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▸ Functorial surfaces spanned by functorial languages
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Introduction. First traces of the higher limit approach

▸ In [Qui89] Quillen derived formulas of the following kind:

HC2n(A) = lim F /(I n+1 + [F ,F ]),

where A is an algebra over k and HC2n(A) is its Hochschild homology. The limit
is computed over the category of free extensions of an algebra A consisting of
short exact sequences of the form 0→ I → F → A→ 0.

▸ In our talk, we work in the framework of the Tarski-Grothendieck axioms and
therefore, when we use the categories of free extensions Pres, Pres(G), we extend
our universe so that we can consider these categories as small in this universe.
Then the categories Fun(Pres(G),Mod(k)) are well defined in the extended
universe.



Introduction. First traces of the higher limit approach

▸ In [Qui89] Quillen derived formulas of the following kind:

HC2n(A) = lim F /(I n+1 + [F ,F ]),

where A is an algebra over k and HC2n(A) is its Hochschild homology. The limit
is computed over the category of free extensions of an algebra A consisting of
short exact sequences of the form 0→ I → F → A→ 0.

▸ In our talk, we work in the framework of the Tarski-Grothendieck axioms and
therefore, when we use the categories of free extensions Pres, Pres(G), we extend
our universe so that we can consider these categories as small in this universe.
Then the categories Fun(Pres(G),Mod(k)) are well defined in the extended
universe.



Higher (co)limits

▸ Given a (small) category E , we will use the categories Fun(E ,Mod(k)) of functors
(representations of E in k-modules). There are left-exact and right-exact functors
of limit and colimit respectively:

lim, colim∶Fun(E ,Mod(k)) →Mod(k).

▸ The categories of representations have enough injective and projective objects (see
[Wei], for example), and so we can define the left and right derived functors of
limit and colimit, which we shall denote as
colimn, lim

i ∶Fun(E ,Mod(k)) →Mod(k). These are called higher colimits and
higher limits, respectively.
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Introduction. First traces of the higher limit approach

▸ Similar to the Quillen’s formulas were computed in the context of group homology
in [EM08], [MP09], and finally in [SOI15], [IMS19], Roman Mikhailov, Sergey
Ivanov obtained the higher (co)limit formulas for group homology (see [SOI15,
Th. 5.1.] and [IMS19, Th. 4.3.]):

limi (Rab ⊗M)G ≃ H2n−i(G ;M), i < n (1)

colimn H1(F ;M) ≃ Hn+1(G ;M),

where higher limits and colimits are computed over the category Pres(G) of free
presentations of G whose objects are short exact sequences 0→ R → F → G → 0
with F being free, M is any G -module, Rab is a relation module of a free
presentation of G defined as R/[R,R] with a G -action by conjugation.

▸ Let us remind that the augmentation ideal of a group G is the kernel of the ring
homorphism g = ker(ZG → Z)
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Introduction. First traces of the higher limit approach

▸ In our recent work [Gol24], for instance, we derive similar higher limit formulas
using exterior powers of relation modules. It turns out that when ΛnRab is used,
torsion comes into play: for groups with no torsion up to n (meaning that no
nontrivial element a satisfies ak = 1 for some 1 ≤ k ≤ n) we establish the following
formula:

limi (ΛnRab)G ≃ Hn−i(G ;Sn(g)), i = 0,1,

where Sn(g) is an n-th symmetric power of the augmentation ideal g of group G
in the integral group ring ZG .
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Introduction. First traces of the higher limit approach

▸ Homology groups H∗(G ;Sn(g)) have been studied in literature extensively in
90-s. For instance, they are shown to be periodic (for certain classes of groups
and ∗) with bounded exponent. This implies:

▸ For a group G with no torsion up to rp, where 1 ≤ r < p and p is some prime,
there are isomorphisms for i = 0,1:

limi(ΛrpRab)G ⊗Z(p) ≃ Hr(p+2)−i(G ;Z/pZ).

