [Pl
1=

as desired. o
(ii) (=) Lift an element f € M \ {0} to an element f € M with ||f|xy = 1.
Since {g1,...,gr} is vn-strict, there are hy,... h, € Spm.n such that

on(f) 2 max vn(gi) - v(hi) and

UN<f Zgz )<va h)

for every h € M. Since vx(f) = (| flln,2 °F)) and ||f||§y = 1, we have
05 (f) < min{og(gi) + 0(hi) : [|hill = 1}.

Thus, 65(f) < miny <i<, (5 (3) +0(hg)). I ||f — 0_, gihilly < 1 then
f = ZZ 1glh € M, and we are done. Otherwise, ||f — Yooy gihi| = 1.

Let h € M and lift & to an element h € M° with |hl|xy = 1. By (3.1.7),
|f —hlly =1 and

6ﬁ(f—2§iﬁi>—oN(f Zgz >>0Nf h) =05(f — h),
i=1

and we are done.

(3.1.7)
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(<) Put
M :={f € (Smn): f+N e M}.

Find Aq,...,A; € N° and G4,...,G, € M such that {gl,...,gs} is an o-
strict generating system of N and gi=G;+ N, 1<i<r. By Theorem 3.1.3,
we may assume that v(G;) = vn(g;), 1 <i <.

As in part (i), it suffices to show that {A;,...,As,Gq,...,G,} is a v-
strict generating system of M. By Lemma 3.1.2, this reduces to showing
that {Al,.. A, Gy,...,G r} is an o-strict generating system of M. Let
F e (Sm,n) and put f := F + N. Since {gi,...,g,} is an O-strict generating
system of ]T/f, there are hq,...,h, € S n such that

55(/) < min (G() +5(h) and

0~(f Zgz z) §(f—=h)

for every h € M. Since {Al, e ,As} is an o-strict generating system, there
are Nyi1,...,hr45 € Sy, such that

1<i<s

r r S
61\7 (f — Zglhz> =0 (F — Z Glhz — ZAihH-i) .
i=1 i=1 i=1
Let H € ./K/tv, and put h := H + N. We have

0 (F —> Gihi — Zgihrdri) = Oy (f - Zgihi>
i=1 i=1

o (F — Z ézhl> < min o(A hryi) and
i=1

i=1
> ox(f—h)
> 6(F _H)a
as desired.
To prove the last assertions of the Lemma, observe that by part (i), each
submodule of (S, ,)¢/N is || - ||n-strict because ( mn) /N is Noetherian

(Corollary 2.2.2). The fact that each submodule M of (Sm 2)t/N is 0 5-strict
follows from the fact that we may include in an o-strict generating system of
the inverse image submodule M of (Sm »)¢ an o-strict generating system of
N (use Theorem 3.1.3). Finally, to see that each submodule of (Synn)t/N is
vy-strict, we apply part (ii). O
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Lemma 3.1.8. — Let M be a submodule of (Sy,,)¢/N and let g1,...,g, be
generators with ||g1|ln =+ = |lgr||v = 1. Put

®:={(h1,...,hy) € (Smpn)": Zgihi =0} and
i=1

\Il = {(h17 tet 7h1") 6 ("S'Vm’n)r : Zglhl = 0}
=1

Then {g1,...,9:} is a || - ||n-strict generating system of M if, and only if,
S =0,

Proof. — (=) Assume {g1,...,g,} is a || - || y-strict generating system of M.
Let h = (hy,...,hy) € U\ {0} and find h € (Sy, )" that lifts h. We have:
< max [lhi.
1<i<r

,
> gihi
=1 N

Since {g1,...,9,} is || - || w-strict, there is an b’ = (h},...,h]) € (Syn)" such
that

< max ||hi]| = 1.
1<i<r

r T T
i_zlgihz‘ = i—zlgih; and mmax |hill = i_zlgihz‘

Put H := h — h' € ®, and note that H = h. This proves ® = 0.
(<) By Lemma 3.1.4, there are G1,...,G; € (Sp)¢ with ||G;]| = 1 and
gZ:GZ—l-N,lSZS’I" Put
M:={f € (Smn):f+NecM}

Let {A1,...,As} be a || -||-strict generating system of N with ||A;]| =--- =
||As|| = 1. Since M has a || - | y-strict generating system by Lemma 3.1.7, it

N

suffices to show that {g1,...,g,} is || - || y-pseudo-Cartesian. Indeed, since for
any f € M there is an F € M with f = F + N and [|F|| = ||f||~, it suffices
to show that {G1,...,G;, A1,...,As} is a || - |[-pseudo-Cartesian generating
system of M.
Let F' € M and write

T S
(3.1.8) F= Z Gih; + Z Aihyy;

i=1 i=1
for some hy,...,hy s € Sy Since {A;,..., As} is || - ||-strict, we may always
assume that
(3.1.9) max |[h;]| < max{[[F[|, [l ||he[|}-

r4+1<i<r-+s
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If [|[F|| > maxi<i<, ||hi]|, then by (3.1.9) we are done. Therefore, assume that
1. F il < 1.
(3.1.10) 0 IFIl < max ] <

Let {Cy,...,Ci} be a || - ||-strict generating system of & with ||Cy|| =--- =
|Ct|]| = 1. Find B € B such that

hla---ahrJrs 63(6)[[9]],
Gi,...,G,Aq,...,As € (B(f)[[p]])z,
C1,...,Cr € (BE)p])"-

Using (3.1.9) and the fact that |[B\ {0}] is discrete, it suffices to find Al €
B(&)[p] with

T S
F = Z Gih;- + Z Aih;"+i and
max |4 < max [|hll
1<i<r 1<i<r
Let B = By D By D ... be the natural filtration of B, and suppose

(h1, ..oy he) € (Bp()eD)"™ \ (Bp+1(E)[o])"
By (3.1.9),

hy, .. -ahr-i-s € Bp<£>[[:0]]'

Let
Ty By — Ep = (b;pr)N CK
be the projection.

Write K = B, @ V for some B-vector space V. Then

(3.1.12) K[€]lo] = Byl€llel @ VIElLr]
as B[¢][p]-modules. By (3.1.8) and (3.1.10),

mp((hi,... hy)) € ¥ = ®.
Thus for some ¢1,...,¢& € K[¢][o],

t
(b1, he)) =Y i
i=1

By (3.1.12), we may assume é1,...,¢ € B,[¢][p]. Find ei,...,e; € B,(€)[p]
with m,(e;) = €;, 1 <i <t. Put

t
e .= ZCZ-eZ- € o,
=1
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and
(hyy... By == (h1,...,hy) —e.
Note that (3.1.11) is satisfied because m,(e) = m,((h1,..., h)). O

Lemma 3.1.9. — Let M be a submodule of(,,S'Vm,n)e/N and suppose g1, ..., gr
generate M. Put

r
\If = {(hl,...,hr) € (Sm’n)r : Zglhz = 0},
i=1

and for each i € N, put
M; = {feM:on(f)>i} and

U, = {(hl,... ,h,«) € (§m7n)r 10N (Zglhl> > €+’i}
i=1

where

e = 112?5)(7«0N(gi)'

Then:
(i) If{g1,...,9r} is an On-strict generating system of M, then

=0+ Do) S,
i=1
for all 1.

Conversely:

(ii) By the Artin-Rees Lemma ([25, Theorem 8.5]) there is some ¢ € N
such that for all 1 > c,

M; = (p)~°M..
If
r . ~ o~
\Ili ="+ @(p)lJreiON(gj)Sm,n
j=1

for1 <i<c—e, then {g1,...,g:} is an on-strict generating system of

M.
Proof. — (i) Assume {gi,...,g,} is an oy-strict generating system of M.

Clearly, ¥ + @}_,(p)" TS, . C W;. Let h = (hy,...,h,) € Uj; we
wish to find H € ¥ and i’ € &}_,(p)"+* N (9) G, such that

(3.1.13) h=H+h.
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Since h € ¥;, we have

,
on | D gihi | Ze+i.
j=1

Since {g1,...,9r} is On-strict, there is an b’ = (h],...,h]) € (§m7n)’" such

that

T r
> 9t =2 _gjh; and
=1 =1

.
lféljigr(5N(9j)+5(h}))=5N Zlgjhj >e+i.
]:

Thus A} € (p)i+e*5N(gﬁ)§m,n. Put H :=h —h' € U. We have

r
h=H+h' €W+ P )t oves, ,,
j=1

satisfying (3.1.13).

(ii) Since M is oy-strict by Lemma 3.1.7, it suffices to show that {g1, ...

is on-pseudo-Cartesian. Let
r
f=> gihi€ M.
i=1
Case (A). — on(f) <c.
By assumption,

(hse o) € Ua(pye = U+ @P(p)¥ IOV 0DS,,

i.e.,

(hl,...,hr):H—i-h,

for some H € ¥ and h' € @;Zl(p)aN(f)faN(gf)gm,n. Write b’ = (h),...

Since H € ¥,

r
f=2 gt and min B (a0) +3(h)) 2 o (1),
as desired.

Case (B). — on(f) > c.

yGr}

,hy.).
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By choice of c,

f € My () = ()M, ;

i.e.,

f= Z 0" fu, fu € M.

lv|=on(f)—c

Now apply Case A to the f,. O

Let K’ be a complete, valued field extension of K, write Sy, 5, 1= Sy n(E, K)
and S/, ., = Spy w(E',K'), and suppose I is an ideal of Sy, , and J is an
ideal of S}, ... Put

A:=Su,/I and B:=8],../J,

and by || - ||7 and || - ||; denote the respective residue norms on A and B, as in
Definition 3.1.5. Suppose

p:A— B
is a K-algebra homomorphism such that
le(Hlls < U711
for all f € A. Then ¢ induces a K°-algebra homomorphism
0’ A° — B°,
where
A® =55, ,/1° and B° = (S;l,’n,)o/Jo.

In addition, ¢ induces a K -algebra homomorphism

Q: A— B,
where
AV.: §m’n/f and E = §7,n’,n’/j'
Lemma 3.1.10. — With notation as above, let M be a submodule of A® and

put N := (M) - B C B*. Suppose § is flat. Then:
(i) If{g1,...,9r} is a||-||1-strict generating system of M, then {p(g1),...,v(gr)}
is a || - ||7-strict generating system of N.
(ii) ¢ is flat.
(iii) ¢° is flat.
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Proof. — (i) We may assume that ||g1]|; = -+ = ||g,||]r = 1. Put
Dy = {(hl,...,hr) c A" Zgihi :0},
i=1

.
Op = (hi,...,h) €EB" > (gi)hi = 0} :
i=1

Uy = {(hl,...,hr) € ZT : iglhl :0},
i=1

(h1,... hy) € B" =Y &(Gi)hi = o} :
=1

By Lemma 3.1.8, &4 = U,4. Since @ is flat, by [25, Theorem 7.6]), Up =
B - (VU ,4). We have:

Up=DB-3(Uy)=B-3(®4) CPp C Up;

ie., dp = Up. Part (i) now follows from Lemma 3.1.8.
(ii) Let a be an ideal of A. By [25, Theorem 7.6], we must show that the
canonical map

(3.1.14) a®4B— A®4 B
is injective.

Let {g1,...,9-} be a || - ||7-strict generating system of a with ||gi|| =--- =
llgr|| = 1. Define ®4, ®p, ¥4, ¥p as in part (i). To prove that (3.1.14) is
injective, it suffices to show that &5 = B - ¢(®,4). By Lemma 3.1.7, it is
enough to show that @ is generated by $(®4). By part (i), and Lemma 3.1.8
®p = Up. Since @isflat, Ug = B-3(¥4). Finally, by Lemma 3.1.8, U 4 = & 4.
This proves part (ii).

(iii) Let ¢1,...,9, € A° and define ®4 and ®p as in part (i). By [25,
Theorem 7.6], we must show that

B =B"-¢°(2).
This follows immediately from parts (i) and (ii) since there is a || - ||;-strict

generating system of the A°-module ®%. O

It is often convenient to work over an extension field of K. The next lemma
shows that Sy, , and the total value v behave well with respect to ground field
extension.

Lemma 3.1.11. — Let K' be a complete, valued field extension of K, let
E' C (K')° be a complete, quasi-Noetherian ring, and put Sy, := Spmn(E, K),
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Sum = Sma(E', K'). Assume Sy, D Spn; e.g., take E' D E. Let M be a
submodule of (Smn)" and put M' := M - S}, ..

(i) S . is a faithfully flat §m7n—algebm.

m,n
(i1) Suppose {g1,...,9-} C M is a v-strict generating system of M, then
{91,-..,9r} is also a v-strict generating system of M', and for every

f € (Smn)'s vm(f) = oar (f). In particular || fllve = |1 fllasr-
(iii) Spn(E',K') is a faithfully flat Sypn(E, K)-algebra.
(iv) Smn(E',K')° is a faithfully flat Sy, pn(E, K)°-algebra.

Proof. — (i) By Corollary 2.2.2, both §m,n and S’ are Noetherian. Since

m,n

(p) C rad §,’nn, St is (p)-adically ideal-separated. For each £ € N,

m,n

Smnl (0)" = K[E, 0/ (0)" = K'[¢, 0/ (0)" = S}/ (p)"

is flat. Hence by the Local Flatness Criterion [25, Theorem 22.3], §;n is a

n
flat Sy, n-algebra. Let m be a maximal ideal of Sy, ,,. By [25, Theorem 7.2], to
prove that Sy, , is faithfully flat over Sy, ,,, we must show that m-S;, , # Sy, .

Since (p) C m, this follows from the faithful flatness of K'[¢] over K[£].
(ii) We may assume that ||g;|| =1, 1 <7 <r. Put

N = {(hla---ahr)E(gm,n)r:zgihizo}a
=1

N' = {(hl,...,hr) € (§7In’n)r : Zﬁzhz :0},
i=1
and for each 7 € N, put

Ni = {(hl,...,hr) € (§m’n)r 10 (Zﬁ@) > 6+i},
=1
_ r

Nz, = {(hb7h7“)E(S;n,,n)r6<Z§th> Z€+Z},
=1

where e := max;<;<, 0(g;). By Lemma 3.1.2, {g1,...,g,} is an o-strict gener-
ating system of M. Hence by Lemma 3.1.9(i),

No= N+ @) w3,
j=1

for all i € N. By part (i),
Ni = Sinin ®5,,, Niand N' = 5}, @5, N.
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Hence,

r
Ni= N+ @) S,
j=1

for all 7 € N. Finally, by applying Lemmas 3.1.9 and 3.1.2 again, we see that
{91,---,9r} 18 a v-strict generating system of M’. The last assertions of part
(ii) follow from Lemma 3.1.1 as in the proof of Lemma 3.1.2.

(iii) First we prove that Sy, ,, is a flat Sy, ,-algebra. The faithful flatness will
follow from part (iv) by faithfully flat base change; i.e., S}, , = (S},,)° ®ss
Smn. Of course, the proof of part (iv) makes use only of the assertion that

ro
Sm.n 18 flat over Sp, ;..

Let I be an ideal of Sy, . By [25, Theorem 7.7], we must show that the
canonical map

(3.1.15) I®5,, Sinn = Smn @S S
is injective.

Let g1,...,9r € Smn be a v-strict generating system of I with ||g1|| =--- =
ngH = 1. Put

T

Yo {(hl,...,hne(sm,n>’"=29ihi:°}
i=1
T

N = {(hl,---,hr) € (Spn)" Zgihi = 0}
i=1

P o= {(hl,...,h,«) € (‘gm,n)r : Zglhl B 0}
=1

P = {(hl,... ,h,n) € (:S'V;n’n)r : Z’g}hl = 0} .
=1

To prove that (3.1.15) is injective, it suffices to show that N' = S}, - N. By
Lemma 3.1.8, N = P, by part (ii) and Lemma 3.1.8, (N’)~ = P', and by part
(i), P' = S}, , - P. Hence

P=S,, P=8,, N=(N).

After an application of Lemma 3.1.4, one sees that N' = S}, . - N, as desired.
(iv) Let g1,...,9» € Sp,,, and define N, N' as in the proof of part (iii),
above. We must show that

(N')° = (Sh)” - N°.
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This follows immediately from the existence of a wv-strict generating system
for N, from part (i) and from the fact that Sy, ,, is flat over Sy, . Since K°°,
(p) C rad S, ,,, the faithfulness follows from that of

K[¢] = ((K')°/K°° - (K')°)[€].
O

3.2. Restrictions to Rational Polydiscs. — Let ¢ € /|K \ {0} with
1>e>0. Put

Ton(e) = Tn(e, K) == {Z aw€'p” € K[, p]: lim 6|V‘|aw,| = 0} .
ul+|v[ =00
By [6, Theorem 6.1.5.4], Ty, »(¢) is K-affinoid. Define a modified Gauss norm
I-ll. on T n(e) by

2wt = e
)

(see [6, Proposition 6.1.5.2]). By [6, Proposition 6.1.5.5], |-l = ||-[l,, on
Tmn(e). In this subsection we make extensive use of || - ||syp on affinoid
algebras. Quasi-affinoid algebras also possess supremum seminorms, but we
will not make use of them until after we prove the quasi-affinoid Nullstellensatz,
Theorem 4.1.1.

By t. denote the natural inclusion

te t Smon = Tinpn(€),

which corresponds to the restriction to the rational polydisc Max T}, ,(¢).
In the case that ¢ € |K| with 1 > ¢ > 0, fix ¢ € K with |¢| = . Then the
K-affinoid map

Vet Tnn(€) = Trngn

given by & — £ and p — c-p identifies T}, ,,(¢) with T}y, 4, and for f € Ty, 5, (¢),
we have || flsup = |l@=(f)]|- By ¢. we denote the inclusion

LIE = P 0 le : Smn = Tan;
thus .(f) = f(&c-p) for f € Sy, . Note that the morphisms ¢, and ¢,
depend on the choice of c.

We are interested in the uniform behavior of the inclusions .. as ¢ — 1.
In particular, we show in Theorem 3.2.3 that the image under ¢, of a strict
generating system remains strict for € sufficiently large.

For this purpose we define a map o : Sy, — R as follows (assuming
that n > 1). Let f = )" f,(§)p” € Smp and put i := o(f). If i = 0,00 put
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o(f) := 0. Otherwise, put

1

||fu||> =
o(f) := max ( .

wi<i \ I/l
Note that 0 < o(f) < 1. The number o(f) is called the spectral radius of
f.

The following observations are useful in computations involving the spectral

radius:

lee () lup = P11
with equality when 1 > ¢ > o(f), and

o(f) = inf{|c| : c € (K') and 3(f (£, c- p)) = 5(f)},
where K’ D K is algebraically closed. Hence if f - g # 0,

o(f - g9) = max{o(f),o(g)}

It is suggestive to compare the spectral radius with the spectral value of a
monic polynomial defined in [6, Section 1.5.4].
We define the spectral radius of a submodule M of (S’m,n)g, n>1 by

o(M):= {gl,..irg}f y max{o(g1),...,0(g:)},

where M is the collection of all v-strict generating systems {¢1,...,g,} of M.

Remark 3.2.1. — (i) Let € € |K| with 1 > & > 0. We have the following
commutative diagram
Ton,n(e)
/ \&
Sm,n 7 > Im+4n

and . is an isometric isomorphism. Since . is an isometry, this yields an
identification of T}, ,(¢) with K[, p] = Tyy4n, where Tp, 5, (€) is the quotient
of the subring of power-bounded elements of T, ,(¢) modulo its ideal of
topologically nilpotent elements (see [6, Section 6.3]).

