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Outline

@ Two distinguished classes of models in many-body QM. In free models the dynamics
is 1-body reducible. In BA solvable the dynamics is 2-body reducible.

@ General theories about the two-qubit gate

- Gate-based decomposition

- Pulse-based decomposition
@ Braid gate and Yang-Baxter gate (YBG)

- All families of braid gates

- YBGs from the Yang-Baxterization
@ Realization of YBGs on quantum computers

@ Conclusions and outlooks
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Baciground
Background

The Yang-Baxter gate is the key element connecting the study of quantum computation
and integrable system.

Quantum
circuit
model

Quantum
computation

Yang-Baxter Integrable
equation system

Yang-
Baxter gate
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Baciground
Yang-Baxter equation

@ The Yang-Baxter equation (YBE) plays the central role in the study of integrable

models.

Riz(p1) Ros(pa + o) Ria(p2) = Ros(pa) Rua(pa + o) Ros ().

XX X

-

XX

@ The Yang-Baxter equation reduces to the braid group relation, given by

BIZ B23 B12 - B23 BIZ BZ3 .
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Baciground
Why Yang-Baxter gate?

@ The braid gate is introduced because of the topological quantum computing (A.
Kitaev, M. H. Freedman, Z.-H. Wang).

@ The braid gate is introduced to study the relationship between the topological
entanglement and quantum entanglement (S. J. Lomonaco Jr., L. H. Kauffman).

@ Quantum simulation of integrable spin chain via the Suzuki-Trotter decomposition
is realized by YBG. The simulation circuit is integrable (T. Prosen, I. L. Aleiner,
Y. Miao).

@ The algebraic Bethe ansatz can be applied to study the integrability of quantum
cellular automaton (B. Pozsgay).

@ The properties of many-body nonequilibrium dynamics can be probed from the
integrable circuit.
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Bacheroind
Trotter decomposition

@ Consider the XXX model

2N

J Lo
Hxxx = 52(1+UJ'UJ+1),

J=1
with the Pauli vector ;.

@ Consider the Trotter product formula
_itH . _itHeven _ itHodd n
e =lim e n e "
n—oo

@ Then for large n, the evolution of XXX model can be approximated by applying
iJt I
Ujj1 = exp <_Z (1+0;- Uj+1))

on even and odd sites interchangeably.
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Background
Trotter circuit

Trotter circuit with a nearest-neighbor interaction. The figure is from [M. Vanicat, L.
Zadnik, T. Prosen, arXiv:1712.00431].

2n—5% n—4 2n-3 2n-2 2n-1 n 2n+1 2n+2
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Transfer matrix

@ The Trotter circuit has the transfer matrix

T(A\) = Tro H R0,< 1),¢>) ,

1<j<N

with R(\) = PR()), ¢ = —tJ/n, and the right to left order of product [M. Vanicat,
L. Zadnik, T. Prosen, arXiv:1712.00431].

@ The evolution of the whole circuit is given by U"($). One layer of evolution is

given by B
w-r(5)"r(2)
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Baciground
Conserved charges

@ The circuit has the conserved charges

n

QF d log T(\)

n — n .
dA A=%%
@ For n =1, we have
N/2 N/2
+ [1,+] - _ [1,-]
Q= 92n—2,2n—1,2n Q= E 92n—1,2n,2n+1"
n=1 n=1

with the local charge density

[L,4] _ i

9123 — 2(1 _’_7¢2) (51 -0+ 02+ 03 + ¢251 - F3 F ¢a1 - (02 X 6’3)) .

@ At Trotter limit ¢ — 0, the charge density returns back to the Hamiltonian density.
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Experiments

Integrable circuit can be well characterized. It is practical to firstly realize the integrable
circuit on computers. Then consider the integrable-breaking dynamics.

@ Google studied the bound state in the XXZ integrable circuit. Then showed
that the resilience of the bound states to integrability breaking [A. Morvan et
al., arXiv:2206.05254].