▸ For the case r = p we have the following:

lim(Λp2Rab)G ⊗Z(p) ≃ Hp2+2(G ;Z/pZ) ⊕Hp2+2p(G ;Z/pZ).
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Introduction. First traces of the higher limit approach

▸ Given a group H the lower central series is the series of subgroups
⋅ ⋅ ⋅ ⊂ γn+1 ⊂ γnH ⊂ . . .H defined by induction γn+1H ∶= [γnH,H], γ1R ∶= R.

▸ We studied higher limits of functors taking a free extension 0→ R → F → G → 0
of group G and sending it to the homology of F /γnR, where γnR is an n-term of
the lower central series of R.

▸

lim H2(F /γ5R) ≃ lim
γ5(R)
[γ5(R),F ]

= lim [R,R,R,R,R]
[R,R,R,R,R,F ] ≃ H4(G ;Z/5Z),

where for the first isomorphism we apply the Hopf formula.

▸ Nonetheless they may seem to be quite unexpected given only a formula. We
need to provide means to control higher limit formulas.

▸ This is the realm of the functorial languages!
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fr-language

▸ In [IM15] and [IMP19], the authors proposed yet simple but deep construction
that describes many different homological functors Gr → Ab from the category of
groups to the category of abelian groups.

▸ Consider ZF ∶ Pres→ Ring, a functor of rings on the category of all free
extensions of the form 0→ R → F → G → 0, which takes a free extension and
sends it to the group ring ZF . There are two functorial ideals f and r in the
(functorial) ring ZF that defined as follows:

f = ker(ZF → Z),
r = ker(ZF → ZG).

That is, f is simply the augmentation ideal of group F , and it is generated by
expressions of the form w − 1 where w ∈ F , and r is a subideal of f generated by
expressions of the form r − 1 where r ∈ R.
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fr-language

▸ Since f, r are ideals of the functor of rings ZF , we can form sums and
intersections of monomials:

rf ∩ fr, r + ff, rk+1 + frk f, . . .

These are functors on the category of free extensions Pres with values in abelian
groups.

▸ All such combinations form a lattice ML(f, r). Its elements we may call fr-codes.

▸ Given a functorial ideal w(f, r) ∈ML(f, r) and a group G , one can define (see
[IM15, Def. 6.1.])

i [w(f, r)](G) = limi(w(f, r)∣Pres(G)).
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fr-language

▸ It turns out that by exploiting some features of the category Pres(G) this
construction can be made functorial in group G .

▸ The first such feature is that it has all binary coproducts (in particular, its
classifying space is contractible). That feature is used extensively, since it ensures
triviality of higher limits of constant functors.

▸ Secondly, this category is strongly connected, in that the hom-set hom(c , c ′) is
not empty for any pair of objects c and c ′.

▸ Hence, with each fr expression w(f, r) we associate a graded functor

i [w(f, r)] ∶ Gr → Ab.

▸ In the end we shall show how to extend the construction to spectra, in that we
define [w(f, r)] ∶ Gr → Spectra such that π−i [w(f, r)](G) ≃ i [w(f, r)](G).
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define [w(f, r)] ∶ Gr → Spectra such that π−i [w(f, r)](G) ≃ i [w(f, r)](G).



fr-language

▸ Such constructions we shall refer to as functorial languages. In fact, in [Gol24] we
suggest a formal definition of such constructions using the Quillen cohomology of
∞-categories.

▸ An fr-code of some functor F∶Gr → Ab is a functorial ideal w(f, r) ∈ML(f, r) and
an isomorphism i [w(f, r)] ≃ F for some integer i . From [IMP19] we borrow the
table of functors and their codes:
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fr-language

▸ Here by A”⊕ ”B an extension of B by A is denoted.