(ii) Let € € /|K\{0}| with 1 > & > 0. Let K’ be a finite algebraic
extension of K and suppose {ci,...,cs} is a K-Cartesian basis of K’ (see [6,
Definition 2.4.1.1]). Then {c1,...,¢s} is also a [|-[|g,,-Cartesian basis for the

Ty (e)-module Ty, . (¢) := Ty (e, K'). This is easily seen using the modified
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S

Gauss norm ||-||,, as follows. Let f € Ty, ,(¢); then f = Zcifi with each

i=1
fi € Tmn(e) and || f]|. = max e[ || fill.-
1<i<s
(iii) Using the notation of part (ii), observe that {%,,E—i} is a K-
Cartesian basis of K’; hence we may assume that ¢; = 1. Let M be a

submodule of (Ty,,(e))¢ and put M’ := Trn(e) - M. Tet f € ( Trnn(€))’;
then ||f|l,; = ||flly; (see Definition 3.1.5). This is proved as follows. By
Lemma 3.1.4, there is a ¢ € M’ such that ||f —g|| = ||fll,- We may write

S
g= Z ¢igi with each g; € M. By part (ii),
i=1

I1f = gll. max {[|f —gill.;[eal lg2llc - les| llgsll }
If =gl
1/ I ar -

Since || fllay < [Ifll5ss we have || £l = £l asr-

Our immediate goal, Theorem 3.2.3, is to show that a strict generating
system remains strict upon restriction to a suitably large rational polydisc.
Lemma 3.2.2 is the inductive step of the slicing argument involved. It makes
special use of condition (i) of Lemma 3.1.1.

(AVARAYS

Lemma 3.2.2. — Let M be a submodule of (Spn)t, let g1, .., 9. € M with
lgill = -+ = llgr|l = 1, and suppose that {g1,...,qr} is an o-strict generating

system of M. Suppose B € B satisfies {g1,...,9-} C (BE)[[p])!NM, and let
B =By D By D... be the natural filtration of B. Let € € \/|K \ {0}| be such
that 1 > ¢ > max{o(g1),...,0(gr)}. Suppose
7 e M (BOIPN\ (Bpr (@A)
Then there are ay,...,a, € {0} U (Bp(E)[[p]] \ Bp+1(&)[[p]]) such that
(i) Mee(F)llsup 2 max |ee(aigi) sy (recall || - llsup = || - lle 0n Tinn(€)) and
(i) [1f =iz azng < £l
Proof. — Choose ai,...,a, € {0}U(By(&)[[p]]\Bp+1(€)[[p]]) as in Lemma 3.1.1.
By Lemma 3.1.1 (i), o(a;9;) < ¢, so
e (@59) lgup = €79 asgal] < %099 £]|.
By Lemma 3.1.1 (ii)’, we get
lec (@i90) gy < e2“ONFI < DN < Nee () lgup »
which yields (i). Since f € M, (ii) follows from Lemma 3.1.1 (iii). O
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Theorem 3.2.3. — Let M be a submodule of (Smn)’, n > 1, with v-strict

generating system {g1,...,g-} C M°. Let e € \/|K\ {0} with 1 > ¢ >
maxi<;<r 0(9;), and assume either that K is a stable field (see [6, Defini-

tion 3.6.1.1]) or that € € |K|. Then {t:(g1),---,t(9r)} is a [|||g,p-strict gen-
erating system of the Ty, . (€)-module 1c(M) - Tn(e) C (T ()’

Proof. — Suppose first that ¢ € |K|. Then by Remark 3.2.1 (i), we have the
following commutative diagram,

Sm,n 7 Tm+n

where . is an isometric isomorphism. We will therefore show that

{tL(g1),---,tL(gr)} is a ||-]|-strict generating system of the T, ,,-module .. (M)-
Tm+n C (Tm-i-n)é

By Lemma 3.1.4 (applied to Ty1n = Spmn,0), it suffices to show for each
[ ELL(M) - Tyin \ {0} that there are ay,...,a; € T4y such that

(3.2.1) 1fll = [max @il (g:)| and ||f — ;aiblg(gi) <|IfII-

,
Write f = Z fitt(g;) for some fi, ..., f, € Tpyipn. Find polynomials f1,..., f} €

i=1
K¢, p] such that each || f] — f;|| < [|f||. Then

> ful(g) =Y fitk(g:)
i=1 i=1

since [[eL(g;)|| < 1 for all . Put f':= 3" | fli.(g;). It suffices to prove (3.2.1)
for f'.

Since the f] are polynomials, f’ = (. (F') for some F € M. We wish to apply
Lemma 3.2.2. Since ||Sy, || = |K|, we may assume || F|,[lgi|,...,|lg:|| =
1. Hence by Lemma 3.1.2, {g1,...,g,} is an O-strict generating system of
M. Choose B € B such that F,gy,...,g9, € (B()[[p]])* " M. By iterated
application of Lemma 3.2.2 (recall that € € |K|, hence Ty, 5, (e) and Ty, 4y are
isometrically isomorphic) we obtain a sequence {a;;} C B(¢)[[p]] such that
a10,---,6,0 = 0 and for every s € N,

<71l
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(i) |ee(F= > aig)

> ||t (aist1g:) |, and

1<i<lr
0<5<s
(ii) HF— E a;;9i > HF— E a;;gi||-
1<i<r 1<i<r
0<5<s 0<7<s+1

Since B(¢)[[p]] is complete in ||-[| and [ B\ {0} C Ry \ {0} is discrete, by (ii),

r
F— Zaigi =0, where q;:= Zaij'
i=1 §>0
Hence [|f" = Y07 th(ai)el(gs)]l = 0 < ||f'|]. It follows from (i) that ||f'|| =
ltL(F)|| > max; ; ||e.(aijg:)|| and hence that

I7[} = rmax oz (aiga)]

This concludes the proof in case € € |K \ {0}].

It remains to treat the case that K is a stable field. Let K’ be a finite
algebraic extension of K with ¢ € |K'|. Let S, , := Spu(F,K') and let
M':= M-S}, ,. By Lemma 3.1.11, {g1,...,gr} is a v-strict generating system
of M'. Therefore, by the preceding case, {c(g1),-..,te(gr)} is a [|+[|5,,-strict
generating system of the Ty, , (¢)-module ¢. (M) - T}, . (¢).

Let {1 =c1,...,cs} be a K-Cartesian basis of K’, and let f € (Ty,n(€))’ C
(T,’mn(g))é. By the previous case there are ai,...,a, € Ty, ,(€) such that

Hf - Z aite(9:)

Hf”sup - max ||alb€(gZ)Hsup .

= 1£1l..on)1y, (e a0

sup

Fori=1,...,r, write
S

a; = ZCjaij with a;5 € Tm,n(6).
i=1
Then as in Remark 3.2.1 (iii),

7,
= aint(g)
=1 sup

||f||sup Z max ||a’7zll’5(g7z)||sup .

= [lfll..cary Ty (e) » A

Thus {t:(g1),...,t(gr)} is a H-||sup—str1ct generating system of the T}, ,(¢)-
module ¢t (M) - Ty p (). O
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Let M be a submodule of (S, ,)¢. Lemma 3.2.5 uses Theorem 3.2.3 to

relate the structure of M to that of (:.(M) - Tp,n(g))™ for e large enough.
Lemma 3.2.6 will be used in Section 4 to prove that Sy, , is a UFD.

Definition 8.2.4. — Let M be a submodule of (Sp, ), n > 1, and consider
M C (Smn)’. Note that each f € (S;,,)¢ can be written uniquely as
f= EIV\Za(f) fu(&)p¥, where each f, € (K[£])¢. Define A(M), the uniform

residue module of M, to be the K[¢, p]-submodule of (K¢, p])¢ generated
by the elements E\u|:6(f) fu(&)p” for f e M.

The name uniform residue module is justified by the following lemma.

Lemma 3.2.5. — Let M be a submodule of (Spn)t, n > 1, and let K' be
a complete extension field of K. Suppose ¢ € |K'| with 1 > ¢ > o(M). Put
N = 1.(M) - Trnn(e, K') C (Tun(e, K'))t. Then N = K'- A(M), where we

have identified Ty, (g, K') with K'[¢,p].

Proof. — Let S, , = Smn(E,K') and let M' := S}, , - M. Choose a v-
strict generating system {gi,...,g,} of M with ¢ > max;<;<,0(g;). By
Lemma 3.1.11 (ii), {g1,...,9r} is a v-strict generating system of M'. Hence
by Theorem 3.2.3, {tc(g1),...,te(gr)} is a [|||s,,-strict generating system of
e(M) - Trpn(e, K') = N. Put G; := ¢°U9),_(g;) where ¢ € K’ is chosen with
lc| = e. By Lemma 3.1.4, {Gy,...,G,} generates N. O

Lemma 3.2.6. — Let I C Sy, be an ideal. Suppose A(I) is principal; then
1 is principal.

Proof. — For h € §m7n, let h° denote the leading form in p of the power series
h. Note that (hg)° = h°¢°. Choose hi,...,hs € I such that {hS,...,hS}
generates A(I). Suppose g € K¢, p] generates A(I). Since each h is a multiple
of g, deg, g < minj<;<s(deg,h;) =: d. Since g is a linear combination of the
h7, o(g) > minj<;<,0(h7) = d. Hence g is homogeneous in p of degree d,
and ¢ = G° for some G € I. By Corollary 2.2.4, it suffices to show that G
generates I.

Let J be the ideal of §m7n generated by G. Clearly I> j, we will show that
I=1. Suppose there is some f € f\ J. By Theorem 3.1.3, we may assume
that

(3.2.2) o(f —h) <o(f)

for all h € J. Since f° € A(I), there is some a € R’[{,p] such that f° =ag =
(ag)® = a°G° = (a@G)°, contradicting (3.2.2). O
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3.3. Contractions from Rational Polydiscs. — In this subsection, we
transfer information from T, ,,(¢) back to Sy, ,. The main results are Theo-
rem 3.3.1 and its Corollaries, which show, roughly speaking, how to replace
powers of & with powers of (p) for € near 1. Of course, when K is discretely
valued, e cannot, in general, belong to |K|. It is therefore sometimes necessary
to extend the ground field as we did in Subsection 3.2.

For f € K{(&,p) = Typan, n > 1, let d(f) := oo if f = 0. Otherwise, write
F(&) = Sf,()p” and let d(f) be the largest £ € N such that for some v with
lv| = £ we have ||f|| = [|f,]l. We call d(f) the residue degree of f. Note
that if || f|| = 1, d(f) is the total degree of f as a polynomial in p.

Let (A,v) be a normed ring and let f = Xf,p", g = Xg,p” € A[[p]. We say
g is a majorant of f iff v(f,) < wv(g,) for all v.

Let ¢ € A with v(c) < 1, and suppose

Z o Z vl
lv|<a lv|>a
is a majorant of f and
Z o Z A= 5
[v|<b |v|>b
is a majorant of g. Put e := max{a,b}. Then
Z P’ + Z VI=€p¥ is a majorant of f + ¢, and

lv|<e lv|>e
(ii) Z P’ + Z 1=+ 57 55 a majorant of fg.
|v|<a+b |v|>a+b

Note, for any f € Sy, with ||f|| = 1 and any ¢ € K°, that f({,c-p) is
majorized by > clv |p” . This fact will be used in the proof of the next theorem,
which, for f € (Smn)’ and M a submodule of (Sy,,)¢, relates vy (f) and
llee (F)loe(r1) Ty (e), When € is sufficiently large. The proof shows, via the

concept of majorization, that if the “slicing” in (T, (¢))¢ is done carefully,
then it pulls back to (Sp.n)"

Theorem 3.3.1. — Let M be a submodule of (Syn)’, n > 1, let € €
|K \ {0}] with 1 > ¢ > a(M). Then for every f € (Smn)’,
m(f) < (1711279,
where o € NU{oo} is the least element such that e[| f|| < llee(f)|locar) T () -
If o = o0, then vpr(f) = (0,0).

Proof. — Let K' be the completion of the algebraic closure of K, and put
S;mn = Spmn(E,K'), T,’n,n(s) = Tpn(e,K') and M' := S’;n’n - M. By
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Lemma 3.1.11, o(M') < o(M) and vy (f) = var(f). Certainly,

e (W loeraryz,  e) < Nee (O e ary T o) -

Therefore, we may assume K = K', so that, in particular, ¢ € |K| and Ty, ()
is isometrically isomorphic to Tp,4p. Choose ¢ € K with |¢|] = e. We may
replace 1. by (L as in Remark 3.2.1 (i).

Since D) f]| < (A if (NI = 1) ey, there is nothing to
show. Therefore, we may assume that

(3.3.1) et (O ) Ty < LGOI

We may further assume that ||f|| = 1.
Let o € NU {oco} be the least element such that e* < [[tL(f)|l.2(ar).
By (3.3.1), « > 0. Fix 8 € N, < a. We must show that

oar(f) < (IF1,277).

Let {g1,...,9r} be a v-strict generating system of M with [|g1]| = --- =
lgr]| = 1 and € > maxi <<, 0(g;). For 1 <i <r, put G; := ¢ °),.(g;), where
¢ € K with |c| = ¢, and find B € 9B such that . (f), G1,...,Gr € (B{, p))*.
Let B =By D By D ... be the natural filtration of B.

Tmtn "

Claim (A). — Let F € (By(&, )\ (Bp1(&,p))t and suppose for some
h € 1 L(M)-Tyin that ||[F—h|| < ||F||. Then there are polynomials h; € By[€, p]
such that

G) |[F— Z hiGi
i=1

(ii) max{6(Gl) + degp(hi) s hy # 0} = d(F)

< ||F|, and

Let m, : By, — Ep C K’ denote a residue epimorphism (of B-modules), and
write K = B, @ V for some B-vector space V. Then

(3.3.2) Tonin = K[6,0] = Bylé, o] @ VIE ]
as B[¢, p] modules. Since |F — | < ||F]|,
Tp(F) € (12(M) - Trpgn)™

Since Ty, ,(e) is isometrically isomorphic to Ty,4pn, by Theorem 3.2.3 and
Lemma 3.1.4, {G1,...,G,} generates (:.(M) - Tp4n)~. Thus there are h; €
K¢, p] such that

(3.3.3) T (F) = i%é
i=1
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By (3.3.2) we may assume that ﬁl, e ,Er € Ep[f, p]. Furthermore, since each
component of each G; is either 0 or a sum of monomials of total p-degree equal
to 0(G;) we may assume that

max{6(G;) + d(h;) : hi # 0} = d(F).
Find hq,...,h, € By[¢, p] with
max{5(G;) + deg,(hi) : h; # 0} = d(F)
and m,(h;) = hi, 1 <i <r. Now by (3.3.3),

. <F -y hZ-Gi) =0.
=1

This proves the claim.
By (3.3.1) and Claim A, there are polynomials h;y € BI[,p] such that

() = S oG ‘ < 14(f)]| and max{3(Gy) +

deg,(hio): hio # 0} = d(.L(f)). Moreover, since ), clp¥ majorizes each
component of ¢ (f),

maxi<i<r [|hioll = [le2(f)I],

|hiol| < 8g(b's(f)) < £0(Gi) | deg,(hio)
In the next claim, we iterate this procedure.

Claim (B). — There is a finite sequence {h;;} C B¢, p| such that

s T s—1 r
(i) for each s, L’E(f)—ZZhijGi < Llﬁ(f)_zzhijGi ,
7=0 =1 7=0 =1
s—=1 r
0 for cach s, sl = ) = 32 5 |
J=0 i=

iii) for each 1, s, hi; is majorized by (G ¥, and
(iii) f i j y p

j=0 v

() =D hiiGi

(iv)
7>0 i=1

Note that the sum in (iv) is a finite sum.

< e,

Assume h;j, 1 <4 <7, 0<j <s, have been chosen so that conditions (i),
(ii) and (iii) are satisfied, as they are by hig,...,hyo. Assume condition (iv)
is not satisfied, and find p € N so that

(3.3.4) e(f) =YD hijGi € (Byl€, o))\ (Bpsa (€, 0))"

§=0 i=1
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Since condition (iv) is not satisfied and since £% > ||/ (f)]| V(M) Ty WE MAY
apply Claim A to F = 1[(f) — > 4> i, hijG;. This yields polynomials
hisy1 € Bpl€, p] such that

s+1 r ] r
(3.3.5) L) = DD hiiGil| < |l (F) = DD hiGi
§=0 i=0 §=0 i=1
and
(3.3.6) max {6(G;) + deg, his1 : hisy1 # 0} = d,

1<i<r

where d := d| <Lla(f ) = D50 2i=t hz‘jGi>-

By (3.3.5), condition (i) is satisfied for s + 1. Since hijs41 € Byl p),
by (3.3.4), condition (ii) is also satisfied for s + 1. To prove (iii) for s + 1,
it suffices to show, for each 1 < i < r, that ||hjeyq|| < eO(CGHdeg,(histr) — 1f
his+1 = 0 we are done. Otherwise, by (3.3.6),

degp(his+1) < d— 6(GZ)
By (iii), each component of .. (f) —>>7_ > i_; hijGj is majorized by 3, cvlpr.
Therefore, Hb’g(f) — 5o Yiey higGil| < €.
Since (ii) is satisfied for s + 1, the above yields

e (f) = Z Z hi;Gi

Jj=0j=1

|hist1]] <

6d
_ (G Hd-D(G))

< £0(Gi)t+deg,(histr)
—= Y

proving that (iii) is satisfied for s + 1. The claim now follows from the fact
that | B\ {0}] C Ry \ {0} is discrete.

For 1 < <r, put
hz' = Cia(Gi) Z hZ]
320

Since h; is a polynomial (recall that the above sum is finite), there is some
hf € Sy so that h; =L (h}). By Claim B (iii), maxi<j<, ||| < 1. Write

() =0 hiGi =) Cué)p”

§>0 i=1 v
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Then
f=Y higi=Y ¢ MCL€)p"
i=1 v

Note that l

r

=Y wia| <=1,

i=1
If Hf i 1 hfgil| <1 we are done. Otherwise, ||f —> ", hg;|| =1, and we
wanto(f Yoi hig ) > (3. Put v —o(f Yo hig ).Then

max ||c”7C,|| = 1;

ie., €7 = max),|— [|C,|| < < 8. Therefore, v > 3.

ve(f) —ijo > i1 hijGi ‘
Finally, in the case that a = oo, we must show that vy (f) = (0,0). By

Theorem 3.1.3, we may assume that v(f) = va(f) and hence || f[| = ||f||,,-
By the above, we have

o(f) < (I£11,277)
for all 8 € N. Hence f = 0; i.e., vp(f) = (0,0). O

Corollary 3.3.2. — Let M be a submodule of (Smn)’, n > and let
mn (€

1,
|K\ {0} with 1 > ¢ > o(M). Then M = 1. (1o(M) - T, ).
Proof. — Let f € L_I(LE(M) - Tmn(€)). Since te(f) € te(M) - Ty pn(e), The-
orem 3.3.1 with o = oo yields UM(f) (0,0). Hence by Theorem 3.1.3,
feM. O

Corollary 3.3.3. — Let M be a submodule of (Sp)¢ n > 1 and let f €
(Sn)f. Then
£ = B ey oo
€/ |K|
Indeed, find h € M so that vpyr(f) = v(f —h), and let F := f — h. Then for
every € € \/|K|, if L > e > o(M), we have

(3.3.7) e = IFN = e () eary T (0) = €2 NE-

Moreover, when in addition ¢ > o(F), equality holds in the rightmost part
of (3.3.7).
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Proof. — The only assertion that needs proof is

(3.3.8) lee(Dlee 3 To ) > £ ONE
Let a € NU {oo} be the least element such that

eMIFN < Mlee(E e (a)Tomm(e) = Nbe (F)loc(rr) T (o)
If (3.3.8) does not hold, oo > o(F) + 1. So by Theorem 3.3.1,

o (f) = o(F) = ([|F|,27°0)) < (|||, 270007,
If F # 0, this is a contradiction. The additional assertion in the case that
e > o(F) follows from 12 (f)ll. a1y, 0) < e (F)l gy = &P - [Fl. O
Corollary 3.3.4. — Let I be an ideal of Sy, and M a submodule of
(Smn/D. Let ¢ @ (Smu)t — (Sman/I)¢ denote the canonical projection
and put N := ¢ Y(M). Let e € \/|K\ {0} with 1 > & > o(N), and let
f € (Smn/I)t. Then vp(f) < (1Nl 78 0ye»27%) where o € NU {00} is the
least element such that

ENN SN ()t < Mee (M oa (M) (T (€)1 (1) T () -
In particular, if @ = oo then var(f) = 0.

