
Category Theory and Lambda Calculus

Mario Román García

Trabajo Fin de Grado

Doble Grado en Ingeniería Informática y Matemáticas

Tutores
Pedro A. García-Sánchez
Manuel Bullejos Lorenzo

Facultad de Ciencias
E.T.S. Ingenierías Informática y de Telecomunicación

Granada, a 18 de junio de 2018

Contents

1 Lambda calculus 13
1.1 Untyped λ-calculus . 13

1.1.1 Untyped λ-calculus . 14
1.1.2 Free and bound variables, substitution 14
1.1.3 Alpha equivalence . 16
1.1.4 Beta reduction . 16
1.1.5 Eta reduction . 17
1.1.6 Confluence . 17
1.1.7 The Church-Rosser theorem . 18
1.1.8 Normalization . 20
1.1.9 Standardization and evaluation strategies 21
1.1.10 SKI combinators . 22
1.1.11 Turing completeness . 24

1.2 Simply typed λ-calculus . 24
1.2.1 Simple types . 25
1.2.2 Typing rules for simply typed λ-calculus 25
1.2.3 Curry-style types . 26
1.2.4 Unification and type inference . 27
1.2.5 Subject reduction and normalization . 29

1.3 The Curry-Howard correspondence . 31
1.3.1 Extending the simply typed λ-calculus 31
1.3.2 Natural deduction . 32
1.3.3 Propositions as types . 34

1.4 Other type systems . 35
1.4.1 λ-cube . 35

2 Mikrokosmos 38
2.1 Implementation of λ-expressions . 38

2.1.1 The Haskell programming language . 38
2.1.2 De Bruijn indexes . 40
2.1.3 Substitution . 41
2.1.4 De Bruijn-terms and λ-terms . 42
2.1.5 Evaluation . 43
2.1.6 Principal type inference . 43

2.2 User interaction . 45
2.2.1 Monadic parser combinators . 45
2.2.2 Verbose mode . 46
2.2.3 SKI mode . 47

1

2.3 Usage . 48
2.3.1 Installation . 48
2.3.2 Mikrokosmos interpreter . 49
2.3.3 Jupyter kernel . 50
2.3.4 CodeMirror lexer . 50
2.3.5 JupyterHub . 53
2.3.6 Calling Mikrokosmos from Javascript . 53

2.4 Programming environment . 54
2.4.1 Cabal, Stack and Haddock . 54
2.4.2 Testing . 54
2.4.3 Version control and continuous integration 56

2.5 Programming in untyped λ-calculus . 57
2.5.1 Basic syntax . 57
2.5.2 A technique on inductive data encoding 58
2.5.3 Booleans . 58
2.5.4 Natural numbers . 59
2.5.5 The predecessor function and predicates on numbers 60
2.5.6 Lists and trees . 60
2.5.7 Fixed points . 62

2.6 Programming in the simply typed λ-calculus . 63
2.6.1 Function types and typeable terms . 63
2.6.2 Product, union, unit and void types . 64
2.6.3 A proof in intuitionistic logic . 65

3 Category theory 67
3.1 Categories . 67

3.1.1 Definition of category . 67
3.1.2 Morphisms . 68
3.1.3 Products and sums . 69
3.1.4 Examples of categories . 70

3.2 Functors and natural transformations . 71
3.2.1 Functors . 71
3.2.2 Natural transformations . 72
3.2.3 Composition of natural transformations 73

3.3 Constructions on categories . 75
3.3.1 Product categories . 75
3.3.2 Opposite categories and contravariant functors 76
3.3.3 Functor categories . 77

3.4 Universality and limits . 78
3.4.1 Universal arrows . 78
3.4.2 Representability . 79
3.4.3 Yoneda Lemma . 79
3.4.4 Limits . 81
3.4.5 Examples of limits . 82
3.4.6 Colimits . 84
3.4.7 Examples of colimits . 85

3.5 Adjoints, monads and algebras . 86
3.5.1 Adjunctions . 86
3.5.2 Examples of adjoints . 90

2

3.5.3 Monads . 91
3.5.4 Algebras . 92

4 Categorical logic 95
4.1 Presheaves . 95
4.2 Cartesian closed categories and lambda calculus 96

4.2.1 Lawvere theories . 96
4.2.2 Cartesian closed categories . 98
4.2.3 Simply-typed λ-theories . 99
4.2.4 Syntactic categories and internal languages 100

4.3 Working in cartesian closed categories . 102
4.3.1 Diagonal arguments . 102
4.3.2 Bicartesian closed categories . 103
4.3.3 Inductive types . 104

4.4 Locally cartesian closed categories and dependent types 105
4.4.1 Quantifiers and subsets . 105
4.4.2 Locally cartesian closed categories . 107
4.4.3 Dependent types . 109
4.4.4 Dependent pairs . 110
4.4.5 Dependent functions . 111