@ The conserved charges have been measured on quantum computers. Due to noises,
the conserved charges decay through time [K. Maruyoshi, et al., arXiv:2208.00576].

@ The spin transport of integrable circuits is studied on quantum computers. The
results show the Kardar-Parisi-Zhang scaling [N. Keenan, et al., arXiv:2208.12243].
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General theories about the two-qubit gate
Universal quantum gate

@ In classical reversible computation, three-bit gate is required in order to do any
computation.

@ Remarkbly, two-qubit gates are universal for quantum computation [D. P. Divin-
cenzo, arXiv:cond-mat/9407022].

@ Any two-qubit gate, which can generate quantum entanglement, combined with
single-qubit gates, is universal, known as Brylinski's theorem [J. L. Brylinski, R.
Brylinski, quant-ph/0108062].

@ Common two-qubit gates include
CNOT = |0)(0] ® T2 + [1)(1]| ® ox;
R..(0) = e 207:87z,
@ Many-qubit gates.

Tofoli gates satisfy the tetrahedron equations [multi-dimensional generalization of Yang-
Baxter] https://arxiv.org/pdf/2405.16477
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Nonlocal parameters

@ Any two-qubit gate U € SU(4) can be decomposed into [B. Kraus, J. I. Cirac,
arXiv:quant-ph,/0011050]

uU=wne® Vz)eéi(alUX@UXHZGY@UYHWZ@UZ)(V3 ® Vi),

with Vi € SU(2) (k = 1,2,3,4). Only the parameters [ai, a2, as], called the
nonlocal parameters, determine the entangling properties of U.

@ Consider the average entropy generated by U, called the entangling power [P.
Zanardi, et al., arXiv:quant-ph/0005031],

&(U) = E(Ul1) @ [92)) 14y o)

with the linear entropy of two-qubit state E(|W)) = 1—Tr1p? and p = Tro|W) (V.

@ The entangling power of two-qubit gate has the analytical form [S. Balakrishnan,
R. Sankaranarayanan, arXiv:1005.2467]

2 2 2 2 I S S
e(U) = §(l—cos a; cos” ap cos” az — sin” a; sin” @ sin” az).
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General theories about the two-qubit gate
Geometric representation

The two-qubit gate has the geometric picture given by the Weyl chamber with A; =
[7,0,0], A2 = [r/2,7/2,0], and A3 = [7/2,7/2,7/2], called the two-qubit tetrahedron
[J. Zhang, et al., arXiv:quant-ph/0209120].

O
O

CNOT
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Gate decomposition

@ Theorem 1 Any two-qubit gate [U] = [a1, a2, as] can be constructed from minimal
n (n > 3) applications of R,,(0) gate, if the nonlocal parameters satisfies 0 <
ai+a+a < nf ora—a—a > m—nb [J. Zhang, et al., arXiv:quant-
ph/0308167].

@ Theorem 2 A two-qubit gate with the nonlocal parameters [U] = [a1, a2, a3] can
generate the maximal entangled state from the product state iff

s
— <
2

=y

<agt+a<a+a-+

N[

or 3

g <agt+a<a+a+
Here (j, k, 1) is the permutation of (1,2,3) with j # k # | [J. Zhang, et al,
arXiv:quant-ph/0209120].

< 2m.

N[
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Cross-resonance operation

@ Cross-resonance (CR) is a technique used in the field of quantum computation
to implement controlled operations between qubits in a superconducting qubit
architecture.

@ It relies on the interaction between two qubits, where one qubit is driven at the
frequency corresponding to the resonance frequency of the other qubit.

@ In a typical setup involving two qubits, known as the target qubit and control
qubit, the control qubit is driven at its resonance frequency, causing it to undergo
Rabi oscillations.
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Cross-resonance operation

@ The most common application of cross-resonance is to implement a CNOT gate.

@ Cross-resonance operations have been widely utilized in various experimental plat-
forms for quantum computation, particularly in superconducting qubit architec-
tures.