Proof. — By Lemma 3.1.4, there is some F € (Spn) such that o(F) = f
and || F|| = || fll1.(s,,..)¢- Since

Sm,n

e FMoe A0y T (€)1 (1) T () = e (F) oo ()T ()

and

vm(f) = vn(F),
the conclusion follows from Theorem 3.3.1. ]
3.4. Restrictions to Open Polydiscs. — In previous subsections, we

studied properties of the restriction maps t.: Sy, = Tin(e) to the closed
polydiscs Max T}, n(€). As in [6, Section 9.3], the collection {Max T}, ,(¢): € €
VK \ {0}|} is an admissible open cover of U-Max T}, (). In fact, as we will
see in Subsection 4.1, U-Max T}, » () = Max S, ,,. Properties of the restriction
maps L. gave us information about residue norms vy,.

In this subsection, we study properties of restrictions from Max S, ,, to fi-
nite unions of disjoint open polydiscs. When the polydiscs have K-rational
centers, these restriction maps take the form ¢ : Sy, , — @§:150,m+n- Such re-
strictions are not related in any natural way to admissible covers of Max S, ;,.
Nonetheless, as we show in Theorems 3.4.3 and 3.4.6, such restrictions are
isometries in the residue norms derived from || - || and, respectively, I and
©(I), provided that the finite collection of open polydiscs is chosen appropri-
ately.
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In Subsection 5.5, we prove that for certain reduced quotients Sy, /I, the
norms || - ||; and || - ||sup are equivalent. In that subsection we use Theo-
rems 3.4.3 and 3.4.6 to reduce this to the much simpler case of reduced quo-
tients So m4n /I

We first treat the case of a restriction to a finite union of disjoint open
polydiscs with K-rational centers. The extension to the case of non- K-rational
centers is explained in Definition 3.4.4, Lemma 3.4.5 and Theorem 3.4.6.

Definition 3.4.1. — Let ci,...,¢, € (K°)™ with |¢; —¢j| =1,1<i<j <
r. For j = 1,...,r, consider the ideal I; of Sy, n+m given by
I; := (&1 — ¢jt = Putts - €m — Cjm — Pntm) - Smntm-

Put I :=N7_,I; and define
Dm,n(C) = m,n—l—m/I-
Let
We : S = D ()
be the K-algebra homomorphism induced by the natural inclusion Sp,, <
Smon+m-
For ci,...,c, as above, consider the open polydiscs
Apn(ci) == {(a,b) € (K')™™: Ja — ¢j| < 1 and |b| < 1},
where K’ D K is complete and algebraically closed. Put

Apn(c) == U A n(cj).
j=1

It is a consequence of the results in Subsection 5.3 that Dy, ,,(c) is the ring of K-
quasi-affinoid functions corresponding to the quasi-rational domain A, ,(c),
and that w. is an inclusion. This justifies regarding w. as a restriction to
Ay, n(c). However, we make no use of the results of Subsection 5.3 here.
It is also a consequence of the results of Subsection 5.3 that D, (c) is
isomorphic to @;ZISO,HJFm. The next lemma gives a proof of a sharper result.
It is easily checked that the assignments

pi'_)(pia---api)a 1<i<n+m,
§i v (Pnvi + Clis -+ -y Pryi + Cri),s I1<i<m,

induce a K-algebra homomorphism

r
Xe : Dmpn(c) = @ S0,n+m-
j=1
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Lemma 3.4.2. — X is an isometric isomorphism; in particular,

Ixe (NI =[£Iz
for every f € Dy, n(c).

Proof. — Note, by the Weierstrass Division Theorem, Theorem 2.3.2, that
Smn+m/Ij = Sontm, 1 < j < r. The fact that x. is an isomorphism is now
a consequence of [25, Theorem 1.4], and the fact that the ideals Iy, ..., I, are
coprime in pairs.

Since the map Dy, ,(¢) = Dpn(c)/I; - Dyp(c) is a contraction, 1 < j <
r, it follows that x. is a contraction. Thus we may define a I?—algebra
homomorphism

r
%c: Dm,n(C) — @ SO,n+ma
Jj=1

as in the paragraph preceding Lemma 3.1.10. To show that y. is an isometry,
it suffices to show that X, is injective.
By Lemma 3.1.4,

Dm,n(c) = S77rL,n-i—77L/f-
It is not hard to see that

fj = (& — Ejl = Pntls-- s &m — Ejm — Pntm) - §Tn,n+ma
1 < j <. (Indeed, there is a linear isometric change of variables under which
the image of each ideal I; is generated by &1,...,&,.) Because |¢; —¢j| = 1,
1 <i < j < r, the ideals I,...,I, are coprime in pairs. Hence by [25,
Theorem 1.3],

r . r "
NL=11%5
j=1 j=1
We have:
- r ~ r - T - r ~ r ~
I=(NL| cOL=1ILc|IIL] <N
j=1 =1 j=1 =1 j=1
Thus I = ;ZIIN]-. By [25, Theorem 1.4], X, is an isomorphism. O

From now on, we will also denote by w, the map

r
Xc
We : Smn = D (c) == @ S0,n4+m-
j=1
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Observe that

r

wc(f(gap)) = @f(pn-i-l +Cjty ooy Prtm + Cjmy P1y - - - apn)'
=1

Theorem 3.4.3. — Let M be a submodule of (Smn)’. Suppose there are
Clyo.onCp € (K°)™ with |¢; —¢j| =1, 1 <4 < j < r, such that for every
p € Ass ((Syun)t/M), there is ani, 1 <i <r, with
m; = (5 _aap) op,
(e.g., suppose K is algebraically closed). Consider the Sy, ,-module homomor-
phism
l

r
@ (Sm,n)z — @ SO,n-i—m
Jj=1

induced by we. Put N := p(M) - (&7 So0n+m). Then:
(i) If {g1,--.,9s} is a || - ||-strict generating system of M, then

{p(g1),...,0(gs)} is a || - ||-strict generating system of N.
(i) [NFllve = le(P)liw for every f € (Smn)".
(iii) @~ (N) = M.
In particular, under the above assumptions on K, given an ideal I of Sy, p,

there is an isometric embedding ¢ : Sy, n/I — A, where A is a finite extension
of So,a and d = dim Sy, ,, /1.

Proof. — (i) This follows from Lemma 3.1.10 (i) once we show that w, is flat.
Applying [25, Theorem 7.1], to each of the 7 maximal ideals of ®}_;Son-+m.
we are reduced to proving that each map

(gm,n)mj — §0,n+m: f(&p) = flpns1 + 5j1a co s Pntm +5jmapla coesPn)

is flat, 1 < 57 < r. The flatness of these maps is a consequence of the Local
Flatness Criterion ([25, Theorem 22.3]), because

S/ M5 = So i/ (p1, -+, pusm)’ = Klpl/(p)"

and m; is mapped into rad (§0,n+m).
(ii) Let f € (Spm.n)’. By Lemma 3.1.4, we may assume that

L= 1Al = 1,

and we must prove that

le(H)lln = 1.
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In other words, we may assume that fg M and we must prove that @(f) ¢ N.
By part (i) and Lemma 3.1.4, it suffices to show that

B(F) ¢ (M) - | D Sonsm
j=1

Put

Consider the sequence
P—-P®4B— (P®yB)®pC.

We wish to show that the composition is injective. The injectivity of PQ 4 B —
(P®4B)®pC is a consequence of [25, Theorem 7.5], because C' is a faithfully
flat B-algebra (see proof of part (i)). It remains to show that the map

r
PPy =Po4B
i=1
is injective.
Let z € P\ {0}. We must show for some j, 1 < j <r, that
Ann (z) :={a € §m,n: ar =0} C mj.

By [25, Theorem 6.1], there is some associated prime ideal q € Ass(P) such
that Ann(z) C . But we have assumed that ¢ C m; for some j, 1 < j <.
This completes the proof of part (ii).

(iii) This is an immediate consequence of part (ii), above.

The last assertion is now a consequence of Remark 2.3.6 and the observation
that ®§:1SO,n+m is a finite So ,m-algebra. O

In what follows, we treat the case that the centers ¢ may be non-K-rational.
Notice that even in the rational case, because K is non-Archimedean, discs
do not have uniquely determined centers (indeed, every point of the disc
is a center). Hence the rational “centers” actually correspond to points of
K™ x {0}". In the non-K-rational case, they correspond to maximal ideals
of §mn In other words, for ¢, ¢ € (K;lg)m, the rings of K-quasi-affinoid
functions on the open unit polydiscs Ay, »(c) and Ay, ,(c’) coincide precisely
when there is an element v of the Galois group of K, over K such that
|c —v(c')| < 1. This occurs if, and only if, mz = mz, where mg is the maximal
ideal of elements of §m,n vanishing at (¢,0). (The reader may wish to refer to
Subsections 4.1 and 5.3.) This motivates the following definition.
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Definition 3.4.4. — Let ¢1,...,¢ € (K;’lg)m satisfy mz, # mz,, 1<i<
j<r, and [K(c): K] =[K(€): K]. For j =1,...,r, write ¢ = (¢j1, -+ sCjm)
and let fjp(&1,...,&) be the polynomial monic and of least degree in &, such
that fje(cji,...,cje) =0. We may choose fj, € K°[{1,...,&].

Consider the ideal I; of Sy, ;,+m given by

I := (fi1(&1) = pngts -5 fim(&1s oo €m) — Prtm) - Smntm-
Put I :=nN’_,I; and define

Dm,n(C) = m,n—l—m/I-
Let
We @ Smn = D (c)

be the K-algebra homomorphism induced by the natural inclusion Sp,, <
Sm,n—l—m-

As we remarked above, Dy, ,(c) is again the ring of K-quasi-affinoid func-
tions on A, ,(c). When c is non-K-rational, the structure of Dy, ,(c) is only
slightly more complicated. B

For i # j, mz # mg. It follows from the Nullstellensatz for K[T] that
mz, +mg, = (1). Since I + TJ + (p) D mg, +mg,, I + INJ contains a unit of the
form

1+ f, fe (p)gm,n-l-m'
This implies that the ideals I; are coprime in pairs. By [25, Theorem 1.4], the
induced map

r
Xe : Dmp(c) — @ Smn+m/ 1
j=1

is a K-algebra isomorphism.
Since Spntm/lj = Dmp(c)/1;, the map x. is a contraction. To see that it
is an isometry, we show that the induced map

r
Xe : Din(€) = @D Smansm/ 1
7=1
is an isomorphism. This is a consequence of the above-noted fact that the
ideals I; are coprime in pairs.

Each element f;p(&1,...,&¢) — pnte is regular in & in the sense of Def-
inition 2.3.1. Therefore, by the Weierstrass Division Theorem 2.3.2, each
Smn+m/I; is a finite, free Sy 5 1m-module.

We have established the following generalization of Lemma 3.4.2.
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Lemma 3.4.5. — With the above notation, x. is an isometric isomorphism;
n particular,

Ixe(PI == max [|fll; = [If1

1<j<r
for every f € Dy, n(c). Furthermore, there is a finite, torsion-free monomor-
phism So pim — Dmp(c).

The generalization of Theorem 3.4.3 is

Theorem 3.4.6. — Let M be a submodule of (S’m,n)l. Choose ci,...,cp €
(Kag)™ withmg, # mg,, 1 <14 <j <r, suchthat for every p € Ass ((Smn)t/ M)
there is an i, 1 <1 <7, with
mg, op,
where mz; is the mazimal ideal of elements of §m,n that vanish at (¢;,0).
Consider the Sy, ,-module homomorphism
l

r
j=1

induced by X owe. Put N := p(M) - (&)1 Smn+m/L;). Then:
(i) If {g91,-.-,9s} is a | - ||-strict gemerating system of M, then

{¢(g1),...,0(gs)} is a || - ||1-strict generating system of N.
(i) [ fllar = lle(Flln for every f € (Smn)"-
(iii) @ (V) = M.
In particular, for any quasi-affinoid algebra B = Sy, /I, there is an isometric
embedding ¢ : B — A, where A is a finite extension of Soq and d = dim B.

Proof. — The proof is nearly identical to that of Theorem 3.4.3. Note that
each

gm,n-l-m/fj = Son+m(E, K(cj))™
by the Cohen Structure Theorem [25, Theorem 28.3]. O

Remark 3.4.7. — By Corollary 5.1.10, the K-algebra homomorphisms ¢ of
Theorems 3.4.3 and 3.4.6 are isometries in || - ||sup.



RINGS OF SEPARATED POWER SERIES 67

4. The Commutative Algebra of S, ,

In this Section, we establish several key algebraic properties of the rings
of separated power series. The rings Sy, satisfy a Nullstellensatz (Theo-
rem 4.1.1), they are regular rings of dimension m + n (Corollary 4.2.2), they
are excellent when the characteristic of K is zero (Proposition 4.2.3), and
sometimes when the characteristic of K is not zero (Example 4.2.4 and Propo-
sition 4.2.5), and they are UFDs (Theorem 4.2.7).

4.1. The Nullstellensatz. — Let A be a K-algebra. We make the following
definitions (see [6, Definition 3.8.1.2]). Let Max A denote the collection of all
maximal ideals of A, and put

Maxg A := {m € Max A : A/m is algebraic over K} .

For m € Maxg A and f € A, denote by f(m) the image of f under the canonical
residue epimorphism 7, : A — A / m. Since A / m is an algebraic field extension

of K and since K is complete in |-|, there is a unique extension of |-| to an
absolute value on A/m, which we also denote by |-|. Now define the function
||'||sup tA— R‘F U {OO} by
0 if Maxg A = @,
(WA —— sup |f(m)| if MaxgA # @, f(MaxgA) bounded,
sup * meMaxg A
00 otherwise.

If f(Maxg A) is bounded for all f € A, then [|-[|,, is a K-algebra seminorm

on A, called the supremum seminorm ([6, Lemma 3.8.1.3]). We denote the
nilradical of an ideal I by N(I) := {f : f™ € I for some n € N}.

Theorem 4.1.1. — (Nullstellensatz)
(i) Let I be any proper ideal of Sy pn, then M(I) = {m € MaxgSmn :
m DI}
(ii) Max Sy, n = Maxg S n-
(i) Put

U:={meMaxK[¢, p]: max [§(m)| <1, max |p;(m)] < 1}.

" 1<i<m 1<j<n

Then the map m — m- Sy, , s a bijective correspondence between U and
Max Sy -

Proof. — Since Sy, 0 = Ty, if n = 0 we are done by [6, Theorem 7.1.2.3,
Proposition 7.1.1.1 and Lemma 7.1.1.2]. Assume n > 1.

(i) Let I C Sy, be a proper ideal and let € € /|K \ {0}| with € > o(I).
By Corollary 3.3.2, f* € I if, and only if, tc(f) € 1(I) - Tmn(e). Hence
N(T) = Sy nNN(te(I)- T (€)). Therefore (i) follows from the Nullstellensatz
for Ty, n(e) ([6, Theorem 7.1.2.3]).
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(ii) This is an immediate consequence of (i).

(iii) In case K is algebraically closed this follows immediately from (ii). Oth-
erwise, it follows from (ii) by Faithfully Flat Base Change (Lemma 3.1.11(iii)).
Alternatively, (iii) follows immediately from (ii) and the Weierstrass Prepara-
tion and Division Theorems as follows.

Let m € U. Since K[¢,p]/m is algebraic over K, there are polynomials
fi(&) and gj(p;) € m, 1 <i <m, 1< j <mn. By [6, Proposition 3.8.1.7],
we may assume that each f; is regular in ¢; and each g; is regular in p; in
the senses of Definition 2.3.1. Applying the Weierstrass Division Theorems
(Theorem 2.3.2) yields

K[f,p]/m = Sm,n/m : Sm,n§

hence m - Sy, , € Max Sy, .

Conversely, let m € Max Sy, ,,. By (ii), m € Max gSp . Since Sp,,/m
is algebraic over K, we obtain polynomials f;(&), gj(p;) € m, 1 < i < m,
1 < j < n. By the Weierstrass Preparation Theorem (Corollary 2.3.3) we may
assume that all f;(&;) and g;(p;) are monic polynomials, regular in the senses
of Definition 2.3.1. Euclidean Division in K[, p] and Weierstrass Division in
Sm,n yield

KI[¢, pl/(m N K[E, p]) = Smn/m.

The fact that m N K[, p] € U follows from the facts that no f; nor g; is a
unit. ]

Since [|-[|,,, coincides with ||| on T}y, 5, (¢) ([6, Corollary 5.1.4.6]), it follows
immediately from Theorem 4.1.1 that ||-[|,, coincides with ||-|| on Sy, 5. A K-
algebra A is called a Banach function algebra iff [|-[|;, is a complete norm
on A. Hence when S, ,, is complete in ||| (cf. Theorem 2.1.3), it is a Banach
function algebra. In Subsection 5.5, we show that in many cases, reduced

quotients of the S, ;,, are also Banach function algebras.

Proposition 4.1.2. — Let A= Sy, /I and m € Max A. Consider the field
K' := A/m, which is complete since it is a finite K-algebra. Then for each
representative f =) au,&tp” € Sy of an element of A:
(i) f(m):=f+m= Zawgﬂﬁ" € K', where £ :=&+m, p:=p+m.
(i) |7 (m)| < [Iflly. Indeed
1/¢
P < I for =12,

(iii) If f = (fi + 1)+ (f2 + 1) where fi, f2 € S, Ifill <1, [If2]l <1 and

f2 € (p)Spy s then [f(m)] < 1.
Proof. — (ii) and (iii) follow immediately from (i) and Theorem 4.1.1(iii).
(i) is immediate if K' = K, since f (&, p) — f (&, p) belongs to the maximal ideal
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{g € Smn : 9(§,p) = 0}, which must contain the polynomial generators of m.
Now note that there is a natural inclusion Sy, n(E, K) < Sy n(E, K'). O

In the affinoid case, the supremum seminorm behaves well with respect
to extension of the ground field. This follows from the Noether Normaliza-
tion Theorem for affinoid algebras [6, Corollary 6.1.2.2], from [6, Proposi-
tion 6.2.2.4], from [6, Lemma 6.2.2.3], and from the fact that || f||sup cannot
decrease after extension of the ground field (ground field extensions of affinoid
algebras are faithfully flat: see Lemma 3.1.11 (iii)). The supremum seminorms
on quotient rings of the Sy, , also behave well with respect to ground field ex-
tensions, even though, unlike in the affinoid case, the supremum need not be
attained.

Proposition 4.1.3. — Let K' be a complete, valued field extension of K,
let E' C (K')° be a complete, quasi-Noetherian ring (in characteristic p, let
E' be a complete DVR) and put Sy := Spmn(E,K), Sy, = Sma(E', K').
Assume Sy, , O Sppn. Let I be an ideal of Sy, and put I' :=1- S}, . Then
for any f € Spn/l,

sup{|f(z)| : © € Max Sy, n/I} = sup{|f(z)| : € Max Sy, ,,/T'}.

Indeed, for any f € Spmn/I and for any ¢ € R, if |f(z)| < ¢ for all z €
Max Sy, /1 then also |f(z)| < ¢ for all z € Max Sy, /T".

Proof. — Assume |f(z)| < cfor all z € Max Sy, /I and let o € Max Sy, ,, /I".

Let ¢ € y/|K \ {0}| be such that 1 > & > max{o(I),o(I'),0(z)}. By the
Maximum Modulus Principle [6, Proposition 6.2.1.4], we have: ||¢(f)|sup < ¢,

where the supremum is taken over the affinoid variety Max (T}, ,(¢)/te(1) -
Tmn(€)). By the above observation, it follows that ||c-(f)|lsup < ¢, where this
time, the supremum is taken over Max Ty, , (¢)/I" - Ty, ,(¢). Thus |f(z0)| <

c. ]
Remark 4.1.4. — The Maximum Modulus Principle holds for quotients of
T = Sm,o (see [6, Proposition 6.2.1.4]), but not, in general, for quotients of

Sm,n, n > 0. Nevertheless, for f € Sp, /1,

1f llsup € VIK].

This is a consequence of the quantifier elimination (cf. [17, Corollary 7.3.3]),
and Proposition 4.1.3. It also follows from the results of this paper (see
Corollary 5.1.11).

The following weak form of the Minimum Modulus Principle is an immediate
consequence of the Nullstellensatz (Theorem 4.1.1). Let A = Sy, ,/I and let
fe A If inf{|f(x)| : x € Max A} = 0 then there is an z € Max A such that

f(z)=0.
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Remark 4.1.5. — Here we give a second proof that Max Sy, , = Max g Sp .