4.5 Working in locally cartesian closed categories 112
4.5.1 Examples of dependent types . 112
4.5.2 Equality types . 114
4.5.3 Subobject classifier and propositions . 115
4.5.4 Propositional truncation . 115

4.6 Topoi . 116
4.6.1 Motivation . 116
4.6.2 An Elementary Theory of the Category of Sets 117

5 Type theory 118
5.1 Martin-Löf type theory . 118

5.1.1 Programming in Martin-Löf type theory 118
5.1.2 Translation between categories and types 119
5.1.3 Excluded middle and constructivism . 120
5.1.4 Extensionality and Diaconescu’s theorem 121
5.1.5 Dedekind reals . 122

5.2 Homotopy type theory . 124
5.2.1 Homotopy type theory I: Equality . 124
5.2.2 Homotopy type theory II: Univalence . 126

5.3 Verified formal proofs . 126

6 Conclusions and further work 128

7 Appendices 130

3

4

Overview

Chapter 1: The λ-calculus is a collection of systems formalizing the notion of functions as
formulae, function abstraction and function composition. They can be seen as programming
languages and as formal logics at the same time. We start by analyzing the characteristics
that make untyped lambda calculus (§1.1.1) a proper programming language; these are the
confluence property (known as the Church-Rosser theorem, §1.1.6 and 1.1.7), the existence of
normal forms for terminating computations, and evaluation strategies that allow us to reliably
find these normal forms in the cases where they exist. We also relate lambda calculus to
combinatorial logic with SKI combinators (§1.1.10) and we discuss its historical importance on
the definition of Turing-completeness (§1.1.11).

There also exist typed variants of lambda calculus (§1.2). Simply typed lambda calculus,
for instance, can include function types, a unit type, a void type, pairs and unions (§1.2.1).
We focus on the logical interpretation of this system, called the Curry-Howard isomorphism
(§1.3). Brouwer, Heyting and Kolmogorov proposed in the 30s a computational interpretation
of intuitionistic logic, a logic that does not assume the law of excluded middle, A ∨ ¬A; and
simply typed lambda calculus precisely matches this interpretation, making it possible to have
a language that is, at the same time, a functional programming language and a formal system.

Chapter 2: We have developed Mikrokosmos, an untyped and simply typed λ-calculus
interpreter written in the purely functional programming language Haskell [HHJW07], (§2.1.1).
It aims to provide students with a tool to learn and understand λ-calculus and the relation
between logic and types. We show how to program and prove statements of intuitionistic
propositional logic with it.

We discuss why Haskell and the use of monadic parser libraries are an adequate choice for this
project (§2.2.1). Our implementation relies on De Bruijn indexes to represent variable scope
and bindings internally (§2.1.2). We need to implement substitutions (§2.1.3), evaluation
(§2.1.5) and type inference (§2.1.6); but all these algorithms can be directly derived from
the theoretical discussion we had on Chapter 1. Our programming environment makes use of
version control using Git, test suites using the Tasty testing framework (§2.4.2) and continuous
integration using TravisCI (§2.4.3). We also rely on packaging tools that allow us to distribute
the software as a library and as an executable on the appropriate channels (§2.3.1). A Jupyter
Notebook integration is provided (§2.3.3); it has been used to provide students with interactive
tutorials of lambda calculus (§2.3.5). Along with the command-line interpreter, we also include
a mechanism allowing us to call the interpreter from Javascript and embed it into a web page
(§2.3.6).

At the end of this chapter, we describe how to program on the untyped lambda calculus
(§2.5), encoding complex data structures with a technique due to Church and learning how to
use fixpoint operators to achieve unbounded recursion. On the other hand, programming in
the simply-typed lambda calculus (§2.6) more resembles proving statements on intuitionistic
logic with a proof assistant. We show how each program is, itself, a proof of a proposition in
intuitionistic logic; their types can be seen as the propositions they are proving; and evaluation
and β−reduction are related to proof simplification.

Chapter 3: Categories (§3.1) will be the framework we will use to study the fundamental
notion of function composition inside mathematics. They provide a fruitful language to talk
about theories, mathematics and logic. Notions such as naturality, universality or duality can
be given a explicit formal meaning with categories. We have examples of them all around

5

mathematics. Functors (§3.2) can be seen as homomorphisms that preserve the structure of
a category, and we can base many different useful mathematical constructions on them, with
the added benefit that they can be formulated in a very abstract setting (§3.3).