@ The IBM superconducting transmon qubits have the cross-resonance operation
with the effective Hamiltonian

O’Z®C+]12®D

Hep —
R 2 2

with C = wally + wxox + Wzyoy + Wro, and D = wiwox + w10y + w10, [T.
Alexander, et al., arXiv:2004.06755].

@ The Hamiltonian term o, ® oy is picked up and other unwanted terms are canceled
by additional pulses. CNOT gate is local equivalent to gmozBox/4,
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General theories about the two-qubit gate
Rescaled pulses for new two-qubit gates

@ Finding the optimal parameters for the pulses is not an easy task. Classical machine
learning may be helpful.

@ To avoid the heavy calibrations, one can extract new gate from the calibrated
pulses [P. Gokhale, et al., arXiv:2004.11205].

@ The Gaussian square pulse has the area
a=|A| (w + 0\/277rerf(ng)) ,

with the amplitude A, flat-top width w, standard deviation o of the Gaussian tails,
and the truncated number n,.

@ One can rescale the area according to «(6)/a(n/2) = 20/m in order to realize
ei90z®¢7x/2_
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Eroldggiesland)VECH
Braid gates

@ Two-qubit gates B satisfying
(Bo1)(1® B)(Bo1)= (1 B)(Bx 1)1 B),

are called the braid gates.

@ All 4 x 4 solutions of braid matrices and braid gates are known [J. Hietarinta,
arXiv:hep-th/9210067; H. A. Dye, arXiv:quant-ph/0211050].

@ Most of the solutions can generate entanglement therefore universal [L. H. Kauff-
man, S. J. Lomonaco Jr., arXiv:quant-ph/0401090].
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Braid gates

Consider the eight-vertex-type two-qubit gates, all solutions of braid gates are

et 0 0 0 0
B — 0 O e”? 0 7 B, — 0
0 € 0 0 0
0 0 0 &% e
€os 1 0 0
B, — 0 —isingp1 —cos 1
0 —cosp1  —isingr
—sin e P2 0 0
1 0 0 &
B, — 1 0 1 1 0
V2| 0o -11 o0
—e1 0 0 1
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EraidleatesTondpEGe
Geometric representation

@ The braid gates have the nonlocal parameters

¥ T 1 ¥ T T

B = [57575 - 5(502—!-(.03—901 —504)} ) B = [57575 —2901]’
Bfiﬁﬁ_l(z — o2 — ¢3) 37[300}
= 2,2,2 2 Y1 ©2 ©3 s v = 2,, .

@ Braid gates B;, By, and By belong to the same group of two-qubit gates. By is
equivalent to CNOT up to single-qubit gates.
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Decompositions of braid gates

Here we define ¢11 = 1 (—p1— @2+ w3+@a), 12 = 3(—p1+ 02— @3+ 0a), G135 =
L (—p1+ w2+ 03— wa), i1 =3 (—p2+p3), and By = 1 (—2 + 201 — 3).

2l
=]
&
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Yang-Baxterization

@ Yang-Baxterization is a mathematical procedure to construct the solution of YBE from solution of
braid relation proposed by [M. Jimbo, Lett. Math. Phys. 10, 63-69 (1985)]. Later it is generalized by
[Y. Cheng, M. L. Ge, K. Xue, Comm. Math. Phys., 136, 195-208 (1991)].

@ Suppose that the Braid operator has the spectral decomposition

with N distinct eigenvalues \;. The ansatz of R matrix is given by
N
R() = pi(x)0;,
j=1
A1 A2 An—1 |
= () (o 5) - (0 55
A1 A2 An—1
= (1 21 22 .
pa() ( JrX>\2) (X+ >\3) (XjL AN )
A1 A2 An—1
=(1 — 1 — ) (1 .
on() ( +X>\z>< +X>\3) ( M An )
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Eroldggiesland)VECH
Yang-Baxterization

@ If the B matrix has two distinct eigenvalues, such as BIV, then we have

R(x) = (B + X\ B ) .