We begin by defining an additive valuation w on S, ;. Consider R x N" as
an ordered group with coordinatewise addition and lexicographic order. We
define a map w : Sy, — R x N* U {oo} by putting w(0) := oo and, for
f € Smn \ {0}, w(f) := (e, 1), where o € R and vy € N” are determined as
follows. Write f =3° , aué#p” =32, fu(€)p”. Then put @ := miny,, ord a,
(where ord : K — R is the additive valuation corresponding to the absolute
value |-| : K — R;) and let vy € N” be the element uniquely determined by
the conditions

1fvoll =171, and
lfull < |If]l for all v < vy lexicographically.

We call the multi-index vy the total residue order of f, and we call the
coefficient f,,(£) the leading coefficient of f. It is not difficult to show that
w is an additive valuation on S, .

Proposition. — Fach ideal of Sy, is strictly closed in w.

Proof. — This is proved analogously to Theorem 3.1.3 using the facts that
|IB(&)[p] \ {0}] is discrete and that N with the lexicographic order is well-
ordered. We leave the details to the reader. (See also [17, Section 2.6].) O

Note that if I is an ideal of Sy, , and if co # w(f) > w(f — h) for each
h € I, then there is no element h of I with the same total residue order vy as
f and such that [|hy, || = [[fuoll > [1fve = P -

Theorem. — Max Sy, , = Max g Sp -

Proof. — If there is some f € m which is preregular (in the sense of Defini-
tion 2.3.4) in £ (or p) then, after a change of variables among the £’s (or p’s),
we may assume that f is regular in &, (or in p,). If f is regular in &,, (the
case that f is regular in p, is similar), then by Weierstrass Division, the map
Sm—1,n — Smp/m is finite. Thus m’ := m N S),_1, is maximal, and we are
done by induction on the number of variables. We henceforth assume that m
contains no element which is preregular in any variables.

For each v € N", let m, be the set in S;, o of leading coefficients of those
elements of m with total residue order v. If pu; < wvy,...,up < v, then
m, C my,. Let m, = (m, NSy 0)/(my, N SYy), if my # @ and m, = (0)
otherwise. Then m, is an ideal of §m70. Note that none of the ideals m,
can be the unit ideal since then there would be an element of m which is
preregular in p. Since m # (0), at least one m, # (0). Moreover, if A is any
Noetherian ring and {I,},cn» is a family of ideals of A such that I, C I,
whenever 1 < vy,..., 1y < Uy, then the family {I, },ene is finite (induct on
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We can therefore find some a(¢) € Sy, 0 with |ja]| = 1 such that @ € m, for
each m, # (0). Put

(4.1.1) c:=a+1.

Since ||a|| = 1 and a is not a unit of Sy, o, it follows that ||c[| = 1 and that c is
not a unit. Furthermore, ¢ ¢ m since clearly c is preregular in ¢. Thus there
is some f € Sy, , such that cf —1 € m. By the above Proposition, we may
assume that for each h € m

(4.12) w(f) > w(f - ).

Write f =Y f,(€)p”, and let f,, be the leading coefficient of f. By (4.1.2),
there is no h € m,, of total residue order vy with ||h]| = ||f|| and || fo, — P, || <
[1fvoll-

Claim. — ||f, |l > 1 and vy # 0.

If || f]] <1 then ¢f —1 is a unit, contradicting the fact that m is a proper
ideal. Hence ||f|| > 1. If 1y = 0, then since ¢ is not a unit, ¢f — 1 is preregular
in ¢, which is a contradiction. Hence ||f|| > 1 and vy # 0. If ||f|| = 1 and
|l foll = 1, then the total residue order of f is 0, a contradiction. If ||f|| =1
and || fo|| < 1 then ¢f —1 € m is a unit, also a contradiction. This proves the
claim.

Let || fs|| = |b]. By the claim, {(cf—1) has total residue order 1 and leading
coefficient {f,, € m,,. But by (4.1.1), cf,, € m,, implies (%f,,o)w € my,,
contradicting (4.1.2). O

4.2. Completions. — One of the main applications of the Nullstellensatz
is to give us information about maximal-adic completions of the S, ;. In this
subsection, we prove the following facts: Sy, is a regular ring of dimension
m +n, restriction maps to closed subpolydiscs are flat, Sy, ,, is a UFD, Sy, ,, is
excellent in characteristic 0 and sometimes in characteristic p > 0, and, when
Sm,n is a G-ring, radical ideals of S, , stay radical when they are expanded
under restriction maps to closed polydiscs.

Proposition 4.2.1. — Letc € \/|[K\{0}],1>¢ >0, let M € Max T}, (e),
put m = K[£,p] "M, and N := 1Z1(M) € Max Sppn. Then 1o induces K-
algebra isomorphisms

() Sun/N = Tule) /M = K€, p] /m

for every £ € N.
Let I be an ideal of Sy, . Suppose M € Max T, p(e) with M D 1.(I), and
put N := 1=1(M). Then 1. induces K-algebra isomorphisms

(i1) (S /1) gy 22 (Trnin(€) /1e(1) - Trnn(€)) gy »
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where  denotes the mazimal-adic completion of a local Ting.

Proof. — (i) is immediate from the Weierstrass Preparation and Division
Theorems, and Theorem 4.1.1(ii).

(ii) By part (i), te induces a K-algebra isomorphism 7. : (Smn); —
(Trm,n(€))om. Part (ii) now follows immediately from [25, Theorem 8.11]. O

Corollary 4.2.2. — For each m € Max Sy, 5, (Smn)m is a reqular local ring
of Krull dimension m + n; moreover, Sy, is a regular ring.

Proof. — By Hilbert’s Nullstellensatz, each 1 € Max K [€, p| can be generated
by m + n elements and dim K [¢, P]m = m + n; in particular, K[£ :O]m is a

regular local ring. By Theorem 4.1.1, there is some ¢ € \/|K \ {0}, 1 > ¢ > 0,
such that

M :=1.(m) - T () € Max Ty, o (€).
Now by Proposition 4.2.1,

(Smn)m = (T (€))on = (K [€, 1) ke ploms

SO dim(Sm,n); = m+n. It follows that (S, n)m is a regular local ring of Krull
dimension m +n. Moreover, by [25, Theorem 19.3], Sy, 5, is a regular ring. O

Proposition 4.2.3. — Assume Char K = 0. Then Sy, is an excellent ring;
in particular, it is a G-ring.

Proof. — In light of Theorem 4.1.1 and Corollary 4.2.2, this follows directly
from [26, Theorem 2.7]. O

The next example and proposition show that the situation in characteristic
p is more complicated.

Ezample 4.2.4. — 1If Char K = p # 0, then Sy, , = Sy, n(K, E) may fail
to be a G-ring. Assume, for the moment, that we have found an element
g € K[p] \ So, such that g? € Sp; (cf. [28, Section Al, Example 6]). Put
m := (p) - So1 and put R := (Sp,1)mlg]; if So,1 is a G-ring, so is R (see [25,
Section 32, p. 260]). Since R C K[p], it is reduced. Put I := mR, and let R
denote the 9M-adic completion of R. Since Sp 1 is a UFD, X? —g” is irreducible
in (So,1)m[X]; hence

R = (S0,)m[X]/(X? = ¢?) and R = K[X][p]/(X? - g") - K[X][p]

So X — ¢ is a non-zero nilpotent element of E, which is the direct sum of
finitely many maximal-adic completions of R ([25, Theorem 8.15]). Thus,
some maximal-adic completion of R is not reduced. It follows from [25,
Theorem 32.2 (i)], that R, and hence Sy, cannot be a G-ring. An example
of K, E and g can be constructed as follows: let K := F,(t1,t2,...)((Z)),
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E = F,(t],t5,...) and g := thp In fact, a similar example can be
>0

1
constructed whenever [E» N K : E]| = co.

Proposition 4.2.5. — Assume Char K = p. Then:
(i) if Sm,n is a finite extension of (Sm )P, then Sy, is excellent;
(ii) if [K : KP] < 00 and if E C K° is a complete DVR which is a finite
extension of EP (e.g., take E =T, C K°), then Sy, is excellent;
(iii) if E C K° is a DVR and if K' is a complete, perfect, valued field
extension of K, then there is a field E' with E' C (K')° such that
Smn(E',K') is an excellent and faithfully flat Sy, n(E, K)-algebra.

Proof. — (i) By [38, Théoreme 2.1}, it suffices to show that Sy, ,, is universally
catenary. But this is an immediate consequence of [25, Theorem 31.6 and
Corollary 4.2.2].

(i) Put Smn = Smn(E,K) = Spmn(EP,K). Then, Spn = K @x»
Sm.n(EP, KP) is finite over Sy, ,(E?, K?) and by the Weierstrass Division The-
orem 2.3.2, Sy, , is finite over (Sy, ,)”. Now apply part (i).

(iii) Lift K’ to (K')° by extending the lifting of E given by E (see Re-
mark 2.1.4 (iv)). By part (ii), Sy,n(E’, K') is excellent, and by Lemma 3.1.11 (i),
it is faithfully flat over Sy, ,(F, K). O

A useful property of reduced G-rings is that they are analytically unramified
in the sense of [28]. The next proposition shows that reduced quotients of
S, are analytically unramified in a different sense, when S, ,, is a G-ring.
Example 4.2.4 shows what goes wrong if Sy, ;, is a not a G-ring.

Proposition 4.2.6. — Let I be an ideal of Sypn, n > 1, and let ¢ €
VIEN{0}, 1 > e >0. Ife > o(I) and Trun(e)/te(I) - Trnn(e) is reduced
then Sm,n/I is reduced. Suppose Sy, is a G-ring (e.g., use Proposition 4.2.3
or Proposition 4.2.5 (ii)). If Smn /T is reduced then Ty pn(€)/te(I) - Ty (€) is
reduced.

Proof. — Suppose Ty, (€ / te(I) - Ty n(€) is reduced and suppose f" € I for
some f € Sy, ,; then Lg(f) € LE(I) Tnn(e). Hence by Corollary 3.3.2, f € I.
Therefore, S, / I is reduced.

Suppose Sy / I is reduced and that S, is a G-ring; we must prove
that Tp, (e / te(I) - Ty pn(e) is reduced. For this, it suffices to prove that
( /LE T ))m is reduced for every m € Max (T, /LE
Tm,n( )) Indeed let A be a ring such that Ay, is reduced for every m E Max A
and suppose f" = 0. Then f € Ker(A — A,,) for every m € Max A. Con—
sider the ideal a := {a € A : af = 0}. If a = (1), then f = 0, and we are
done; otherwise, a C m for some m € Max A. Hence f ¢ Ker (A — Ap),
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a contradiction. Furthermore, by the Krull Intersection Theorem ([25, The-
orem 8.10]), Ker(A — A) = (0) for any Noetherian local ring A. Hence

it suffices to prove that ( / Le(I) - T ( )n: is reduced for every m €
Max (T n(€) /e (T) )
Let m E Max (7, /l,g ), and put N := Sy, ,NM € Max Smm/f.

Since Sy, / Iis reduced 0 is (Smn / I );t- Indeed, let A be a reduced ring and
let m € Max A. If f" € Ker (A — Ap) then for some a € A\ m, af” =
whence (af)” = 0. But A is reduced, so af = 0; i.e., f € Ker (A — Ap). Now
any quotient or localization of a G-ring is again a G-ring, so (Sm,n/f)sn is a
reduced G-ring. Thus

(Sm,n/I)‘ﬂ — (Sm,n/I);
is regular in particular, it is faithfully ﬂat By [25, Theorem 32.2],

Smn / Iy is reduced. Then (T}, ( / te(I) - )); is reduced by Propo-
smon 4.2.1. Since this holds for every m E Max / te(I) - Ty (e)), we
have proved that Ty, ( / te(I) - T (e) is reduced O

Theorem 4.2.7. — Sy, is a UFD.

Proof. — A Noetherian integral domain is a UFD if, and only if, every height
1 prime is principal ([25, Theorem 20.1]). Let P be a height 1 prime ideal
of Sp,n; we must prove that P is principal. By Lemma 3.2.6, it suffices to
prove that the uniform residue ideal A(P) is principal. Let K’ be a finite
algebraic extension of K such that K' = K, let Stan = Smn(E, K') and let
P':=P-S,, By Lemma 3.1.11, P =P. §7’n’n — P; hence A(P') = A(P).
It suffices to prove that A(P') is principal.

Fix a finite algebraic extension K’ of K such that for some ¢ € |K'|,
1>¢e>o(P), and K' = K.

Claim. — For every n' € Max Sy, ,,, P'-(Sy, w is a principal ideal.

Let n' € Max Sy, ,, and put n := n' NS, ,. Since Sy, ,, is finite over Sy, 5,
n € Max Sy, ,. By Corollary 4.2.2, S,,,, is a regular ring. Hence by [25,
Theorem 20.3], (Syn)n is @ UFD. If n D P then ht P - (Sy,n)n = 1, and if
n 3 P then P - (Spn)n = (1). Thus, the ideals P - (Sypn)n, P+ (Sy,n)w and
P (S’;n,n); are all principal. This proves the claim.

Let Tj, ,(€) := Tinn(e, K'). By the Claim and by Proposition 4.2.1, ¢, (P') -
(T/nn(e)); is a principal ideal of (T,',m(8)); for every m € Max Ty, ,, ().
By [25, Exercise 8.3], tc(P') - (T}, ,,(¢))m is a principal ideal, hence a free
(T, n(€))m-module for every m € Max Ty, ,(¢). By [25, Theorem 7.12], .(P) -
T}, (€) is a projective ideal. But T}, ,(¢) is isomorphic to Ty, 1 (K'), which by
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[6, Theorem 5.2.6.1], is a UFD. Hence by [25, Theorem 20.7], 1.(P)-T;, ,(¢) is
principal. By Lemma 3.2.5, this implies that A(P’') is principal, as desired. [

In the next lemma we collect together some facts on flatness.

Lemma 4.2.8. — Let ¢ € /|IK\{0}| with 1 > ¢ > 0. Let K' be a
complete, valued field extension of K, let E' C (K')° be a complete, quasi-

Noetherian ring, and put Sy pn = Smn(E,K), S, = Sma(E', K'). Assume
St D Smun; e-g., take E' O E.

(i) The inclusion te : Sy — Tmn(e) is flat
The following inclusions are faithfully flat:

(ii) Smn(E,K)° = Spmn(E' K')°

(iii) Spn(E,K) = Spmn(E, K')

(iv) Sman(E,K)~ = Spu(E L, K')™

(v) Tmnle) = T, n(e)
Proof. — (i) Consider the map t. : Sy, = Tipn(e). Let 9T be a maximal
ideal of Ty, (), put m := =1 (M), A := (Spun)m and B := (Tn(€))m- By
[25, Theorem 7.1], it suffices to show that the induced map . : A — B is flat.
Let A\, B be the maximal-adic completions, respectively, of the local rings A,
B. By Proposition 4.2.1 (ii), A = B, and by [25, Theorem 8.14], A > A~ B
and B — B are faithfully flat. Part (i) now follows by descent.

(ii), (iii) and (iv) are Lemma 3.1.11 (iv), (iii) and (i), respectively.

(v) For some s € N, ¢ € |K|. Let ¢ € K with |¢| = €°, and let I be the
ideal of T}, 12, generated by pf — piync, 1 <i < n. By [6, Theorem 6.1.5.4],

Tinn(€) = Tmton/I and T7,n,n (€) = Tm+2n/I - Trln+2n'

It therefore suffices to show that the inclusion T,, — T}, is faithfully flat. But
this is Lemma 3.1.11 (iii) with n = 0. O

Note that the inclusion Sy, ,, < Ti, 5 (€)° is not flat. Indeed, find ¢ € K and
¢ € N such that |¢| = €’. Let

M = {(f.9) € (Sp..)?: cf +p'g =0}, and

N = {(f.9) € (Tmn(e)°)’: cf + p'g =0}.
If S5, = Tmn(e)® were flat, then N = 1.(M) - Tj n(€)°. But (p—cl,—l) €
N\ 1o (M) - T (€)°.
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5. The Supremum Semi-Norm and Open Domains

In this section, we investigate algebraic and topological relations between
residue norms and the supremum seminorm on a quasi-affinoid algebra (i.e., a
quotient ring Sy, , / I). The key topological concepts are power-boundedness
and quasi-nilpotence (see Definition 5.1.7). The first main result is Theo-
rem 5.1.5, which asserts that each h € Sy, /I with ||h||sup < 1 is integral
over the subring of all a € Sy, /I with |la|[f < 1. Moreover, if |h(z)| < 1
for all x € Max Sy, /I, then h is integral over the set of all a € S, /I with
vr(a) < (1,1). It then follows (Corollary 5.1.8) for f € S, /I that f is power
bounded if, and only if, || f|lsup < 1, and that f is quasi-nilpotent if, and only
if, |f(z)| < 1 for all z € Max Sy, ,/I. These are the quasi-affinoid analogues
of well-known properties of affinoid algebras. In Subsection 5.2 we use the
results of Subsection 5.1 to show that K-algebra homomorphisms are contin-
uous (Theorem 5.2.3). Hence all residue norms on a quasi-affinoid algebra
are equivalent (Corollary 5.2.4); i.e., the topology of a quasi-affinoid algebra
is independent of presentation. We also prove an Extension Lemma (Theo-
rem 5.2.6) for quasi-affinoid maps. The results of Subsection 5.1 also lead,
as in the affinoid case, to a satisfactory theory of open quasi-affinoid subdo-
mains. In particular, in Subsection 5.3 we define quasi-rational subdomains
(Definition 5.3.3), and show, using the Extension Lemma (Theorem 5.2.6),
that they are quasi-affinoid subdomains. Subsection 5.4 contains the defini-
tion and elementary properties of the “tensor product” in the quasi-affinoid
category. In Subsection 5.5 we show when Char K = 0 and in many cases
when Char K = p, that if S, /I is reduced then the residue norm || - ||; and
the supremum norm || - [|syp are equivalent. If in addition F is such that Sy, ,
is complete then S, ,/I is a Banach function algebra.

5.1. Relations with the Supremum Seminorm. — The first step to-
wards proving Theorem 5.1.5 is an analogue of that theorem for Ty, ,, () /¢-(I)-
Tm.n(€) uniformly in e, where ¢ is a sufficiently large element of \/|K \ {0}|.

Let A be a Noetherian ring and let I C A be an ideal. For r = 0,1,...,
let I, denote the intersection of all minimal prime divisors of I of height
r (if there are none, put I, := (1).) Clearly, (1) = Ny>ol,, where N(I)
denotes the nilradical of I, and each I, is a radical ideal. The ideals I, are the
equidimensional components of the ideal I.

In Lemma 5.1.1 we show that the ideals ¢.(I;) - T), 5, (€) generate the equidi-
mensional components of the ideal t.(I) - Ty, 5 (), in the case that Sp,, is a
G-ring. This is important in applying [6, Proposition 6.2.2.2], in a uniform
way.
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Lemma 5.1.1. — Let I be an ideal of Sy, n > 1, and let € € \/|K \ {0}],
1>e>0. Put J:=1.(I) - Tinn(e). Then J. = N(te(I}) - Tun(e)), © > 0.
Thus, if Sy is a G-ring, then J, = 1.(I;) - Ty p, 7 > 0.

Proof. — Since J, is a radical ideal, by the Nullstellensatz (Theorem 4.1.1),
it suffices to show, for each m € Max Ty, (), that m D J, if, and only if]
1=Hm) D I,.

Let A be any Noetherian ring, let I C A be an ideal, and let m € Max A.
By [25, Theorem 6.2], m D P D I is a prime divisor of I if, and only if, P- Ay,
is a prime divisor of [ - Ay,. Thus, m D I, if, and only if, I - A,, has a minimal
prime divisor of height r.

Claim. — Let I C A be an ideal, and let m € Max A. Then m D I, if, and
only if, I - (Aw) has a minimal prime divisor of height r.