Yoneda Lemma (§3.4) is one of the foundational results in category theory; intuitively, it says
that every object in a category is determined by how it relates to any object of the category.
This is a tool that will be necessary when constructing categorical models of algebraic theories
in Chapter 4. We also define limits and colimits, which allow us more expressive constructions
inside categories; in particular, fibered products and coproducts can be expressed this way
(pullbacks and pushouts), and they will be also useful when interpreting syntactic substitution
inside categories.

Finally, we present monads, algebras and adjoint functors (§3.5). Algebras are useful to encode
induction in a purely categorical way. Adjoint functors, on the other hand, will be one of the
key insights we will use to understand and expand the connection between computation and
logic we have described so far. This section is primarily based on [Lan78].

Chapter 4: The internal logic of categories is studied. We start by defining presheaf categories
(§4.1). Presheaves can be thought as some kind of generalized sets. Pair of sets, graphs, or sets
depending on a real variable can be seen as presheaves. As we will see in this same chapter,
presheaf categories are examples of categories having all the structure we are interested in.
Lawvere’s algebraic theories show that it is possible to give a description of algebraic structures
in terms of categories (§4.2.1). Moreover, this description is independent of the particular
axiomatization for the structure we are using. Models for these theories in any mathematical
structure can be seen as functors from the category representing the theory.

In particular, cartesian closed categories (§4.2) can be used to model simply typed lambda
calculus. Each lambda calculus theory is the internal logical language of a cartesian closed
category. Bicartesian categories correspond to intuitionistic logic and we can model inductive
types as algebras over certain functors. Using this correspondence, we can encode theorems
and proofs about cartesian closed categories using lambda calculus. As an example, we prove
a theorem by Lawvere on fixed points and diagonal arguments (§4.3.1). We can then interpret
this theorem in many categories to get many known results by Cantor, Russel, Tarski and
Gödel as corollaries.

We extend this structure asking the same structure to exist in each slice of the category and
thus defining locally cartesian closed categories (§4.4). Existential and universal quantifier can
be interpreted with this new structure, which also provides a framework for higher-order logics.
Dependent type theory arises as the natural language for these richer categories, and it carries a
natural computational interpretation. In particular, equality (§4.5.2) can be encoded using the
J-eliminator, a rule, directly derived from a categorical construction that says that, if P (x, x)
is true for any element x and a = b, then P (a, b) is true. We also discuss a categorical encoding
of the notion of propositions with proof irrelevance and propositional truncation (§4.5.3 and
4.5.4); this is a tool that allows us to write proofs that do not depend on a specific proof being
constructed despite the fact that we remain in a constructive setting. The theorem of choice is
shown as an example (§4.5.1); it is a variant of the Axiom of Choice that is actually provable
within the theory we obtain this way.

Under this interpretation, categories, logic and computation can be seen as multiple aspects
of a unique central notion. All the constructions and definitions we have been discussing until
this moment nudge us towards considering topoi, a particular kind of category that is itself a
model of constructive mathematics (§4.6). In other words, each topos is a different universe of

6

mathematics. In particular, we study Lawvere’s Elementary Theory of the Category of Sets
and how it recovers classical set-based mathematics. This section is primarily based on the
work by [ML75] and [See84].

Chapter 5: As we have been discussing on previous chapters, the internal logic of categories
with enough structure is expressive enough to allow us to develop mathematical theories inside
them. Moreover, these theories can be expressed in a programming language with a strong
dependent type system (§5.1). Thus, type theory provides both a foundation of programming
language theory and a foundation of mathematics. It is now interesting to consider how
to embed Lawvere’s axioms for the category of sets and some classical principles inside this
constructive logic, thereby showing that a set theoretical foundation can be seen as a particular
case. The proof we present of Diaconescu’s theorem is an example of the use of this embedding.
In particular, we discover that the law of excluded middle and classical mathematics follow
from accepting the Axiom of Choice. We also study a first result on Homotopy Type Theory
(§5.2), which is the theory we obtain when we consider the higher dimensional structure of the
type of equality and we relate it to Grothendieck’s homotopy hypothesis using Voevodsky’s
Univalence Axiom. This section is mainly based on [Uni13].

Two libraries of computer verified mathematics have been developed (§5.3). The first one im-
plements positive real numbers as Dedekind cuts and provides a proof of Diaconescu’s theorem.
More than a hundred computer verified lemmas and propositions about natural numbers and
dyadic rationals have been needed for this construction. The second one accepts Voevodsky’s
Univalence Axiom and proves the fact that the fundamental group of the circle is given by the
integers.

Keywords: category theory, lambda calculus, categorical semantics, type theory, constructivism.