A2

@ If the B matrix has three distinct eigenvalues, such as B,(cpl = ©a), B”, and Bm,
then we have

R(x) = a()B+ B(x)1 + v()B*,

(

The coefficients a(x), 8(x), and v(x) are given by

a(x) = _%(X_ 1), B(x) = (1 + % + % + 12) X, v(x) = Ax(x—1).

It may not give the right R matrix. The permutations (A1, A2, A\3) — (A2, A1, A3)
and (A1, A2, A3) — (A1, A3, \2) may give different R matrices.
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IEEE————w A Braid gares and YBGs
Yang-Baxter gates from B, including XXZ

@ Define the parameters

1
¢ = 5(@2 + @3) — 1,

@ The braid gate B with @1 = ¢4 gives the Yang-Baxter gates

Ryo(m) =

Ry 3(m) =

Rii(n) =

sinh (%(n + r¢))
0
0
0

cosh (%(n + /'¢))
0
0
0

Vladimir Korepin

a= %(902*903), x=e".
1 0 0 0
sin ¢ —ie® sinhn
sin(¢ — in) sin(¢ — in)
—ie”"*sinhn sin ¢
sn(e—m)  sn(é— )
0 0 0 1
0 0
0 €/ sinh (%(T, - id))) 0
e~ sinh (%(7, - qu)) 0 0
0 0 sinh (%(n + i¢)) ,
0 0 0
0 e/ cosh (%(n - i¢)) 0
e~ cosh (%(’H — f¢)) 0 0
0 0 cosh (%(n + /'d)))
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Braid gates and YBGs
Yang-Baxter gates from B,
@ Define the parameters
_1 _1 _
¢*§(¢2+LP3)*LP1, 0475(902*903)7 x=é€".

@ The braid gate By gives the Yang-Baxter gates

sin ¢ o o —ie' sinh
sin(¢ — in) sin(¢ — in)
Y 0 1 0 0
Ri,1(n) =
0 0 1 0
—ie" ™ sinh sin ¢
sin(¢ — in) sin(¢ — in)
0 0 0 &% sinh (%(n - /'<b))
0 sinh (3(n + id))) 0 0
R, o~ 2
1h,2(7) 0 0 sinh (%(n + qu)) 0
e~ sinh (%(n - i¢)) 0 0 0
0 0 0 & cosh (%(n — iq>)>
0 cosh (% (n + id))) 0 0
R, o 2
11,3(7) 0 0 cosh (%(n 4 i¢>)) 0
e~ % cosh (%(n — iqb)) 0 0 0
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Yang-Baxter gates from By,

The braid gate By gives the Yang-Baxter gates

cosh 7 cos 1 0 0 _oeo sinh 7 sin 1
cosh(n + ip1)

cosh(n + ip1)
0 . cosh 1 sin 1 sinh 7 cos 1 0
i
2 ~ sinh(n + ip1) sinh(n + ip1)
R, 1(n) = 0 sinh 7 cos 1 _cosh 7 sin 1 0
- i
) . sinh(n + ip1) sinh(n + ip1)
iy sinh 1 sin @1 0 0 cosh 7 cos 1
e bl ekl o
cosh(n + ip1) cosh(n + ip1)
sinh 7 cos 1 0 0 €2 cosh 1 sin 1
M 0 icosh 7 sin @1 — sinh 7 cos ¢1 0
Ru2(n) = . . .
0 — sinh 7 cos @1 icosh 7 sin 1 0
e~ "2 cosh nsin o1 0 0 sinh 7 cos 1
cosh 7 cos @1 0 0 — €2 sinh 7 sin 1
- 0 isinh 7 sin 1 — cosh 7 cos 1 0
Rinz(n) = . .
0 — cosh 7 cos @1 isinh msin 1 0
e~ °2 sinh 7 sin ¢, 0 0

cosh 7 cos 1
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Eroldggiesland)VECH
Yang-Baxter gates from By

@ Define the parameter 6
tan(6 — w/4) = x.