▸ One may notice that the fr-language paramatrizes a ”neigbourhood” of functors
Gr → Ab such that it contains new functors that relate in a nontrivial way the old
ones. For instance we have a short exact sequence:

▸ For functors admitting fr-codes F ,H one may find nontrivial natural
transformations which are immediately verified within the functorial language.
Indeed, assume F ≃ i [w(f, r)], H ≃ i [w ′(f, r)] and if we have an inclusion of ideals
w(f, r) ⊂ w ′(f, r) then it yields a natural transformation i [w(f, r)] → i [w ′(f, r)]
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Why functorial languages?

▸ These higher limit formulas are quite interesting since they show that different
functors for which we need certain resolutions and additional constructions
(compare for instance Hi(G) and g/g3) to be defined admit descriptions on the
same footing - they are cohomology groups of categories of free extensions
only that they have different codes!

▸ Simple codes describe very interesting functors, for instance:

Ln−i
n
⊗ (Gab) ≃ i [rn + fn+1](G)

where Li
n
⊗ is the derived functor of a nonadditive functor of the tensor power

(these are also known as derived functors by Dold-Puppe), (see [HAZ97])

▸ A functorial language is a source of new functors (so new invariants) that turn out
to be related to the known ones, for example we have such extensions:
0→ H2(G ;H2(G)) → 1[rrf + rfr + frr](G) → Tor(Gab,H2(G)) → 0
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Combinatorics

▸ My friend Vasily Ionin and others obtained some interesting properties of the
fr-language indicating that this is a somewhat fundamental, free construction.

▸ Consider an inclusion of all polynomial fr-ideals (all finite combinations of the form
rrr + ff, rfr + frf + ffff...) into the latice Ideals(ZF ) of all functorial ideals of ZF .

▸ This inclusion is split! The retraction takes a functorial ideal a and returns a
maximal polynomial fr-code contained in a. It exists since we may generate an
ideal spanned by all polynomial fr-codes contained in it and by the next
observation it is a polynomial fr-code.

▸ For any set of polynomial fr-codes {ai ∣i ∈ I} there is a finite subset J ⊂ I such that

∑ aj = ∑ ai .
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fr-language. Mysterious gaps

▸ We see that even with such a scarce, simple construction as the fr-language we
may describe many homological functors.

▸ Nonetheless, there are some unexpected gaps consisting of functors which do not
seemingly admit an fr-code. For instance, the functor of the second homology
only fits into a short exact sequence:

0→ H2(G) → 1[fr + rf](G) → 2[fr ∩ rf](G) → 0.

▸ Or, in terms of spectra we have fiber sequence of functors Gr → Spectra:

[rf + fr]G → Σ[r ∩ ff]G → H(H2(G)),

where H(A) denotes an Eilenberg-Maclane spectrum of an abelian group A.
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fr-language. Mysterious gaps

▸ It is has not yet been proved that H2(G) does not admit an fr-code.

▸ This hints us that such functors (obtained by extensions of this form) should be
regarded on the same footing as those admitting codes.

▸ Let ξ again be a subcategory of the category of groups and a functorial language
F. We want to study categories of functors of all such possible extensions which
we call functorial surfaces surf(ξ,F) spanned by a functorial language F.

▸ We expect there to exist methods to qualitatively study these categories. The
universal method for this is the Algebraic K-theory. For formal reasons this hints
us to extend this whole construction from abelian to stable ∞-categories.

▸ For in the end we shall discuss how we can extend this whole theory to spectra.
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Functorial languages as functions on groups

▸ There then we shall define the functorial surfaces as categories of functors that
are extensions of extensions of extensions... of functors Σn[w(f, r)] ∶ ξ → Spectra
admitting a code.

▸ Why restricting languages to categories ξ? A language acquires new relations
between functors, for instance for perfect groups we have

i [r + ff](−) ≃ 0

and so on. We suggest an idea that the functorial languages should reflect
properties of categories of groups and their constituents!

▸ This is somewhat resembling to a widely known hypothesis in Linguistic relativity
known as the Sapir-Whorf Hypothesis. It states that the structure of a language
determines a native speaker’s perception and categorization of experience.