By the foregoing, we may assume that A is a local ring with maximal ideal
m, and we must show that I has a minimal prime divisor of height r if, and
only if, I - A has one. (As usual, A denotes the maximal-adic completion of
A))

Let p € Spec A and let P € Specg be a minimal prime divisor of p - Z; we
will show that ht§3 = htp. Since A is flat over A ([25, Theorem 8.8]), this
follows from [25, Theorem 15.1 (ii)], if we can show that p = N A. By the
Going-Down Theorem ([25, Theorem 9.5]), there is some 9 € Spec A such
that Q CPand QNA=p; hence PO Dp- A. Since B is a minimal prime
divisor of p- A4, Q = B. Therefore, p =P N A, as desired.

Suppose p € Spec A is a mlmmal prime d1v1sor of I of height r, and let
B e SpecA be a minimal prime divisor of p - A. _Then ht3 = htp = r. We will
show that 3 is a minimal prime divisor of I - A If BLO>OADI- A for some
9 € Spec A, then

p=PNADAONADI

Since p is a minimal prime divisor of I, p =0Q N A;ie., QD p- A. Since P is
a minimal prime divisor of p - ;1\, £ =B. Thus P is a minimal prime divisor
of I-A.

Suppose P € SpecA\ is a minimal prime divisor of I - A of height r, and
put p := P N A. Then P is a minimal prime divisor of p - E, so htp = r.
We will show that p is a minimal prime divisor of I. If p D q D I for some
g € Spec A, then by the Going-Down Theorem ([25, Theorem 9.5]), there is
some £ € Spec A with P8 O Q and g = Q N A. Since P is a minimal prime
divisor of I - ;1\, 0 =P, so q =p. Therefore, p is a minimal prime divisor of
I, proving the claim.
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Let m € Max Ty, ,(¢) and put n := 7' (m). By the Claim, and by Proposi-
tion 4.2.1,

mDJ, & J-(Tpule )); has a minimal prime divisor of height r
s I (Sm7n)§ﬂ has a minimal prime divisor of height r
& nD I,

as desired. The last assertion of the lemma follows from Proposition 4.2.6. [

Let A(I,) be the uniform residue ideal of an equidimensional component
I,. The next proposition allows us to lift a Noether normalization map
Ty — T /A(I}) to affinoid algebras corresponding to the restriction of Sy, /I
to closed polydiscs Max T), 5, (¢), uniformly in e for e large enough.

Proposition 5.1.2. — (cf. [4, Satz 3.1].) Let ¢ : Ty — T, be a K-algebra
homomorphism, let I be an ideal of Ty,, and let ¢ : Ty — Tm/I be the
composition of o with the canonical projection Ty, — Tm/I. Now by [6, Section
6.3], ¢ induces a I?—algebm homomorphism @ : Td — Tm Let 7: Td — fm/I~
be the composition of ¢ with the canonical projection Tm — fm/f Suppose
that T is a finite monomorphism and that the fd—module Tm/f can be generated

by r elements. Then 1 is a finite monomorphism and the Tyz-module Tm/I
can be generated by r elements.

Proof. — Put J := Kertyp C Ty; we will show that J = (0). Let f € J,
Ifl < 1. Since f € J, o(f) € I; hence 3(f) = @(f)~ € I. This implies
J C Ker7 = (0). Thus by Lemma 3.1.4, J = (0); i.e., ¢ is a monomorphism.

Find Gi,...,Gr,01,...,9s € Ty, with g1, ..., g5 € I, such that the images of
Gi,...,G, in Tm/I generate the T,;-module Tm/I and {g1,...,7s} generates
the ideal I. We will show that the images of G1,...,G, in T}, / I generate

the Ty-module Tm/I. Indeed, let f € T,,; we will find Hy,...,H, € Tg and
hi,...,hs € T), such that

= ZQD G —Zhyga

We may take ||f|| < 1. Let B € B with

fa(p(gl)aa(p(gd)aGlaaGTaglaags EB<€> C T

Let B =By D By D --- be the natural filtration of B.
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Claim. — Let F € By(¢)\Bp4+1(&) C Tyy,. There are Hy, ..., H, € By(§) C Ty
and hi,...,hg € By(§) C Ty, such that

F— Z‘P )G Zh]g] € Bpt1(§) C Tim.
j=1

Let m, : By — ﬁp C K denote a residue epimorphism, and write K= B},@V
for some B-vector space V. Then

T = K[é1,-- &m] = Byl§] ® V[¢] and
Ty= K&, & = Bylg] @ V]
as §[§]—modules. Furthermore, since ¢(&1),...,9(&q) € §[§],
(Byl¢]) C Byl¢] and
e(V[E]) c Ve

Since the images of él, ... Gr in Tm/I generate the Td module Tm/I and
since {g1,... ,gs} generates the ideal I in T),, there are Hy,..., H, € T; and
hi,...,hs €Ty, such that

(5.1.3) Z(p G Zh]g] =0.

By (5.1.1) and (5.1.2), we may assume
H,...,H, € B,[¢] C Ty and
hi,...,hs € By[€] C Tpp.
Find Hy,...,H, € By(¢) CTqg and hy,...,hs € By(&) C Ty, so that
mp(Hy) = Hy,...,mp(H,) = H, and
mp(h1) = ha,...,mp(hs) = hs.

(5.1.1)

(5.1.2)

y (5.1.3),

F =Y @(Hj)G; —> hjgj € By1(§) C Tpn.

This proves the claim.

Now, |B\ {0}| C Ry \ {0} is discrete, and B(¢) is complete. Thus since ¢
is continuous ([6, Theorem 6.1.3.1]), iterated application of the Claim yields
the desired result. O

The following lemma, is a key step towards proving Theorem 5.1.5.
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Lemma 5.1.3. — Assume Sy, is a G-ring (e.g., use Proposition 4.2.3 or
Proposition 4.2.5 (ii)), and let I be an ideal of Sy, . Then there is an e € N
such that for every e € |K| with 1 > |e| > o(I) and for every f € Sy /1,
U(f) € TrantL(I) - Tyin satisfies an equation of the form

tdat - +a. =0
. 1/i
where the a; € Tryqn/to(I) - Tinyn satisfy maxi<i<e HaiHL’E/(ZI)TmM = |L(f)lsup-

Proof. — Let A(I) be the uniform residue ideal of I as in Definition 3.2.4. By
Noether Normalization, there is a K- algebra homomorphism ¢ : Td — Tm+n
such that 7: Ty — Tpyn/A(I) is a finite monomorphism where 7 is the
composition of ¢ with the canonical projection Tm_m — Tm+n JA(I). Let
Iy, I,..., be defined as in Lemma 5.1.1. Since I C I, for r > 0, A(]) C
A(Iy) C Tm+n, r > 0. Thus by Noether Normalization, for r > 0, there is a
K- algebra homomorphism @, : Td — Td such that 7, : Td — Tm+n J/A(I) is a
finite monomorphism, where 7, is the composition of ¢ o ¢, with the canonical
projection Tm+n — Tm+n/A(Ir). Suppose the fdr—module Tm_m/A(Ir) is
generated by e, elements, » > 0, and find « € N such that M(I)® C I (where
N denotes the nilradical). Put

m+n
=« Z er

r=0
We will show that e is the exponent sought in the lemma. Fix ¢ € |K]|,
1 > ¢ > o(I). By [6, Proposition 6.1.1.4], there are K-algebra homomorphisms
o Tqg = Tyyn and @, : Ty, — Ty, 0 < r < m + n, that correspond
modulo K°°, respectively, to ¢ : Tvd — fern and @, : Tvdr — Tvd. Put
J = LIE(I) : Tm+n- Let Q/) 1Ty — Tm+n/J and Q/)r : Tdr — Tm+n/L,5(Ir) : Tm+na
0 < r < m + n, be defined, respectively, by composing ¢ with the canonical
projection Ty, — Tpin/J and by composing ¢ o ¢, with the canonical
projection Tyin, — Tran/ti(L) - Topan- Since T, To,...,Tmin are finite
monomorphisms, by Proposition 5.1.2, each of %, %g,...,¥min is a finite
monomorphism, moreover the Ty -module Ty, 1y, /0L (1)) - Tty is generated by
e, elements, 0 < r < m +n. By Lemma 5.1.1, J, = ..(I,) - Tjp4p. Since each
Jr is a radical ideal and since ht p = r for every prime divisor p of J,., each 1),
is a finite torsion-free monomorphism.

Fix f € Sy /I with || f|lsup < 1, and put F :=L(f). For 0 <r < m+n, let

Qr € Ty, [t] be the monic polynomial of least degree such that Q,(F') vanishes
in Tpyyn/Jr. Write

Qr=1"+ant" "+t an,.
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Since 1), is a finite, torsion-free monomorphism, by [6, Proposition 6.2.2.2],

1M = 1| Flsup-
lrgni?z [[arl 1 [ sup
Furthermore, by the Cayley-Hamilton Theorem [25, Theorem 2.1], ¢, =

deg Qr < e;.
We may regard each @, as an element of T[t] via the K-algebra homomor-
phism ¢,. Put

m-+n «
o= (T{0) =t raitsosar
r=0

By [6, Corollary 3.2.1.6], max;<;<y la:||'* = || F|lsup, £ < e, and by Proposi-
tion 4.2.6, Q(F) vanishes in T, n/J. It follows that .. (f) satisfies the equation

e+ art o aptt =0,

as desired. O

In Lemma 5.1.3, we assumed that ¢ € |K| and that Sy, ,, is a G-ring in or-
der to make some computations. Under these assumptions we obtained monic
polynomials of degree e over Ty, ,(e) satisfied by h € Sy, /1. The coeffi-
cients of these polynomials, in addition, satisfy certain estimates depending on
|h]|sup- In Lemma 5.1.4 we show that the computations of Lemma 5.1.3 are not
affected by ground field extensions; i.e., they remain valid for € € /| K \ {0}|
and whether or not Sy, ,, is a G-ring. This allows us to transfer the data back
to Syn by examining the module M of relations among h°, et ... 1.

Lemma 5.1.4. — Let I be an ideal of Sy, and let M be a submodule of
(Smn/I)¢. Let K' be a complete, valued extension field of K, let E' C (K')°
be a complete, quasi-Noetherian ring with E' D E (recall, if Char K =p > 0,
we assume E' is also a DVR), and put

S;mn = S (B K') D Spun,

I'=1- S’;n’n, and

M' = M - (S /T') C (S T')".
By ¢ denote the canonical projections
(Spn)’ = (Sp/T')", and
(Smn)’ = (Sman /D).
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Put
N :=¢ (M), and
N':=p ' (M')=N-S8], .,
and let ¢ € |[K'| with 1 > e > o(N'). Put
Tinin = K'(E, p)-

By w denote projection of an £-tuple on the first coordinate. Suppose there is
some

fe (M) Ty, fe(I) - T i)
with ||f||L2_(II).Ty’n+n < 1 and w(f) = 1. Then there is some F € M with
IF|lr <1 and n(F) = 1.

Proof. — Tt suffices to show that w(NN) is the unit ideal; indeed, by Lemma 3.1.11,

it suffices to show that w(N') is the unit ideal. Let A(N’) be the uniform
residue module of N’ as in Definition 3.2.4. Tt suffices to show that w(A(N"))
is the unit ideal. Denote also by ¢ the canonical projection

(Trln-i-n)g - (Trln-l—n/bfs (I,) ’ Trln—l—n)e'
By Lemma 3.1.4 with n = 0, there is some
F e (M) - (T /tt(T") - Thnyn)
with ||[F|| = [|fll,.(),,, <1 and n(F) = 1+ h for some h € (I - T

m—+n-*

Since (h,0,...,0) € Ker ¢, we may assume that 7(F) = 1. Since

SO_I(L(IQ(MI) ’ (Trln—l—n/b(ls(‘[,) ’ Trln—l—n)) = L;(N,) ’ Trln-i-na
by Lemma 3.2.5, F € A(N'). O
Theorem 5.1.5. — Let I be an ideal of Sy, . There is an e € N such that
each h € Sy /T with ||h||sup < 1 satisfies a polynomial equation of the form

4+ at +- +a, =0,

where ai,...,ac € Spmn/I and each ||a;||r < 1. Moreover, if |h(z)| < 1 for all
z € Max Sy, /I then each vr(a;) < (1,1).

Proof. — Write Sy := Smun(E,K). Let K' be the completion of the alge-
braic closure of K. If CharK = 0, let £’ := E and if CharK = p > 0,
we use Remark 2.1.4 to find E' D E as in Proposition 4.2.5 (iii). Hence
Stan = Smn(E', K') is a G-ring by Proposition 4.2.3 or Proposition 4.2.5 (iii).
Let I' := I -5}, ,. By Proposition 4.1.3, ||A[lsup < 1, where the supremum is
computed in Max Sy, ,,/I".
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Applying Lemma 5.1.3 to S}, ,,/I' yields an integer e. Put

M = {(ao,...,ae) € (S'm,n/f)eJrl : Zaihe’i = 0},
=0

e
M = {(ao, coese) € (Sp TN Y aht T = o} :
i=0
My = {(ao,...,a.) € M :ay =0}, and
M} = {(ag,...,a.) € M": ay = 0}.
Choose ¢ € |K'| with 1 > & > 0 and ¢ suitably large, as in Lemma 5.1.3, and
put

LI . {(b07 s 7b6) € (Trln+n/LI€(Il) ’ T7{Il+n)e+1 : Z biblg(heii) B 0} ’
1=0

L6 = {(bo,...,be) EL,ZbOZO}.

Since Ty, ., is isometrically isomorphic to T, (e, K'), by Lemma 4.2.8 (i)

and (ii), we have:
M'=M - (Sp./T),
M(l) = My - (S;n,n/ll)v
L' = LIs(MI) ) (TrInJrn/Lle(Il) ’ T7{n+n)7 and
L6 = L;(M(l)) ' (Trln—l—n/L,E(II) . Trln-i-n)'
Lemma 5.1.3 yields
biys be € Ty JE(I') - T
such that
l

max ([[bgll,, ), )7 = [le(h)llsup < 1, and

1<i<e
(1,b1,...,b,) € L.
Lemma 5.1.4 implies that there are a1,...,a, € Sy, /I such that
llaillr <1, 1<i<e, and
(1,a1,...,a.) € M.

This proves the first assertion.

Suppose now that |h(z)] < 1 for all z € MaxS,,,/I; then the same
inequality holds for z € Max Sy, ,,/I' by Proposition 4.1.3. Hence [[s_(h)||sup <
1. Since

L’E((l,al,... ,ae)) — (1,[)1,...,()(3) S LB,
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we get
162((0, a1, -y ae)) gy < 110,01, be) sy, < 1
By Corollary 3.3.4, this yields
o ((0,a1, ... ae)) < (1,1).
Hence by Lemma 3.1.11(ii),

vMo((Oa aiy .- - ,Ge)) < (1’ 1)’
as desired. O

Remark 5.1.6. — Let I be an ideal of Sy, , and define the seminorm vy, :

Smn/l — Ry X Ry by
Usup(h) = (Hh“supa?ia)a

where a := inf{8 € Ry : Jgg € /|K \ {0}] Ve € /|K\ {0} with 1 > ¢ >
€0, €| llsup < |lte(B)|lsup }- In fact a € y/|K \ {0}]. Indeed if ||hjsup # O, the

function

e = [[ee(h) lsup/ I llsup

is a definable function of ¢, in the sense of [17] and [23]. By the analytic
elimination theorem of [23, Corollary 4.3] it follows immediately that o €
|K \ {0}| and that e®||h||sup = ||te(h)]|sup for € < 1 but sufficiently large.
There is an e € N such that each h € S, ,,/I satisfies a polynomial equation
of the form

tat - Fa.=0

where ai,...,a. € Sy /Il and maxi<i<e v;(ai)l/i < Vgup(h).

Definition 5.1.7. — Let I be an ideal of Sy, ,. An element f € Sy, /I
is called power-bounded iff the set {|f¢|; : £ € N} C R is bounded.
By 6(Smn/I) denote the set of all power-bounded elements; it is a subring
of Smun/I. An element f € Sy, /I is called topologically nilpotent iff
{IIf¥lr : £ € N} is a zero sequence. By t(Sp.n/I) denote the set of topologically
nilpotent elements; it is an ideal of b(Sy, ,/I). An element f € Sy, ,,/1 is called
quasi-nilpotent iff for some £ € N, f* € t+ (p)b. By q(Symn/I) denote the
set of quasi-nilpotent elements; it is an ideal of b(Sy, /).

Note that, even in the case n = 0, i.e., the affinoid case, the set {||f¢||;: £ €
N} appearing in Definition 5.1.7, while bounded, may not be bounded by 1.
The element p € Sp; is quasi-nilpotent, but not topologically nilpotent.
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Corollary 5.1.8. — Let I be an ideal of Sy, and let f € Sppn/I. Then
[ is power-bounded if, and only if, ||fllsup < 1, f is topologically nilpotent if,
and only if, || fllsup < 1, and f is quasi-nilpotent if, and only if, |f(z)| < 1
for all x € Max Sy, ,/I. Hence, in the notation of Theorem 5.1.5, each

aifeii € q(Sm,n/I)-

Proof. — The ‘only if’ statements are immediate consequences of Proposi-
tion 4.1.2.

Suppose || f|lsup < 1. By Theorem 5.1.5
(5.1.4) fe=af '+ +ae

for some ay,...,a, € Sy, /I with each |la;||; < 1. Then for every £ € N there
are by,...,b. € Sy, n/I with each ||b;||; < 1 such that

Fr=buf 4 4 b

Thus {||f¢|lr : £ € N} is bounded by max{||f’|l; : 0 <i < e—1}, and f is
power-bounded.

Suppose in addition that |f(z)| < 1 for all z € Max Sy, ,/I. Then by
Theorem 5.1.5, in (5.1.4) we may take each vy(a;) < (1,1). By Theorem 3.1.3
each a; € t(Spmn/I) + (p)6(Smn/I). To conclude the proof note that since
each || fi|lsup < 1, each f* € b(Spn/I). Hence each a;f° ¢ € q(Spmn/I). O

Remark 5.1.9. — The result of Corollary 5.1.8 is much easier to prove if
one makes the strong additional assumption that ||f|; < 1. In particular:

Lemma. — Let I be an ideal of Sy, . There is an £ € N such that for all
f € Smpn with ||[f|| <1 and |f(z)] <1 for all z € Max Sm /I, we have:

(i) for alle € |K| with 1> ¢ > o(I), [|lL(f)ll,.(r)-
(i) vr(f) < (1,1).

Proof. — (i) Let A(I) C Tppyn be the uniform residue ideal of I. Let 9 :=
N(A(I)) C Tpin be the nilradical of A(I). Then there is some ¢ € N
such that ¢ ¢ A(I). By ~: TS in = Tm_m denote the canonical residue
epimorphism. It suffices to show that (.(f)~ € M. Fix ¢ € |K| with 1 >
e > o(I), and by F denote the image of «.(f) in Tpin/tL(I) - Tynin; then
|F|lsup < 1. By [6, Proposition 6.2.3.2], F' is topologically nilpotent; i.e.,
limy oo [/l (1), = 0. Hence iZ(f)~ € 9.

(ii) By Proposition 4.1.3 and Lemma 3.1.11(ii) we may assume that |K| is
not discrete. Let £ be as in part (i) and put F := f¢ If6(F) > Oor |F|| < 1, we
are done. Therefore, assume that ||F|| = 1 and o(F) = 0. Let {g1,...,9,} C I
be a v-strict generating system with ||g1]| = --- = ||g-]| = 1, and let € € |K]
satisfy 1 > e > maxi<;<, 0(g;). Since o(F) = 0, it follows that ||._(F)| =1

and d(:.(F)) = 0. By the choice of , ee (E) oz (1) < 1. So by Claim A

Tposn < 1, and

Tm+n
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of the proof of Theorem 3.3.1, there are polynomials hy,...,h, € K°[{] such
that ||oL(F) — 30, hie 2, (g;)|| < 1, and such that h; = 0 for all i with
0(g;) > 0. This implies that v(F =37, hig;) < (1,1); i.e, v7(F) < (1,1). O

Corollary 5.1.10. — Let I be an ideal of Sy, and let f € Sy, /1. Then
. onl/e . on1/e
I llsup = inf £ = Jim (1)

In particular if ¢ : Spp/I — Spy /1" is a K-algebra homomorphism which
is an isometry with respect to || - ||; and || - ||p, then ¢ is an isometry with
respect to || - ||sup-

Proof. — The last equality is given in [6, Section 1.3.2]. We prove the first
equality. Let m € Max .Sy, ,/I. By Proposition 4.1.2

)] < IIFAVY

for £ € N. Hence || f|lsup < infoen [|£413/". Suppose that || f[lsup < infeen || £E[3".
Then for some N € N, o € K and all /e N

1/N¢
1N llsup < lee] < £V

since \/|K] is dense in Ry. Put F := L fN. Then for all £ € N

onl/e
1P lsup < 1 < | PO

This contradicts Corollary 5.1.8 since F' is not topologically nilpotent though
| F||sup < 1. O

Corollary 5.1.11. — Let f € Spn/I. Then || fllsup € V/|K]-

Proof. — If m = 0, the result follows from Noether normalization for quotients
of Sp,n (Remark 2.3.6) and [6, Proposition 3.8.1.7]. We reduce to this case.