@ The braid gate By gives the unige Yang-Baxter gate

cosf 0 0 €1 sin
Ru(0) = 0 cosf  sinf 0
0 —sinf cosf 0
—e "1sing 0 0 cos
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EraidleatesTondpEGe
Geometric representation

@ The obtained Yang-Baxter gates R;12.3, Ri1.23, Ru123, and Ry can be catego-
rized as three families.

Riguns

@ Based on Theorem 1, the geometric representation can give the optimal gate
decompositions.
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Eroldggiesland)VECH
Decompositions of Yang-Baxter gates

Here we define w = %(gpg—tpg). The parameters a1, ¢;;1, 1,2, and ;3 are nonlocal parameters
(tetrahedron parameters).

{5t A HsTH RLGw/2)]

1

Rya
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Eroldggiesland)VECH
Decompositions of Yang-Baxter gates

Here the parameters a1, ciii,1, wim,2, and @y 3 are nonlocal parameters (tetrahedron param-
eters).
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Entangling power

@ The braid gate parameters ¢; and the spectral parameter n both determine the
entangling power of the YBGs.

(a) [©
0.16 0.16 \ 0.16
< 72
0.08 0.08 0.08
0 5 0.00 0.00 0.00

@ The entangling power of IV?/, and lv?”/ are similar with Iv-'(',.
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Two examples

@ Consider the YBG Ry obtained from the braid gate Byy.

cos 6 0 0 € sin
Rin(0) = 0 cosf  sinf 0
0 —sinf cosf 0
—e "1sing 0 0 cos 6

@ Consider the YBG Rxxx(¢) (belonging to R;1) from the Trotterization of XXX
model with tan¢ = p

€ 0 0 0

Roo(®) 1+iuP | 0 cos¢ ising O
XXX = 7 -

1+ip 0 ising cos¢p O

0 0 0 €
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Realization of YBGs on quantum computers
Entangling properties of YBGs

@ The entangling power of Ry/(6) is

e (Rw(0)) = %sin2(20).

@ The entangling power of Rxxx(¢) is

ep (Rxxx(9)) = %sin2(2¢>).

@ When 0 = /4 or § = 31/4, Ri() is the perfect entangler.

@ When ¢ = /4 or ¢ = 31/4, Rxxx(¢) is the perfect entangler.
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Realization of YBGs on quantum computers
Gate realization of Ry/(0)

@ The YBG Ry(f) requires minimal two CNOTSs (superconducting quantum com-

puters)
R.20)

@ The YBG Ry/(6) requires minimal one R, (trapped-ion quantum computers)
.
Riv(6) = R..(26)

Riv(0) =

@ When 0 = 7 /4, we have

Rn(m/4) =
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Pulse realization of Ry/(#)

Suppose that §# = 7/3. We have the pulses of (a) CNOT realization and (b) direct

pulse construction.

(a) Name: circuit-96, Duration: 839.1 ns, Backend: fake_montreal
201 R
483 d?lI
283 )
0 176 352 529 705
Time (ns)
(b) Name: circuit-133, Duration: 334.2 ns, Backend: fake_montreal
201 &
1
4.83 C!?I
483 OLIJI
0 176 353 529 705
Time (ns)
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Gate fidelity of Ry/(6)

Gate fidelity from (a) simulator or (b) ibmqg _montreal machine. (c) is the total pulse
duration. (d) is the error reductions of pulse realization relative to other realizations.