▸ Before we move on to formalizing the idea let us give more examples of such
functorial languages:
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fr∞-language

▸ Let k be a ring and define f as a functorial ideal of k[−] functor of rings:
f ∶= ker(kF → k) and given a free extension 0→ R → F → G → 0 we consider the
lower central series of the group of relations γnR. Using this we define
rn = ker(kF → k(F /γnR)), so we have a chain rn+1 ⊂ rn ⊂ . . . f of functorial ideals
of k[−] which spans a lattice ML(f, r, . . . , rn, . . . ) of all possible intersections,
sums of monomials constructed with these ideals.

▸ For c ≥ 1 we have natural isomorphisms 1[rm](G) ≃ inv⋂i≥1∆(F /γcR)i and
limi∆(F /γcR) ≃ i+1[rm](G)

▸ Assume G is residually torsion-free nilpotent, then 1[r2]G ≃ 0.
▸ A group is residually torsion-free nilpotent provided that for any non-identity

element, there is a normal subgroup not containing that element, such that the
quotient group is nilpotent
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fr∞-language

▸ Assume G is 3-torsionless. Then, there is a short exact sequence:

H4(G ;Z/3Z) → 1[r3f + fr3]G → lim(∆(F /γ3R)ω) ≡ lim(∩i∆(F /γ3R)i)

▸ Assume G has no torsion up to 4. Then, there is a short exact sequence:

H6(G ;Z/2Z) → 1[r4f + fr4]G → lim(∆(F /γ4R)ω) (2)

▸ For larger c computations of rc f + frc become more involved. The problem is that
for the higher relation modules L≥6 these sequences involve terms ΛkL≥3 whose
homology has not yet been calculated. The maximum yet case we can prove is the
following:

▸ Assume G has no torsion up to 5. Then there is a short exact sequence:

H4(G ;Z/5Z) → 1[r5f + fr5]G → lim(∆(F /γ5R)w) (3)
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fr∞-language

Assume G has no torsion up to n, then the following implications hold:

▸ If 2k ≤ p − 1 and 1[rk2]G ≃ 0 with 2kp ≤ n then

H(p+2)2k(G ;Z/pZ) ≃ lim(H2kp(F /γ2R)) ≃ 1[frkp2 + r
kp
2 f]Z(p)(G) (4)

▸ If p2 ≤ n then

Hp2+2(G ;Z/pZ) ⊕Hp2+2p(G ;Z/pZ) ≃ 1[r
p2−1
2
+1

2 + fr
p2−1
2

2 f]Z(p)(G) (5)
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FR-language for Lie algebras

▸ Here we consider categories of free extensions of Lie algebras A (over Z) of the
form 0→ R → F → A→ 0 and we have simple functors R ⊂ F ∶ Pres(A) → Lie. We
may as well form the lattice of FR-code (only that instead of products we form
commutators [F ,R,R,F ]...)s.

▸ This language has not yet been studied in detail but it is not difficult to compute
formulas:

lim1[R,F ] ≃ A ∧A
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Lift to spectra

One may prove the following simple:

▸ (Lemma) Let F ∶ C → Ab be a functor on a strongly connected category C with
binary coproducts. For any object c ∈ C there is a natural in F lift to
F̂ ∶ C → Spectra such that

limi(F) ≃ π−i F̂(c),∀i

This is independent up to equivalence of choice of c in that for any c → c ′ we
have equivalence of spectra F(c) → F(c ′). Moreover, this lift satisfies the
condition that for any short exact sequence of functors 0→ F1 → F2 → F3 → 0
the sequence F̂1(c) → F̂2(c) → F̂3(c) is a fiber sequence in the stable
∞-category Fun(C ,Spectra).
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Proof

▸ We recall the standard complex from [IMP19]. For a category with binary
coproducts C there is a functor B ∶ C → C∆: B(c)n ∶= ∐n

i=0 c , boundaries and
degeneracies can be found in [IMP19, Def. 2.4.].