By Theorem 3.4.6, there are m/,n’ € N, an ideal J of S,y ,,» and a K-algebra
homomorphism

© : Sm,n/I — Smlan/J

such that (i) ¢ is an isometry with respect to ||-||7 and ||- || 7, and (ii) Spy p/J
is a finite Sy 4-algebra for some d € N. By (i) and Corollary 5.1.10, ¢ is an
isometry in || - ||sup. Now (ii) permits us to reduce to the case above. O



RINGS OF SEPARATED POWER SERIES 87

5.2. Continuity and Extension of Homomorphisms. — In this subsec-
tion we prove that K-algebra homomorphisms between quasi-affinoid algebras
are continuous, i.e., bounded (Theorem 5.2.3). It follows that all residue norms
on a quasi-affinoid algebra are equivalent (Corollary 5.2.4). We also prove an
Extension Lemma (Theorem 5.2.6) for quasi-affinoid maps.

Depending on the choice of E, S, may not be complete in || - || (see
Theorem 2.1.3). Hence the results of this subsection do not follow from [6,
Theorem 3.7.5.1]. Nevertheless Sy, ,, is the direct limit of rings B(£)[p] that
are complete both in || - || and (p)-adically. Furthermore (Corollary 2.2.6 and
Theorem 2.3.2) the operations of factoring Sy, , by an ideal and Weierstrass
Division respect the decomposition of Sy, ,, as the direct limit of the B(&)[p].

We first establish the continuity of K-algebra homomorphisms from quasi-
affinoid algebras to affinoid algebras.

Lemma 5.2.1. — Letp: Syn/I = Syo/J =: A be a K-algebra homomor-
phism. Then ¢ is continuous with respect to || - |1 and || - ||7, and is uniquely
determined by its values on & +1 and p; +1,1=1,...,m; j=1,...,n.

Proof. — Continuity. Tt is sufficient to consider the case I = (0). Since ¢ is a
K-algebra homomorphism it follows from [6, Propositions 6.2.3.1 and 6.2.3.2]
that the ¢(¢;) are power-bounded and the ¢(p;) are topologically nilpotent
(i.e., the set ||¢(&)¥||s is bounded and for each j, ||p(p;)*||; — 0 as k — 00).
Therefore we may put

M := max{[|o(¢"p")||; : p €N, v e N"}.
Claim (A). — Let M' e R, B e 8. If
le(H)llr < M|I£]l
for all f € B(&)[p], then in fact
le(H)llr < M| f
for il f € B[]

Choose a € N so that for |v] = a we have ||p(p”)||l; < M/M'. Let
f € B(¢&)[p] and write

f=pEp) +fl&p)+ > pfilt.p)

vi|=a
where the p, fo, fi € B(¢)[p] satisfy
e pis a polynomial and ||p|| < ||f]],

o [foll < (%) IIfIl, and
e |Ifill < If] for all i.
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(In other words choose a polynomial p such that f —p € (B; + (p)*)B{¢)[p]
for some 7 with |B;| C [0, M/M'].) Then

o(f) =p((€), (p)) +o(fo) + Y w(p)o(fi)

lvil=a

and

le ()7

IN

M
o { Ml M Al 315
M),

IN

Claim A is proved.
By Proposition 2.1.5 there is a complete, discretely valued subfield F' C K
such that
Sman = lim F®peB(¢)[p].
FeCBeB
Once we prove that each map

0115 i) FORBOI] = A

of F-Banach Algebras is bounded, it will follow from Claim A that ¢ : Sy, , —
A is also bounded. It remains to prove

Claim (B). — The restriction (p|F®FoB<§>[[p}] : F®poB(€)[p] — A is bounded.

Since it is affinoid, A is certainly also an F-Banach Algebra. By the Closed
Graph Theorem ([6, Section 2.8.1] or [7]) it is thus sufficient to prove that
if the v, € F®poB(£)[p] satisfy limv, = 0 and lim(v,) = w € A, then
w = 0. We follow the proof of [6, Proposition 3.7.5.1]. Let b = m" for some
maximal ideal m € Max A and N € N. Let a = ¢~!(b) C Spn. Consider the
commutative diagram

T Y I5]

Smn/a —2— A/b

where 7 and 8 are the canonical projections, @ is the induced map and v is
@ o m. Note that m and ( are contractions, and that © is continuous since by
Proposition 4.2.1, Sy, ,/a and A/b are finite dimensional K-algebras. Hence
1 is continuous and B(w) = 0. Since this is true for all m € Max A and all
N € N, by the Krull Intersection Theorem, w = 0. (Suppose w € m” for
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all m € Max A, and let J be the ideal of all z € A such that zw = 0. Fix
m € Max A. By the Krull Intersection Theorem [25, Theorem 8.10(i)], the
image of w in the localization Ay, is zero. Thus, J ¢ m. Since this holds for
all m € Max A, J = (1); i.e., w = 0.) This proves Claim B and hence ¢ is
continuous.

Uniqueness: This follows directly from Claim A: suppose ¢ and ) agree on
the & + I and p; + 1. Put ® := ¢ — 1. Now apply Claim A, with M = 0, to
. O

Next we show that there are continuous K-algebra homomorphisms Sy, , —
Syt /I’ sending the &; (respectively p;) to any specified power-bounded (re-
spectively quasi-nilpotent) elements of Sy v /I'.

Lemma 5.2.2. — Let f; € Spy /I, i = 1,...,m, be power-bounded and
let gj € Sy /I', 7 = 1,...,n, be quasi-nilpotent. There is a K-algebra
homomorphism,

@ : Sm,n — Sml,n//fl,
continuous in || - || and || - ||, such that ©(&) = fi and p(p;) = g; for

1=1,....m;53=1,...,n.

Proof. — Since the f; are power-bounded, by Theorem 5.1.5, there are a;; €
Sy /T, 1 <i<m, 1< j<e, with each ||a;;||;» < 1 such that
ff—l—aﬂff_l—i—---+aie:0, 1< <m.
Similarly, there are b;; € Spyp/I', 1 < i < n, 1 < j < e, with each
vp(bij) < (1,1) such that
gf+bi1gf_1+---+bie:0, 1< <n.
By Theorem 3.1.3, there are A;;, B;; € Sy such that v(A;;) = vp(as),
’U(Bij) = U[!(bij), Qi = Aij + I, and bij = Bij + I. Put
Pz'(gm’+i) = gren’-Hj + Azlgren_/il + e+ Aiea = 13 ceey M,
Qi(Pnryi) = Py + Bﬂpfbfiz- + -+ Bie, i=1,...,n.

Note that each P; is regular in &,/ y; of degree e and each @; is regular in
pn'+i of degree e. Let 9o : Sy = Sy 4mn/+n be the inclusion defined by
i = Emigis P Py, © = 1,...,m;5 = 1,...,n. By Weierstrass Division
(Theorem 2.3.2) there is a unique K-algebra homomorphism

z,bl : Sm’+m,n’+n — Sm’,n’ [5m’+1a cee afm’era Pn/+1y--- apn’+n]/(Pa Q)

with Ker¢y = (P, Q) - Sy 4nn'+n- Furthermore, by Weierstrass Division,
is continuous and the range of 1 is a Cartesian S, ,,-module (see [6, Def-

inition 5.2.7.3]). Let s : Sm’,n’ [fm’+la e & ey Pl 41y - - - ,pn/+n]/(P, Q) —
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Sm /I be the unique K-algebra homomorphism that sends Sy, 2 f —
[+ &pyim fiand ppryj =g, i=1,...,m,j=1,...,n.
Since 1) is an isometry in || - ||, 41 is a contraction and
Sm’,n’ [fm’—l—la s afm’-i—mapn’-i-la s apn’-l-n]/(Pa Q)

is a Cartesian Sy, ,s—module, v is continuous. Take ¢ := 1)3 0 11 o 1)y. U

Theorem 5.2.3. — Let ¢ : Sppn/I — Spy /1" be a K-algebra homomor-
phism. Then @ is continuous with respect to || - |1 and || - |17, and is uniquely
determined by the values (& + 1), p(p; +1),i=1,...,m;5=1,...,n.

Proof. — Tt is sufficient to take I = (0). Let ¢’ : Sy — Spy o /I" be the
continuous K-algebra homomorphism provided by Lemma 5.2.2 with ¢'(&;) =
o(&) and ¢'(p;) = ¢(p;), i =1,...,m; j =1,...,n. By Corollary 3.3.2, there

is an € € \/|K \ {0}] such that
Sm/’nl/I, LN Tml’nl (6)/LE(II) - Tm/’n/(e)

is an inclusion. By Lemma 5.2.1, 1, 0 ¢ = . 0 ¢'. Since ¢, is an inclusion
¢ = ¢, and thus ¢ is continuous. n

In general a quasi-affinoid algebra has many representations as a quotient of
an Sy, . The residue norms corresponding to different representations may be
different. However all these norms are equivalent, i.e., they induce the same
topology.

Corollary 5.2.4. — If Spn/I ~ Smr,nr/f' as K-algebras then the two
norms || - || and || - ||;7 are equivalent; i.e., they induce the same topology.

Remark 5.2.5. — Let c € K°°. The (c)+(p)-adic topology on Sy, ,, induces
a topology on Sy, , and on any quotient. A K-algebra homomorphism
©: Sm,n — SmI’nI/I,

is also continuous with respect to such topologies. In other words, if f =
> awétp” € Sy, ,,, then by the above arguments, ) a,,0(€)"(p)” converges

to o(f)-

Theorem 5.2.6. — (Extension Lemma, cf. Remark 5.2.8.)

Let ¢ : Spun/I = Spy /I be a K-algebra homomorphism, let fi,..., fu €
St /1 be power-bounded and let gi,...,gN € Sy /1" be quasi-nilpotent.
Then there is a unique K-algebra homomorphism

d) : Sm+M,TL+N/I : Sm+M,n+N — Sm’,n’/-[,

such that Y(§myi) = fi, 1 <i < M, ¥(p;) = g5, 1 <j < N, and the following
diagram commutes:
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¥
Sm,n/I - Sm’,n’/I,

R7
Sm+M,n+N/I : Sm+M,n+N

Proof. — By Lemma, 5.2.2 there is a K—algebra homomorphism

d)l : Sm+M’n+N — Sm/,n,/]'/

such that
P'(&) = (& + 1), i=1,...,m,
z,b,(fm—l-i):fia izla"'aMa
wl(pm+]):g]7 ]: 77N
By Theorem 5.2.3,
V|5 = pom,

where
7 Smpn = S/l

is the canonical projection. Hence I C Ker)' and 1)’ gives rise to a K—algebra
homomorphism

(/2 Sm+M,TL+N/I : Sm+M,n+N — Sm’,n’/I,-

That 9|g,, , /1 = ¢ and that 1 is unique follow immediately from Theo-
rem 5.2.3. 0

For notational convenience we make the following definition:

Definition 5.2.7. — Fix the pair (E,K) and let A be a quasi-affinoid
algebra, say A = S, v (E, K)/I. We define

A&y, -5 &mdlprs - palls = S ematin/ T+ St fmont4n
where we regard
Sm’,n’ = K(??l, ‘e a77m’>[[7'1a ‘e aTn’]]s
and

Sm'+m,n'+n = K(nla s anm’agla s a£m>[[T1? ceey T/ Ply - - - apn]]s'
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By the Extension Lemma, Theorem 5.2.6, A(&1,...,&m)[p1,---,pn]s is inde-
pendent of the presentation of A.

We will show that that
A)[pls C AL, Pl

via the K-algebra homomorphism

0 S 4mmn/4n — A[E, p] - quufupy = Z(fuu + I)¢!p”.
Indeed, it suffices to verify
Kerp C I- Sm’+m,n’+n-

Let f = Y fuétp” € Keryp; without loss of generality ||f|| = 1. Hence
f € B(n,&[r,p] for some B € B. By Lemma 3.1.6, there are s € N,
B C B' € B and hy, € B'(n,&)[r, p] such that

f= Z f/whuu-

lul+IvI<s

Since each f,, € I, it follows that f € I - Sy /4, as desired.
Let ¢ : Spy v — A[, p] be the composition of ¢ with the obvious inclusion
St = St pmon/4n- Since Kerep = I, it follows that

A = A(G)[pls
is injective.

Remark 5.2.8. — Here we rephrase the Extension Lemma (Theorem 5.2.6)
in terms of the notation introduced in Definition 5.2.7.

Let ¢ : A — B be a K-algebra homomorphism of quasi-affinoid algebras
A and B. Suppose fi,...,fm € B are power-bounded and ¢1,...,9, € B
are quasi-nilpotent. Then there is a unique K-algebra homomorphism ) :
A(&)[pls — B such that (&) = fi and ¢(p;) = g5, 1 <i<m, 1 <j <,
and the following diagram commutes:

A

AT,

In particular, it follows that there are m,n € N and a surjection of A-algebras

A<€11"'a£m>[[pla"'apn]]s _>Ba
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and hence for some ideal I,

B~ Al&y,.. . &m)lor, - - puls /1.

5.3. Quasi-Rational Domains. — By analogy with [6, Section 6.1.4], we
define generalized rings of fractions in the quasi-affinoid setting. This leads,
in Definition 5.3.3, to the construction of quasi-rational domains and, by
iterating, R-domains. Example 5.3.7 shows that R-domains are more general
than quasi-rational domains, in contrast to the affinoid case. Nevertheless the
Extension Lemma (Theorem 5.2.6) shows that generalized rings of fractions
are well-defined and that the association of a generalized ring of fractions with
a quasi-rational domain provides it with a canonical ring of quasi-affinoid
functions. Thus quasi-rational subdomains (and by iteration, R-subdomains)
are examples of quasi-affinoid subdomains (the formal generalization to the
quasi-affinoid category of the notion of affinoid subdomains). This provides
a foundation for a theory of quasi-affinoid varieties (see [22]). We end this
subsection proving in Proposition 5.3.8 that a quasi-affinoid algebra is affinoid
if, and only if, it satisfies the Maximum Modulus Principle.

Definition 5.3.1. — Let A be a quasi-affinoid algebra, say A = S, /I, and
let fi,...,fm; 91,---,9n; b € A. Define the generalized ring of fractions
A(f/h)[g/h]s to be the quotient ring

A() [, = Swoaovts

where J is the ideal of Sy,4 4N generated by the elements of I and the
elements

where the F;, Gj, H € Sy, satisfy f; = F;, +1, g = Gj + 1, h =
H+1,1 <i< M,1<j < N. By Theorem 5.2.6 any isomorphism
Smun/I — Sy /I' extends to an isomorphism Sy arnnN/I - St Mp+N —
St M/ AN /TS p a4 v sending &y, t0 €y and pyyj t0 ppr 5. It follows
that A(%)[[%]]s is well-defined.

Let f,g,h be as in Definition 5.3.1. In general, Max A(%)[[%]]s is neither
open in Max A nor does it satisfy the Universal Property of [6, Section 7.2.2]
(see Definition 5.3.4 below). With the additional restriction that f,g,h gen-
erate the unit ideal of A (see Definition 5.3.3, below) the following Universal
Property is satisfied.
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Proposition 5.3.2. — Let A be a quasi-affinoid algebra, let f1,....,fn;

gi,---,9n; h € A, and put
a=a( [,

Suppose ¥ : A — B is a K-algebra homomorphism into o K-quasi-affinoid
algebra B such that

(i) (h) is a unit,

(ii) (fi)/y(h) is power-bounded, 1 < i < M, and

(iii) (gj)/(h) is quasi-nilpotent, 1 < j < N.
Then there is a unique K -algebra homomorphism ' : A’ — B such that

A - B

commutes. In particular, if {f,g,h} generates the unit ideal of A and if
Max B C Max A" (as subsets of Max A) then by Corollary 5.1.8 and the
Nullstellensatz, Theorem 4.1.1, conditions (i), (ii) and (iii) are all satisfied.

Proof. — Immediate from Theorem 5.2.6. U

Definition 5.3.3. — Let A be a quasi-affinoid algebra and put X := Max A.
A quasi-rational subdomain of X is a subset U C X of the form

v=ax (4(7) [17],)

where fi,...,fm; 91,---,9n8; h € A generate the unit ideal. The class of
R-subdomains of X is defined inductively as follows. Any quasi-rational
subdomain of X is an R-subdomain of X. If U C X is an R-subdomain
of X and if V C U is a quasi-rational subdomain of U, then V C X is an
R-subdomain of X.

Suppose U = Max (A(%)[[%]]s) is a quasi-rational subdomain of X = Max A.
Then

U ={o€X: [fi@)| < |h@)] lg; ()] < [h(z)|,1 <i<M,1<j <N},

To see this, write A = Sy, , /I and A(%)[[%]]s = Spmimpnin/J, where J is
generated by the elements of I together with the elements of the form

Hépyi— Fyy, Hppyj—Gj, 1<i<M, 1<j<N,
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where the F;, G;, H € Sy, satisfy f; = F; +1, gj = Gj, h = H + 1,
1 <i< M,1<j < N. The elements of U correspond naturally to the
maximal ideals of Sy,4arn4n that contain J. Let x be such a maximal ideal.
By the Nullstellensatz (Theorem 4.1.1),

€mri(@)] < 1 and |4 (@)] < L.

The description of U above then follows immediately from h(z)&,1:(z) —
fi(z) = 0 and h(z)ppyj(z) — gj(z) = 0 and from the fact that h(z) # 0. The
fact that h(z) # 0 for all z € U also guarantees that U is an open and closed
subset of X when X is endowed with the canonical (metric) topology (see [6,
Section 7.2.1]).

As in the affinoid case, one easily proves (cf. [6, Proposition 7.2.3.7]) that the
intersection of quasi-rational domains is a quasi-rational domain. In contrast
to the affinoid case, the complement of a quasi-rational domain is a finite union
of quasi-rational domains. To see this, consider the quasi-rational domain

v (a(£)[2],),

where the f, g, h generate the unit ideal of A. Note that h is a unit of A(%) [#]s-
Choose % € K with

1

> H 1 |
> ||= ; le.,
c h sup

le| < |h(x)|, for all x € U.

Then
U= {z € Max A: |fi(z)| < [h(z)],|g;(2)| < |h(z)],
lef < |h(@)],1 <i<M,1<j<N}L
Hence
Max A\U = {z € MaxA: |h(z)| <|c}U
U{e € Max A: [1(z)] < | fi)],|e] < |fi(2)[} U

2

U{I € Max A: [h(x)] < |gj(2)], |e| < |g;(2)]}-

J

By induction, a finite intersection of R-domains is an R-domain and the
complement of an R-domain is a finite union of R-domains.

Definition 5.3.4. — Let A and B be K-quasi-affinoid algebras. A K-
quasi-affinoid map

(®,0) : (Max B, B) — (Max A, A)
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is a map ® : MaxB — Max A induced by a K-algebra homomorphism
¢ : A — B via the Nullstellensatz, Theorem 4.1.1. Let U be a subset
of Max A. Following [6, Section 7.2.2], and suppressing mention of ¢, we
say that a quasi-affinoid map ® : Max A’ — Max A represents all quasi-
affinoid maps into U if ®(Max A’) C U and if, for any quasi-affinoid map
U : Max B — Max A with ¥(Max B) C U, there exists a unique quasi-affinoid
map U’ : Max B — Max A’ such that ¥ = ® o ¥'; i.e., such that

Max A’

R
VNS \g

Max B » Max A
g
commutes. A subset U C Max A is called a quasi-affinoid subdomain of
Max A if there exists a quasi-affinoid map ¢ : Max A’ — Max A representing
all quasi-affinoid maps into U.