(a) (b)
% iv*%“@% {‘ H 4
% ¢ é ¢ 0.95 §\ i % } ,§’
~ 091 L¥ 3L ) e
- ¥ CNOT realization §
E A R realization i
S @  Pulse realization 0.94 4 i
* 0901 l‘ ! z é*;; A 133
g;iﬂ% §3L34T PRy
i I I ¥ Q * Y ¥ 0.93 4 %
(OC,)8<============== (d) Iﬁ Relative to CNOT
401 ¢ Relative to R..
2 S
g 0.6 EEl % ii i
|
Z041 6 N [ £
§ oo / Yo 107
0.2 i 0
w4 x2Sk w4 x2 3
2 0
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Realization of YBGs on quantum computers
Gate realization of Rxxx(¢)

@ The YBG Rxxx(¢) requires minimal three R,, (trapped-ion quantum computers)

/o —

IV?XXX(Q[)) = Rzz(¢) Rzz(()b) RZZ(¢)
Nz /o -

—

—+

@ The YBG Rxxx(¢) requires minimal three CNOTs (superconducting quantum com-

puters)
. iz
Rox(9) =

i%Rz(s‘b) D RI(<Z>)F< VOx
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Realization of YBGs on quantum computers
Pulse realization of Rxxx(¢)

Suppose that ¢ = 7/3. We have the pulses of (a) CNOT realization, (b) R, realization,
and (c) direct pulse construction.

(a) Name: circuit-372, Duration: 1258.7 ns, Backend: fake_montreal

491
483 A
4.83
0 485 971 1456 1941 2427
Time (ns)
(b) Name: circuit-402, Duration: 2410.7 ns, Backend: fake_montreal
491
483 R
483
0 485 971 1456 1941 2427
Time (ns)
(c) Name: circuit-447, Duration: 888.9 ns, Backend: fake_montreal
491
483 AR
483
0 485 971 1456 1941 2427
Time (ns)
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Gate fidelity of Ryxx(¢)

Gate fidelity from (a) simulator or (b) ibmqg _montreal machine. (c) is the total pulse

duration. (d) is the error reductions of pulse realization relative to other realizations.

@ o $dadoeg:d ()
oY ¥ TYe Q9 ° 3
0904 0531 M0 o o
Gi+] RS (X e )
A T2 B TS Y YVY riTvy
& v Yy v ¥ T Y Tye-vgovl
0.91 4
€ 0.88 4 ¥  CNOT realization
& A R realization abdx
i ik
®  Pulse realization i I
0.89 4 Az
0.86 {& & ;QllAé‘xA‘xQ ; ll}T
T T T T T T
d
© @ @ Relative to CNOT
25 A A A A A A A A A ddAd .
104 ¢ Relative to R..
2 S 11 ¢
3204 2 \d $ + 88 ? _____
£ R S .
g E 20 4@ @ i 13 ¢ %
3 1.5 @
2 p g S 5 %’ ‘i‘ o
s e g o
£ 104 P L &
o® o, 0
o °e % [
0.5
A4 a2 4 o4 a2 a4
¢ 3
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Google Conclusion and outlook

Conclusion

@ The YBGs are the building blocks of the integrable circuits. It is a new method
to study the far from equilibrium many-body quantum systems on quantum com-
puters.

@ The optimal constructions of YBGs can be obtained from their two-qubit geometric
representations.

@ YBGs realized from the pulse realization has the highest gate fidelities.

@ In experiments, if two-qubit gates on the edge OA; and faces OAzA3 and A1 AAs
can be constructed with high fidelity, then high-fidelity YBGs can be constructed
(with some additional single-qubit gates).
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Google Conclusion and outlook

Outlook

The quantum circuit model may be viewed as a generalized factorisable scattering
model. It can also be viewed as a generalization of topological quantum computation
[Y. Zhang, arXiv:1111.3940].

@ TCIS: Trotter circuit of integrable system.

IC: integrable circuit, which is composed of Yang-Baxter gates.

LISC: logorithmic information spreading circuit, in which the information spreads
logorithmic after a quench.

QSC: quantum simulation circuit, which simulates the dynamics of physical system.

Completely integrable many-qubit gates.
Unitary solutions of the tetrahedron equations as gates
https://arxiv.org/pdf/2407.10731

will help us to compress circuits even more. The tetrahedron equations are higher
dimensional version of Yang-Baxter equations.
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Outlook

Google Conclusion and outlook

TCIS

IC

K LISC /

-

=

All quantum circuits /
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