▸ Given F ∶ C → Ab we have C → C∆ → Ab∆ which takes c ∈ C and sends it to
FB(c). Further we make a use of the Moore complex functor Q ∶ Ab∆ → Ch(Z).
This functor is described in [IMP19, Def. 2.6.]. This functor is known to be exact
in that it takes a short exact sequence of cosimplicial abelian groups and sends it
to a short exact sequence of chain complexes.

▸ The category of chain complexes we consider to be equipped with a canonical
projective model structure where fibrations are precisely the surjective chain
morphisms (see [HOV]), so fixing an object c ∈ C we have a functor

F ∈ Fun(C ,Ab) ↦ QFB(c) ∈ Ch(Z)
which sends short exact sequences to homotopy fiber sequences in Ch(Z)proj . Let
Ch(Z) further denote an ∞-category of chain complexes which is a localisation of
the category of chain complexes by quasi-isomoprhisms.



Proof

▸ We recall the standard complex from [IMP19]. For a category with binary
coproducts C there is a functor B ∶ C → C∆: B(c)n ∶= ∐n

i=0 c , boundaries and
degeneracies can be found in [IMP19, Def. 2.4.].

▸ Given F ∶ C → Ab we have C → C∆ → Ab∆ which takes c ∈ C and sends it to
FB(c). Further we make a use of the Moore complex functor Q ∶ Ab∆ → Ch(Z).
This functor is described in [IMP19, Def. 2.6.]. This functor is known to be exact
in that it takes a short exact sequence of cosimplicial abelian groups and sends it
to a short exact sequence of chain complexes.

▸ The category of chain complexes we consider to be equipped with a canonical
projective model structure where fibrations are precisely the surjective chain
morphisms (see [HOV]), so fixing an object c ∈ C we have a functor

F ∈ Fun(C ,Ab) ↦ QFB(c) ∈ Ch(Z)
which sends short exact sequences to homotopy fiber sequences in Ch(Z)proj . Let
Ch(Z) further denote an ∞-category of chain complexes which is a localisation of
the category of chain complexes by quasi-isomoprhisms.



Proof

▸ We recall the standard complex from [IMP19]. For a category with binary
coproducts C there is a functor B ∶ C → C∆: B(c)n ∶= ∐n

i=0 c , boundaries and
degeneracies can be found in [IMP19, Def. 2.4.].

▸ Given F ∶ C → Ab we have C → C∆ → Ab∆ which takes c ∈ C and sends it to
FB(c). Further we make a use of the Moore complex functor Q ∶ Ab∆ → Ch(Z).
This functor is described in [IMP19, Def. 2.6.]. This functor is known to be exact
in that it takes a short exact sequence of cosimplicial abelian groups and sends it
to a short exact sequence of chain complexes.

▸ The category of chain complexes we consider to be equipped with a canonical
projective model structure where fibrations are precisely the surjective chain
morphisms (see [HOV]), so fixing an object c ∈ C we have a functor

F ∈ Fun(C ,Ab) ↦ QFB(c) ∈ Ch(Z)
which sends short exact sequences to homotopy fiber sequences in Ch(Z)proj . Let
Ch(Z) further denote an ∞-category of chain complexes which is a localisation of
the category of chain complexes by quasi-isomoprhisms.



Proof

▸ We recall the explicit construction of the Eilenberg-Maclane functor
H ∶ Ch(Z) → Spectra (see [GRA19, pp.19]). Given a chain complex A the
spectrum HA is the following spectrum:

DK(⋅ ⋅ ⋅ → An → Cn−1 → ⋅ ⋅ ⋅ → A1 → Z0), (6)

DK(⋅ ⋅ ⋅ → An−1 → An−2 → ⋅ ⋅ ⋅ → A0 → Z−1), (7)

DK(⋅ ⋅ ⋅ → An−2 → An−3 → ⋅ ⋅ ⋅ → A−1 → Z−2), (8)

. . . (9)
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Proof

▸ This functor is known to preserve fiber sequences. Moreover, the homotopy
groups satisfy: πi(HA) ≃ colimkHi+k(A) (see, for instance, [GRA19, pp. 20] ).
One may notice that when a chain complex A is concentrated in negative degrees
the homotopy groups π−iA are isomorphic with H i(A) for any i .