As in [6, Section 7.2.2], the above universal property has useful formal
consequences which are proved in Proposition 5.3.6. In addition it allows us to
associate to every quasi-affinoid subdomain U of Max A a canonical A-algebra
of quasi-affinoid functions O(U). Indeed if ® : Max A" — Max A represents
all quasi-affinoid maps into U, then O(U) := A’. Reversing the arrows in
Proposition 5.3.2 yields many examples of quasi-affinoid subdomains.

Theorem 5.3.5. — Let A be a quasi-affinoid algebra and let U C Max A be
a quasi-rational subdomain, U = Max A(%)[[%]]s, where the f,q,h generate the
unit ideal of A. The inclusion

vax (4 (L) [[4]] ) - Maxa

represents all quasi-affinoid maps into U. Thus every R-subdomain is & quasi-
affinoid subdomain.

To every R-subdomain U of Max A, we have thus associated the canonical
A-algebra of quasi-affinoid functions O(U) such that Max O(U) — Max A
represents all quasi-affinoid maps into U. In particular, if U C Max A is the
quasi-rational subdomain defined by

U = {o € Max A : [fi(2)| < |h()],|g;(2)| < |h(2)|,1 <i < M,1<j <N},

where {f,g,h} generates the unit ideal of A, then O(U) = A(%)[[%]]s is
independent of the above presentation. In other words, if U C Max A is a
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quasi-rational subdomain, f’,¢',h' € O(U) have no common zero and

(@) <IF ()], o' (@)] < |b'(z)

for all z € U, then
owr-ou(£)[¢].

By induction, the same holds for R-subdomains of Max A. This fact is a key
step in developing a natural theory of quasi-affinoid varieties, as will be seen in
[22]. A special case of this result was proved in [18, Theorem 3.6]. The proof
of the main result of [18] can be simplified considerably using Theorem 5.3.5.

Proposition 5.3.6. — (cf. [6, Proposition 7.2.2.1].) Let A be a quasi-
affinoid algebra, let U C Max A and suppose (®,p) : (Max A’, A') — (Max A, A)
s a quasi-affinoid map representing all quasi-affinoid maps into U. Then
(i) @ is injective and satisfies ®(Max A") = U;
(ii) for x € Max A’ and n € N, the map ¢ : A — A" induces an isomor-
phism A/®(z)" — A'/x";
(iii) for z € Max A', x = p(®(x)) - A".

Proof. — Let y € U and consider the commutative diagram
A 4 A
7 .q.--.. .ﬂl
A/y”‘.. Lo () - A

where 7™ and 7’ denote the canonical projections and + is induced by . Since
® represents all affinoid maps into U, there exists a unique homomorphism
o: A" — A/y"™ making the upper triangle commute.

Thus both maps 7’ and 1 o o make

Alpy") - A

A Al
2

commute. Due to the universal property of ¢, they must be equal; i.e., the
lower triangle in the above diagram commutes.
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Since 7' is surjective, so is . Furthermore, o is surjective because 7 is.
Since the upper triangle commutes, Kern’ = ¢(y" - A’) C Kero. Hence 9
must be bijective. Taking n = 1, we see that ¢(y)- A" must be a maximal ideal
of A’. Thus ® '(y) consists precisely of one element, ¢(y) - A’. This proves (i)
and (iii). Moreover (ii) must hold because z™ = y" - A’ where y = ®(z), and
because 1) is bijective. O

Example 5.3.7. — In the affinoid case, a rational subdomain V of a rational
subdomain U of an affinoid variety X is itself a rational subdomain of X (see
[6, Section 7.2.4]). This transitivity property is not in general true in the
quasi-affinoid case.

First note that the quasi-rational subdomains U of the affinoid variety
Max Sy, 0 are all of the form

-

where f1,..., fm, g1,-.-,9n, h are polynomials. That is because h is a unit
of Sm’0<£>[[%]]s (recall that the ideal generated by f,g and h contains 1).

Let K = C,, the completion of the algebraic closure of the p-adic field Q.
Note that K and K°/aK® are countably infinite for every a € K°°\ {0}. Let
E C K° be a DVR such that E = I?, and put Sy, := Sy u(F, K).

We will show that every quasi-rational subdomain of Max S3 o has a prop-
erty (see lemma below) that is not possessed by the set

U = {(6,p) € Max Sy, : [ — f(p)] <<},

for a suitable choice of f € Sy ; and ¢ € |K|\{0}. The failure of the transitivity
property for quasi-rational subdomains follows, since U is a quasi-rational
subdomain of Max S 1, which is a quasi-rational subdomain of Max Sz o. By

7 : Max 52,0 — Max 5170

denote the map induced by the obvious inclusion S7 9 — Sa.

Lemma. — Let U C Max Sy be a quasi-rational subdomain such that =(U)
contains an annulus of the form
(5.3.1) {z e Max S1: d < |z| < 1}, 0<d<1.

Then there is a polynomial P € K[£1,&]\{0} such that m(UN{z € Max Sy: P(z) =
0}) contains a set of form (5.3.1).

Proof. — The set U is definable in the language of valued fields with constants
in K. The statement that «(U) contains a set of form (5.3.1) is true over
any (algebraically closed) valued field extending K because the theory of
algebraically closed valued fields is model complete [40].
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In particular, it is true over the algebraic closure F of the field K (&), where
the valuation |- | on F' extends that on K C F and

1
1-—< &<l
n

for all n € N. Hence there is a b € F such that (£1,b) € U. Let P(&1,&2) €
K[&1,£) C F[és] be any nonzero polynomial that vanishes at b.
If

7(UN{z € Max Sy : P(z) =0})

does not contain a set of form (5.3.1), then by the Quantifier Elimination
Theorem for the theory of algebraically closed valued fields [40],

7(UN{z € Max Sy : P(z) =0}) C {x € Max Si : |z| < ¢}

for some § € |K|, 6 < 1. But this is not true over F', contradicting the fact
that, by model completeness, K is an elementary submodel of F'. O

The following construction completes the example. For every € € |K \ {0}/,
e < 1, there is an f € Sp; such that for every P € K[{1,&] \ {0},

7 ({(§,p) € Max S11: P(§,p) =0 and |£ — f(p)] < e})

contains no set of form (5.3.1).

Let P; be an enumeration of polynomials in K°[{;, ] such that for every
P € K°[¢1,&] there are infinitely many ¢ € N with ||P — P|| < e. We
inductively define sequences {n;} C N, {p;} C K°° and {a;} C E such that
n; — oo and |p;| — 1. Suppose ag,...,a¢_1; No,---,N¢—1; Po,---,P¢—1 have
been chosen and put

-1
for=>ap™.
i=0

Choose ng > ny_; such that |p}*| < e for all i < £. Choose p; € K°° such that
lpy*| > €. Suppose by, ..., b, are all the roots of Py({2, p¢) = 0. Choose a; € E
such that

4

Z aipy’ —b;

1=0

>¢€

forj=1,...,r.
Put

f= Z aipnia

>0
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and let P € K°[£1,&] \ {0}. There are infinitely many ¢ € N such that
|IP — Pi|| <&, and

pi & ™ ({(&, p) € Max Sy,1: P(§,p) =0 and [{ — f(p)| < e})

for each such 7.

We include the next propositions for completeness. Proposition 5.3.8 gives
conditions under which a quasi-affinoid algebra is actually affinoid (i.e., is a
quotient of an Sy, ). Proposition 5.3.9 gives conditions under which a quasi-
affinoid algebra is a quotient of an Sp,.

Proposition 5.3.8. — Let A = Sy, /1 be a quasi-affinoid algebra. The
following are equivalent:

(i) A is an affinoid algebra,

(ii) A satisfies the Mazimum Modulus Principle

(iii) ||pillsup is attained for all 1 <i < mn,

(iv) |pillsup < 1 for all 1 <i < n.

Proof. — (i)=(ii), (ii)=-(iii) and (iii)=(iv) are immediate from [6, Proposi-
tion 6.2.1.4], and the Nullstellensatz, Theorem 4.1.1. To see that (iv)=-(i)
observe that if

lpillsup <e<1foralll<i<n
and € € /|K \ {0}, say " = |¢|, ¢ € K°°, then by Theorem 5.3.5

A I 0 _—A
c,..., c

‘s 7 7 ‘s
A<&,...,P_n> _ (sm,n/1><ﬁ,...,f’_n>
C C C C

T n 7 7
_ sm<P_P_>/fsm<ﬂ_P_>
C C C C

By the Weierstrass Division Theorem, Theorem 2.3.2, Smm(%,...,%) is
affinoid. O
Proposition 5.3.9. — Assume that K is algebraically closed and let A =

Smn/I be a quasi-affinoid algebra. The following are equivalent:
(i) A~ Soe/J for some £, J.
(ii) For every f € A, each set
{z € Max A: [f(z)| = || fllsup}
{z € Max A: [f(z)] < || llsup}
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18 Zariski-closed; hence is a union of Zariski-connected components of
Max A.

(i) Let 7 : Sy = Sma/I = A be the canonical projection and let N be
the number of Zariski-connected components of Max A. Then there are
cij € K°, 1 <i<m,1<j <N, such that each

N

H(W(fi) — Cij)

j=1
is quasi-nilpotent. (In other words, as a subset of Max Sy, ,, Max A is
contained in a finite union of open unit polydiscs, namely, those with
centers (Cij,...,Cmj) % 0.)

Proof. — (i)=(ii). Let p be a minimal prime ideal of A. By Remark 2.3.6,
there is a finite, torsion-free monomorphism
@ : S04 — Alp.

Let f € A and let ¢(f) be the integral equation of minimal degree for f over
So,4, where

q=X*+b X5+ +bs € Spa[X],

as in [6, Proposition 3.8.1.7]. Following the argument of [6, Proposition 3.8.1.7],
for every y € Max Sp 4,

£y llsup = Jnax. |f(z)] = fg%’i' i(y)] 7,
rzeMax A

and

1
—_ NI
||f||sup = lrg%xs “szsuI)a

where ?y is the residue class of f in the quotient of A/p(y)- A by its nilradical.
Since each b; € Sy 4, either

for all y € Max Sy 4, or
(5.3.3) 16 ()| = [|billsup = 1163l
for all y € Max Sy 4. If (5.3.2) holds for every i such that
1
16ill7 = [1.f lsup,

then |f(z)| < ||f|lsup for all z € Max A/p. Otherwise, there is some iy such
that

1
1big 170 = || fllsup and [bi (y)] = [[s |l
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for all y € Max Sy 4. In this case, |f(z)| = || f||sup for all z € Max A/p. This
shows that each set

{z € Max A/p: |f(z)| = || fllsup} ,
{z € Max A/p: [f(z)] <I|fllsup}
is Zariski-closed. Taking the union over the finitely many minimal prime ideals
of A, (ii) follows.
(ii)=(iii). Let Xy,..., Xy be the Zariski-connected components of Max A,
choose z; € X;, 1 <j < N, and put
cij := &i(z;).
Part (iii) follows by applying part (ii) to each & — ¢;;.
(iii)=(i). Put
N
gi = [ [ (& — cij);
j=1
then by the Extension Lemma, Theorem 5.2.6, there is a K-algebra homomor-
phism ¢ : So ym+n — A such that

z:b(pz) = ﬂ-(pi)a 1<i<n, and
P(pn+i) = 7(gi), 1<i<m.
It follows from the Weierstrass Division Theorem, Theorem 2.3.2, that 1 is
finite. Thus, after a homothety, part (i) follows. O
5.4. Tensor Products. — In this subsection we prove that tensor prod-

ucts exist in the category of quasi-affinoid algebras with K-algebra homomor-
phisms. These results will be needed in [22] when we discuss fiber products
of quasi-affinoid varieties.

Lemma 5.4.1. — (i) If A is a quasi-affinoid algebra and ¢ : A — B is a
finite K-algebra homomorphism, then B is quasi-affinoid.

(i) If A and B are quasi-affinoid algebras then so is the ring-theoretic
direct sum A ® B.

Proof. — (i) We may take A = Sy, ,. Let by,...,by € B be such that B =
Ele ©(Sm,n)bi. For each i, let A;; € Sp, , be such that b + Lp(Ail)b?ifl +
-+ 4+ @(Ain;) = 0. Replacing b; by cb; for a suitable nonzero ¢ € K° we may
assume that [|A;;|| < 1. Let P; € Sy,4¢,, be defined by

Pi(m) = n + Aan T 4+ A
where Sy, 10 = K(&,1)[p]s- Then P; is regular in n;. Let

! Serg’n — Serg’n/(Pl, . ,Pg)
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be the canonical projection, and consider the K-algebra homomorphism

P Sm,n[nla - 7776] — B: Zf;m“ = E‘P(fu)bu-
By the Weierstrass Division Theorem (Theorem 2.3.2),

Smttn/ Py Pr) = Spnn, el /(Pry -, Py).
The K-algebra homomorphism

Sm+g,n — Sm+g,n/(P1,. .. ,Pg) — Sm,n[nla- .. ,ng]/(Pl,. .. ,Pg) — B

is surjective, as required.

(ii) It is sufficient to consider A = B = S, ,. The diagonal map Sy, —
Smun @ Smpn is a finite K-algebra homomorphism, so the result follows from
part (i). O

Definition 5.4.2. — Let A, Bi, By be quasi-affinoid algebras and let By,
By be A-algebras via homomorphisms ¢; : A — B;, i = 1,2. By Remark 5.2.8,
we can write

B = A&, - &m)p1s - -y pny]s/In and
By = A<§m1+17 v ,§m1+m2>[[,0n1+1, cee ,pn1+n2]]s/-[2-
We define the separated tensor product of B; and Bs over A by
By ®f4 By = A<£13 ce a£m1+m2>[[Pla ce apnl-l-nz]]s/(Il + 12)'

By the Extension Lemma (Theorem 5.2.6), By ®® Bs is independent of the
presentations of By and Bs. The inclusions

A(fla s 7§m1>[[p17' .. ,,Onl]]s - A(&h- .. ,§m1+m2>[[,01,- .. ,pn1+n2]]sa

&= &y pi—pi, t=1...,my, j=1,...,n;
Almi 15> Emytma) [Pra 415+ - Py nals —
A&y Emutma) P15 -+ Pratnslls,
Emiti 7 Emitis  Prati 7 Pty t=1,...,mg, j=1,...,n9,

define canonical homomorphisms
o;: B, —> By ®:94 Bs.

The next proposition shows that B ®? B> satisfies the universal property in
the category of quasi-affinoid algebras that justifies calling it a tensor product.

Proposition 5.4.3. — Let ¢; : A = B;, i = 1,2, be K-algebra homo-
morphisms of quasi-affinoid algebras and let 1; : B; — D be A-algebra ho-
momorphisms of quasi-affinoid algebras. Then there is a unique A-algebra
homomorphism ) : By ®°% Ba — D such that
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commutes, where the o; : B; — By ®% By are the homomorphisms given in

Definition 5.4.2.

Proof. — By the Extension Lemma (Theorem 5.2.6 or Remark 5.2.8) there is
a unique 9’ : A(€1, .., Emyamo)[P1, - - pnino] — D that extends ¢y 0 1 =

12 0 g such that
z:b,( ) (Z)a izla"'amla
@b( ) (])7 j:]-a"-anla
¢,(§m1+z) 2[)2(677114“1)7 = 17"'7m27

¢,(pn1+]‘) :¢2(pn1+]‘), .7 = 13"'3”2-
Since (I + Iz) C Ker ('), the result follows. O
Remark 5.4.4. — (i) If A, By, By are affinoid then it follows from the

above Proposition and the universal property of the complete tensor product
(16, Proposition 3.1.1.2]) that B; ®% By = B1®Bs.

(ii) Tn general, By ®° By # B1®4Bs. In the case that the Sp,,(F, K) are
complete, we have B; ®% By D B1®4Bs. This follows from the univer-
sal property of ®4. In all cases we have So,1 ®% So1 € 50,1®K50,1 since
>i(p1p2)" € (So1 @ S0,1) \ (S0,10K S0,1)-

The following important examples of separated tensor products are com-
puted directly from Definition 5.4.2.

Corollary 5.4.5. —

Sml,nl ®;( Sm2,n2 = Sm1+m2,n1+n27
and if A is a quasi-affinoid algebra,
A®% Smn = AE)[pls-
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The following two propositions are easy consequences of the definition and
the universal property of the separated tensor product (cf. [6, Propositions
6.1.1.10 and 6.1.1.11]).

Proposition 5.4.6. — Let A', A, By, By be quasi-affinoid algebras and
assume that the B; are both A and A'-algebras via homomorphisms A’ — A
and A — By, A — By. Then the canonical homomorphism

Bl ®f4/ B2 — Bl ®f4 Bg
18 surjective.

Proposition 5.4.7. — Let A, By, By be quasi-affinoid algebras and assume
that By, By are A-algebras via homomorphisms A — B;, i = 1,2. Let b; C B;,
i = 1,2 be ideals and denote by (b1, by) the ideal in By ®°% By generated by the
images of by and by. Then the canonical map m : B1 ®% By — B1/b1 ®% Ba/bs
is surjective and satisfies Kerm = (by,b2). Hence (By ®% B2)/(b1,bs) ~
Bl/bl ®f4 BQ/bQ.

It follows from Lemma 5.4.1 and Proposition 5.4.7 that base change pre-
serves finite (respectively surjective) morphisms.

Proposition 5.4.8. — Let A and B be quasi-affinoid algebras. Let ¢ : A —
B be a K-algebra homomorphism and let C be a quasi-affinoid A-algebra. If
@ is finite (respectively surjective) then the induced map C — B ®°% C is finite
(respectively surjective).
Proof. — Suppose B is a finite A-module via ¢. It follows from the right-
exactness of the ordinary tensor product that B® 4 C is a finite C-module. By
Lemma 5.4.1 B®4 C is a quasi-affinoid algebra. It therefore follows from the
universal property for tensor products that B ®% C'= B ®4 C. In particular,
C — B ®% C is finite.

If ¢ is surjective, then we may write B = A/I, where I := Ker . Then by
Proposition 5.4.7,

B @, C=A/1e;C/0) = (A} C)/(,(0),

which is a quotient of C'. Therefore C' = B ®% C is surjective. O

A small extension of Definition 5.4.2 yields a ground field extension functor
for quasi-affinoid algebras.

Definition 5.4.9. — Let (E,K), (E',K') be such that Sy, ,(E,K) C
Smn(E',K') and let A := Sy, n(E,K)/I. We say that the K'-affinoid algebra

A= So0(E, K') ®%, 5.1y A= Smpn (B, K') [T+ Spn(E', K')
results from A by ground field extension from (E, K) to (E', K').
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Proposition 5.4.10. — The canonical homomorphism
.A — SO’[](E,, K,) ®SSO,0(E,K) .A

is a faithfully flat norm-preserving monomorphism both in || - |1 and
I 7S (7, 57y a2 i || - [|sup-

Proof. — Immediate from Lemma 3.1.11 and Proposition 4.1.3. U
5.5. Banach Function Algebras. — Each representation of a quasi-affinoid

algebra A as a quotient Sy, ,/I yields the K-algebra norm | - |7, which by
Lemma 3.1.4, is complete if Sy, , is. We saw (Corollary 5.2.4) that even
though A may not be complete, all these norms are equivalent. By the Null-
stellensatz, Theorem 4.1.1, if A is reduced then || ||sup is @ norm on A. In this
subsection we shall show when Char K = 0 (Theorem 5.5.3) and often when
Char K = p # 0 (Theorem 5.5.4) that if A is reduced, || - ||sup is equivalent to
the residue norms ||-[|7. It follows that if in addition E and K are such that A
is complete in || - |7 then A is complete in || - ||sup, i.€., it is a Banach function
algebra.

The obstruction to following the argument of [6, Theorem 6.2.4.1], is, as
usual, the lack of a suitable Noether Normalization for quasi-affinoid algebras.
Theorems 3.4.3 and 3.4.6 allow us to reduce the problem to considering quo-
tient rings of Sp ;,+m, for which a Noether Normalization is available. The fact
that the quotients of Sp ;4 so obtained are reduced is guaranteed when the
Sm,n are excellent.