▸ In particular for A ≡ QFB(c) (which is concentrated in negative degrees) a
(−i)-th homotopy group of HQFB(c) is isomorphic with H i(QFB(c)) and since
the Moore chain complex is chain homotopy equivalent to the alternate sum
complex these are isomorphic with higher limits limi(F) [IMP19, Cor. 2.9.].
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Lift to spectra

▸ Now consider the case when F is a functor on a category Pres(G). Let
G ↦ (F [G ] → G) ≡ c(G) ∈ Pres(G) be a canonical free presentation of a group
G . This is a functor c ∶ Gr → Pres. The spectrum HQFB(c(G)) ≡ [w(f, r)](G)
now has the form:



Functorial surfaces

▸ Finally we have established the desired lift π−i [w(f, r)](G) ≃ i [w(f, r)](G)
▸ Now we are ready to define the functorial surfaces using the construction of the

following:

▸ (Lemma) Let C be a stable ∞-category with a full subcategory S ⊂ C containing
a zero object. Then we define a full subcategory S̄ ∶= ∪n < S >n where < S >n+1
consists of such Z that are extensions X → Z → Y of some objects X ,Y from
< S >n and < S >0∶= ∪iS[i] is the union of all shifts of S . S̄ is a stable ∞-category
which stable under forming extensions in C .
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Functorial surfaces

▸ Now given a category/variety of groups ξ ⊂ Gr, a functorial language F (e.g. fr,
fr∞(k) and so on) we consider a full subcategory of Fun(ξ,Spectra) spanned by
functors of the form [w(f, r)](−) [Gol24, Definition 4.4.]. Then by setting
S ≡ [w(f, r)](−) and by applying the above construction we construct the stable
∞-category surf(ξ,F).

▸ Its objects are such functors ξ → Spectra which are extensions of extensions of
extensions... of Σm[w(f, r)](−) functors.
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Functorial surfaces

▸ We call this a functorial surface over ξ spanned by the functorial language F.



Functorial surfaces

▸ Let K denote the functor of the Algebraic K-theory (see [Bar16]) and the
K -spectrum of a functorial surface on ξ spanned by a functorial language F we
call a flux-spectrum of F on ξ and denote as flux(ξ,F) ≡ K surf(ξ,F)).

▸ (Gol24, Proposition 4.8.) Let pol fr, fr∞(k) be a functorial language defined only
by using the polynomial fr∞ codes. Then the functorial surfaces on any ξ ⊂ Gr
spanned by pol fr, fr∞(k) are equivalent and so as the flux spectra.

▸ The homotopy groups πiflux(ξ,F) ≡ fluxi(ξ,F) - these are interesting invariants of
ξ. We see that functorial languages may be considered as some coefficients for
the exotic homology theory defined on categories of groups/Lie algebras (or more
generally on functors ξ → Gr,Lie)...
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Summarise

▸ Let C ⊂ G be a subcategory (or more generally C → G ) of a category G with a
functorial language.

▸ Functorial languages is a way to parametrize certain families of functors from C to
Spectra.

▸ Such families of functors form functorial surfaces - stable ∞-subcategories of
Fun(C ,Spectra)

▸ Algebraic K-theory spectra of a functorial surface if the flux-spectrum.

▸ Thus, a functorial language may be thought of as a ”function” which we may
”integrate” (applying the algebraic K-theory) over the category C and the result
of such ”integration” is the flux-spectrum.

▸ Properties of C and its objects + combinatorial properties of a functorial language
yield implications on flux-spectra.
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Thank you for your attention
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