Lemma 5.5.1. — Suppose K and E are such that the Sy, , are complete
and the fields of fractions of the Sp,(E,K) are weakly stable. Let A be a
reduced quasi-affinoid algebra. If there is a finite K-algebra homomorphism
Son/I — A then A is a Banach function algebra.

Proof. — As in the proof of [6, Theorem 6.2.4.1], we use Noether Normaliza-
tion for quotients of Sp, (Remark 2.3.6) to reduce to the case that I = (0)
and Sy, — A is a finite, torsion-free monomorphism.

Note that Sy, is integrally closed (for example, apply Theorem 4.2.7 or use
Noether Normalization as in [6, Theorem 5.2.6.1]). Since, in addition, we have
assumed that Q(Sy,,) is a weakly stable field ([6, Definition 3.5.2.1]), we may
apply [6, Theorem 3.8.3.7]. O

Proposition 5.5.2. — Under any of the conditions
(i) CharK =0
(ii) CharK = p # 0 and Spu(B,K) ~ &N, (Smn(E,K))P as normed
KP-algebras,
(iii) CharK =p #0, [K : K?] < 0o and [E : E?] < 0o
the fields of fractions of the rings Sy, (E, K) are weakly stable.
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Proof. — When Char K = 0, this is [6, Proposition 3.5.1.4]. Note that
condition (iii) implies condition (ii) because K is complete (use [6, Propo-
sition 2.3.3.4]). Thus it remains only to verify case (ii), which follows from [6,
Lemma 3.5.3.2]. O

Note that under any of the conditions of Proposition 5.5.2, the rings
Smn(E, K) are excellent (see Propositions 4.2.3 and 4.2.5).

In characteristic zero, we show in Theorem 5.5.3 that the supremum norm
of a reduced quasi-affinoid algebra A is equivalent to the residue norm aris-
ing from any presentation of A as a quotient of a ring of separated power
series. In some cases this is an extension of Corollary 5.2.4, which establishes
the equivalence of all the residue norms (whether or not A is reduced and
of characteristic zero). In characteristic p, our results are less complete (see
Theorem 5.5.4). The proofs of Theorems 5.5.3 and 5.5.4 rely on restriction
to finite disjoint unions of open polydiscs, for which one has a Noether Nor-
malization. In the proof of Theorem 5.5.3, we reduce to the case of polydiscs
with rational centers. The proof of Theorem 5.5.4 does not depend on the
characteristic.

Theorem 5.5.3. — Suppose that Char K = 0 and that A = Sy (E,K)/I
is a reduced quasi-affinoid algebra. Then ||-||; and || -||sup on A are equivalent.
If in addition A is complete in || - |1, then A is a Banach function algebra.

Proof. — Let E' D E be as in Theorem 2.1.3 (ii) so that the S, ,(E', K) are
complete. By Propositions 4.2.3 and 4.2.6, A’ = S, o (E', K)/I - Spun(E', K)
is reduced, since Ty, () = Tpn(e, K) does not depend on E or E'. By
Proposition 4.1.3 and Lemma 3.1.11 the map

Sm,n(EaK)/I — Sm,n(ElaK)/I . Sm,n(E,aK)

is an inclusion which is an isometry in both the supremum and residue norms.
Hence it is sufficient to prove the equivalence of || - ||; and || - ||syp when E is
such that the Sy, ,(E, K) are complete.

Let K’ be a finite extension of K such that there are cq,...,¢. € ((K')°)™
with |¢; —¢;| =1, 1 <i < j <r, such that for every

p € AsS (Srn (B, Katg)™ /T - Sun (B, Kaig)™)
there is an 7, 1 < < r, with
ma = (g_aap) D pa

where I/(\'alg is the completion of the algebraic closure of K.
Let ), = Smn(E,K') and I' := I-S}, . Observe that Sy, ,/I" is reduced.
(Indeed, we may write K' = K(«), so every f € S}, , may be written in the
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form
d—1 .
f=> fid,
§=0

for f; € Syu. Let o0g,...,04—1 be the distinct embeddings of K' over K
in an algebraic closure of K and let «o; := o;(a), 0 < i < d — 1. Then
det(a}) = Mizj(e — aj) # 0. Tt follows that the f; are linear combinations
of the o;(f). Hence, if f € VI, so is each fj. But the map Sy, ,, — S}, ,, is
faithfully flat (Lemma 4.2.8(iii)), so each f; € VT = I. It follows that f € I".)
Now, by Proposition 4.1.3 and Lemma 3.1.11(ii), the map Sy, /I — S, ,/1'
is an inclusion and an isometry in both the supremum norm and the residue
norm. Since Sy, /I is complete in || - ||7, it therefore suffices to prove the
theorem for Sy, ,/I'. Note that all the Sy /(F, K') are complete
By Theorem 3.4.3(ii), the map

¢ : ‘97,77,,77,/[, — (®;:186,n+m) /wC(II) ' (®;:186,n+m)

is an isometry in the residue norms. By Proposition 4.2.3 and [25, Theo-
rem 32.2],

(®;:156,n+m) /wC(II) : (®;:186,n+m)
is reduced. Since 1) is a contraction with respect to || - [|sup, it suffices to prove
the theorem for this ring. That is Lemma 5.5.1. O

Theorem 5.5.4. — Suppose that the rings Sy, n(E,K) are excellent (see
Proposition 4.2.3 or 4.2.5) and that at least one of the following two conditions
is satisfied:
(i) K is perfect
(ii) There is an E', E C E', such that the fields of fractions of the
Son(E', K) are weakly stable, and the Sy, (E', K) are complete.

Let A = Sy, n(E, K)/I be reduced. Then on A the norms ||-||1 and ||-||sup are
equivalent. If in addition A is complete in || - |1 then A is a Banach function
algebra.

Proof. — We may assume (see Remark 2.1.4(i)) that E is a field. We now
show that (i) implies (ii). In the case that K is perfect there is an E' D E
such that Sy, ,,(E', K) is complete (see Theorem 2.1.3(ii)). Since K is perfect,
we may extend further so that E’ is perfect. Then, by Proposition 5.5.2 the
fields of fractions of the Sy, (E’, K) are also weakly stable.

Choose ¢1,...,¢. € (K"lg)m with mz, # mz, 1 <4 < j <r, such that for

a

every p € Ass (gm,n/f) there is some 4, 1 <14 < r, with
mg, D p.
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(The mg, are the maximal ideals of §mn corresponding to ¢; as in Defini-
tion 3.4.4.)
By Theorem 3.4.6(ii), the map

Y Syn/I — Dpyp(c)/we(I)

is an isometry in the residue norms || - ||; and || - ||, (). Since Spn(E, K)
is excellent, by [25, Theorem 32.2], Dy, n(c)/wc(I) is reduced. Since ® is a
contraction with respect to || - ||sup, it suffices to prove the theorem for that

ring. Recall that Dy, ,(c) = Spmntm(E, K)/J for some ideal J. Let
D;n,n(c) = m,n+m(ElaK)/J : Sm,n-l—m(E,aK)-

Then Dy, ,(c)/we(I) - Dy, pn(c) is reduced since the maximal-adic comple-
tions of all its local rings coincide with those of the reduced, excellent ring
Dy, pn(c)/we(I). By Proposition 4.1.3 and Lemma 3.1.11, the map

Dinn(€)[we(I) = Dy p(€) /we(I). Dy o (c)
is an inclusion which is an isometry in both the supremum and residue norms.
Hence it suffices to prove the equivalence of the residue norm and the supre-
mum norm on Dy, .. (¢)/we(T) - Dy, ,(c). By Lemma 3.4.5, this ring is a finite
extension of a quotient of a ring Sy 4(E’, K). Now apply Lemma 5.5.1. O
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6. A Finiteness Theorem

In Subsection 6.1 we prove a finiteness theorem, which is a weak analogue
of Zariski’s Main Theorem, for quasi-finite maps, and in Subsection 6.2 we
apply this finiteness theorem to show that every quasi-affinoid subdomain is
a finite union of R-subdomains.

6.1. A Finiteness Theorem. — In applications ([2], [16], [17], [18], [19],
[20], [21] and [23]), certain weaker forms of Noether Normalization have
proved useful. We collect two examples here. Recall that we showed in
Subsection 5.3 that we associate canonically with each R-domain U C Max A,
the A-algebra of quasi-affinoid functions O(U).

We call a quasi-affinoid map 7« : Max B — Max A finite if, and only if, B
is a finite A-module via the induced map 7*: A — B.

Proposition 6.1.1. — Let m : Max B — Max A be a quasi-affinoid map.
Suppose Uy, ..., U, is a cover of Max B by R-subdomains. If each «|y, : U; —
Max A is finite then 7 is finite.

Proof. — By Proposition 5.3.6(ii) and the Krull Intersection Theorem ([25,
Theorem 8.10]), the natural map

1=0

is injective. Each O(Uj;) is a finite A-module; hence B, being a submodule of
the finite A-module TIO(U;), is a finite A-module as well. O

Let m : Max B — Max A be a quasi-affinoid map. If U C Max A is an R-
domain defined by inequalities among f1,..., f; then 771 (U) C Max B is an
R-domain defined by the corresponding inequalities among fiom,..., fpom.

The affinoid analog of the following is false; see Example 6.1.3.

Theorem 6.1.2. — (Finiteness Theorem) Let 7w : Max B — Max A be a
quasi-affinoid map which is finite-to-one. There exists a finite cover of Max A
by R-domains U; such that each map

Tle=11) N (U;) — U;
is finite. (Note: We do not assume that m is surjective.)

Proof. — Let ¢ : A — B be the K-algebra homomorphism corresponding to
7. Since B is quasi-affinoid, there is a K-algebra epimorphism

Smn — B.
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The images of &i,...,&, (respectively, pi1,...,p,) in B are power-bounded
(respectively, quasi-nilpotent). By Remark 5.2.8, this induces a unique K-
algebra homomorphism 1 such that the following diagram commutes

A<£13 v a€m>[[:01a' .. apn]]s

/N

A B
4

Since Sy, , — B is surjective, so is ).
Let
I := Ker;
then

B = A<§17 7§m>[[:017"' ,,On]]s/-[,

and we may therefore assume that the original map ¢ is of the form
A5 ATl /1.

The proof proceeds by induction on (m,n), ordered lexicographically. Assume
m+n>0. (If m+n =0, then B = K and the K-algebra homomorphism ¢,
being surjective, is finite.)

Let fi,..., fr generate I, and write

fi= Zaiuugupya 1<i <Y,

where each a;,, € A. Since 7 is finite-to-one, {a;,,} generates the unit ideal
of A.

Writing A as a quotient of a ring of separated power series and applying
Lemma 3.1.6 to pre-images of the f;, we obtain a finite index set J C N x N"
such that for each z € Max A there is an iy, 1 < 439 < /, and an index
(p0,v9) € J such that

|ai0[,bol/0 (x)| 2 |aiuy(x)| fOI‘ all Z., u, v
(6.1.1) |@io oo ()] > |@iguw ()] for all v < 1y and all p
|ai0uollo (z)] > |ai0;u/0 ()] for all p > pgp.

(Note, in particular, that (6.1.1) guarantees that {a;,, : 1 <i </, (u,v) € J}
generates the unit ideal of A.)
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Fix 49, 1 < 49 < ¢, and (po,v0) € J. Let Uijypo, be the set of points
z € Max A such that

|@ioporo ()] > |@ipw ()] forall1 <i</Zand (p,v) €J
|@io oo ()] > |@iguw ()] for all (p,v) € J with v < 1
|@iopove (2)] > [@iguvy (z)] for all (u,v) € J with > po.

As in Subsection 5.3, U; 41, is a quasi-rational subdomain of Max A, which
is in fact equal to the set of points x € Max A where (6.1.1) holds. Further-
more, the U;,,., cover Max A.

We may now replace A by O(Ujyuov,) and B by

O(Uiouol/o)<£>[[:0]]s/l' O(Uiouollo)<£>[[:0]]s'

fio, we may assume that a;,,q, = 1. Put

fiollo = Z aioullogu;
I

Replacing f;, by a

_—1
10 [0V

then fi,., is preregular in & (cf. Definition 2.3.7).
The two quasi-rational subdomains

Vi={y € Max B : |figu,(y)| = 1} and W := {y € Max B : | fig, (y)| < 1}

cover Max B, and each restriction w|y and 7|y is finite-to-one. By Propo-
sition 5.3.6(ii) and the Krull Intersection Theorem ([25, Theorem 8.10]), the
natural map

B—OV)eOW)
is injective. Hence it suffices to treat the maps A — O(V) and A — O(W).
Case (A). — A— O(V).
Observe that
OV) = A&, -, &m+)p1,- - pnls/
where J is the ideal generated by I and the element
F = &my1 figry — 1.
Put
G:=p"+ Y Gigulmi1"p” = &mi1fi, mod J;

v#1p
i
in particular, G € J. By (6.1.1), after a change of variables among the p’s, we

can assume that G is regular in p, (in the sense of Definition 2.3.7). Similarly,
after a change of variables among the £’s, we can assume that F' is regular in
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&ma1- Applying Theorem 2.3.8, first to divide by G, then by F, shows that
O(V) is a finite extension of an A-algebra of the form

B := A(ﬁla s a£m>[[p13 s apn—l]]s/jl'
Since O(V) is a finite extension of the A-algebra B’, the map

Max B' — Max A

is finite-to-one. Furthermore, (m,n — 1) < (m,n). We are done by induction.
Case (B). — A — O(W).
Observe that
OW) = A&y, .- &mdlpr, - - pnyls/

where J is generated by I and the element

F = fiovo — Pt

By (6.1.1), after a change of variables among the ¢’s, F' is regular in &, (in
the sense of Definition 2.3.7). By Theorem 2.3.8, O(W) is a finite extension
of an A-algebra of the form

B = A(ﬁla s agm—1>[[,011 s ,Pn-l—l]]s/I,-
Since O(W) is a finite extension of the A-algebra B’, the map
Max B' — Max A

is finite-to-one. Furthermore, (m — 1,n + 1) < (m,n), completing Case B.
To complete the proof, we pass to a common refinement of the covers by
R-domains obtained in the above two cases, observing that the intersection
of R-domains is an R-domain, and that if 7 : Max B — Max A is finite, so is
a1 : 7~ Y(U) — U for any R-subdomain U of Max A. O

Exzample 6.1.3. — The affinoid map induced by

@ K(&) = K(En)/(En* +n+1)

is finite-to-one. But if Char K # 2, ¢ is not finite. Indeed, if it were, the
polynomial £én? +n + 1, being prime, would have to divide a monic polynomial
in K(&)[n]. Since £ is not a unit, ¢ cannot be finite.

Now, suppose there is a finite cover of Max K(£) by affinoid rational sub-
domains U such that each induced map

OU) = O(U)® ke K& m)/(En* +n+1)

is finite. Then the affinoid map induced by ¢ is proper by [6, Proposi-
tion 9.6.2.5], and [6, Proposition 9.6.2.3]. It then follows from [6, Corol-
lary 9.6.3.6], that ¢ is finite, a contradiction. This shows that the analogue of
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Theorem 6.1.2 does not hold in the affinoid case. Indeed the covering obtained
is not in general admissible in the sense of [22].

6.2. An Application to Quasi-Affinoid Domains. — In this subsection
we apply Theorem 6.1.2 to prove that every quasi-affinoid subdomain is a
finite union of R-subdomains. As a corollary we deduce that every quasi-
affinoid subdomain is open.

Lemma 6.2.1. — Let A and B be commutative rings and let ¢ : A — B be
a finite homomorphism.

(i) Suppose that for every mazimal ideal M of B, the induced map
Am — B XA Am

is surjective, where m := ANIM. Then ¢ is surjective and Spec B is a
closed subset of Spec A.
(ii) Suppose that for every mazimal ideal M of B, the induced map

Am — B XA Am
is bijective, where m := ANIN. Then Spec B is an open subset of Spec A.

Proof. — (i) For every m € Max A the map
Am — B ®y Am

is surjective. This is true by assumption when m = A N 9 for some M €

Max B. It only remains to treat the other elements of Max A. Let m € Max A

be such an ideal. By [25, Theorem 9.3], there is an a € Ker ¢ such that a ¢ m.

Since a annihilates the A-module B and the image of a in Ay, is nonzero, it

follows that B ®4 Ay = (0). Thus the map Ay, — B ® 4 An, is surjective.
Now let b € B and consider the ideal

I'={a€A:abec p(A)}.

We will show that I is the unit ideal. Suppose not. Then there isan m € Max A
such that I C m. But A, = B ® 4 An is surjective so I Ay, is the unit ideal,
a contradiction. This proves that ¢ is surjective. By [25, Theorem 9.3],
Spec BN Spec A = V(Ker ¢). Hence Spec B is a closed subset of Spec A.

(ii) Since we are only concerned with prime ideals, it is no loss of generality
to assume that A and B are both reduced, i.e. have no nonzero nilpotent
elements. It suffices to show that B is a direct summand of A.

By part (i), ¢ is surjective, so B = A/I where I := Kery. Since B
is reduced, I is the intersection of some prime ideals of A. Let J be the
intersection of the unit ideal with all the minimal prime ideals of A that do
not contain /. We will show that

A=AJT® A/
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This is obvious if J = (1). So assume J # (1). By [25, Theorem 1.4], it
suffices to show that I 4+ J is the unit ideal of A. Suppose not. Then there
is an m € Max A such that m D I + J; in particular m D J. Since J is
an intersection of minimal prime ideals of A, at least one such prime must be
contained in m. In other words, there is a minimal prime ideal p of A contained
in m that does not contain I. We show that pAy, 2 [An. Let a € T\ p; if
pAm D TAy, then a = ), | Z for some s € A\ m and g; € p. Thus sa € p
and s,a, ¢ p, a contradiction. So, pAy, is a minimal prime ideal of A, that
does not contain I Ay. But by assumption Ay = An/IAn; ie. A, = (0). In
particular, since A, is reduced, I - A, is the intersection of all the minimal
prime ideals of A, a contradiction. Thus I + .J is the unit ideal of A. O

Recall that in Subsection 5.3 we showed that every R-subdomain is a quasi-
affinoid subdomain.

Theorem 6.2.2. — Let A be a quasi-affinoid algebra and let U C Max A
be a quasi-affinoid subdomain. Then U is a finite union of R-subdomains of
Max A.

Proof. — Let B := O(U), and let m : MaxB — Max A be the canonical
inclusion. By Theorem 6.1.2 there is a finite cover of Max A by R-subdomains
U; such that each map

7T|7r—1(Ui) : W_I(Ui) — Ui

is finite. Thus, without loss of generality, we assume that 7 : Max B — Max A
is finite.

We will apply Lemma 6.2.1 to show that U is a Zariski-open and -closed
subset of Max A. Let 9t € Max B, and put m := AN 9. We wish to show
that A, — B ®4 A is bijective. Since B ® 4 Ay, is a finite Ay-module,
this follows from Nakayama’s Lemma [25, Theorem 2.3|, once we know that
B®a(An/mAm) = An/mAp. Indeed,

B®a (An/mAn) = B®4 A/m=B/mB=B/M=A/m=An/mAn,

by Proposition 5.3.6 (ii) and (iii).
By Lemma 6.2.1, U is a Zariski-open and -closed subset of Max A, thus there
is some f € A such that fly = 0 and flyaxawv = 1L So

U={z€MaxA:|f(z)] <1} is an R-subdomain of Max A. O

Note that the covering of U given by Theorem 6.2.2 is not necessarily a
quasi-affinoid covering in the sense of [22]; nonetheless Theorem 6.2.2 does
show that quasi-affinoid subdomains are well-behaved. In particular the fol-
lowing openness theorem (cf. [6, Theorem 7.2.5.3]) is an immediate conse-
quence.
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Corollary 6.2.3. — (Openness Theorem) Let A be a quasi-affinoid al-
gebra. All quasi-affinoid subdomains of A are open in the canonical topology
on Max A derived from the absolute value |-|: K — Ry.

Proof. — As we remarked in Subsection 5.3 all R-subdomains of Max A are

open. O
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