Sinopsis

Capítulo 1: Empezamos estudiando el cálculo lambda de Church como lenguaje de progra-
mación. Detallamos una definición formal de sus aspectos sintácticos y exponemos demostra-
ciones de las propiedades que lo hacen implementable como lenguaje de programación; ejemplos
son la propiedad de confluencia (Teorema de Church-Rosser) o la existencia de estrategias de
reducción óptimas desde la perspectiva de encontrar una forma normal. Tenemos la intención
de usar en la práctica estos resultados para posteriormente diseñar el intérprete de un lenguaje
basado en cálculo lambda. Brevemente hacemos mención a la equivalencia con la lógica de
combinadores SKI y cómo, cuando discutamos la implementación del operador de minimización
de las funciones µ−recursivas de Gödel, estaremos comprobando su Turing-completitud.

Existen variantes tipadas del cálculo lambda, más orientadas a la lógica, que resuelven los
problemas de normalización de las versiones sin tipos. Discutimos la diferencia entre tipado
de Curry y tipado de Church y cómo el primero nos servirá para proveer de una forma de
polimorfismo implícito a un lenguaje de tipos simples; esto es, podremos tener expresiones
cuyo tipo sea lo más general posible hasta el mismo momento de instanciarlas. Seguidamente,
prestamos particular interés a la relación de estas variantes tipadas del cálculo lambda con
la lógica proposicional intuicionista representada en la deducción natural de Gentzen. La
lógica intuicionista es base de la matemática de Brouwer o Bishop y se caracteriza por no
asumir la ley del tercio excluso, A ∨ ¬A, y tener una interpretación computacional natural.
Esta relación nos permite dar un uso más del cálculo lambda, en este caso para usarlo como

7

asistente de demostraciones. Esto constituye la interpretación de Brouwer-Heyting-Kolmogorov
y correspondencia de Curry-Howard.

Terminamos revisando la literatura de posibles extensiones a los sistemas de tipos del cálculo
lambda con el λ−cubo de Barendregt.

Capítulo 2: Diseñamos un intérprete de dos lenguajes de programación que basamos re-
spectivamente en el cálculo lambda sin tipos y en el cálculo lambda simplemente tipado. La
implementación deberá usar internamente índices de DeBruijn, una notación formal para repre-
sentar variables, y aplicar algoritmos de evaluación e inferencia de tipos directamente derivados
de nuestro estudio en el capítulo anterior. Elegimos el lenguaje funcional puro Haskell como
lenguaje de desarrollo y analizamos esta elección. Utilizaremos librerías de parseado monádico
y un entorno de herramientas de integración y control orientadas a garantizar corrección y
finalmente a distribuir el paquete de software en los canales propios del lenguaje. Este intér-
prete nos permitirá explorar técnicas de programación en el cálculo lambda y aplicarlas a la
verificación formal de demostraciones en la lógica intuicionista. Se incluyen además utilidades
para integrarlo en el entorno de computación interactiva Jupyter Notebook; así como una
transpilación y adaptación a Javascript que lo hace apto para la docencia y para ser embebido
en páginas web. Siguiendo esta idea, se proporcionan enlaces a tutoriales interactivos sobre
cálculo lambda.

En la sección sobre programación en cálculo lambda destacamos la posibilidad de codificar
estructuras complejas de datos con la codificación de Church y la potencia del operador de
punto fijo, que es el que nos permitirá escribir definiciones recursivas no acotadas a priori.
En la sección sobre cálculo lambda tipado escribimos expresiones que son al mismo tiempo
demostraciones de teoremas de la lógica intuicionista y programas tipados.

Capítulo 3: La teoría de categorías proporciona una abstracción del concepto de composición
en matemáticas y una formalización de nociones como naturalidad, dualidad o universalidad.
Esencialmente, una categoría viene dada por objetos y flechas o morfismos componibles entre
ellos, siendo una generalización de la idea de grupoide. Tenemos ejemplos de categorías dentro
de una gran variedad de áreas de las matemáticas y podemos estudiar los funtores como los
homomorfismos que respetan su estructura; a su vez, estos funtores sirven como traducciones
entre esas teorías. Realizaremos varias construcciones que justifican el hablar de naturalidad y
universalidad de las estructuras matemáticas. El lema de Yoneda es un resultado fundacional
de categorías que afirma, intuitivamente, que los objetos quedan determinados por sus mor-
fismos; sobre él se basarán varios desarrollos en los siguientes capítulos. Definimos asimismo
límites y colímites desde la noción de universalidad, que nos permitirán la construcción de
generalizaciones del producto y el coproducto; tenemos especial interés en el caso de productos
fibrados, que corresponderán después, en teoría de tipos, a la substitución sintática.

Terminamos trabajando con adjunciones, usando ideas de Lawvere en cuanto a su relación con
las inferencias lógicas. Todos estos desarrollos sirven de fundamento teórico a los próximos
capítulos. Por ejemplo, las álgebras sobre funtores modelarán la recursión en los lenguajes
de programación, las mónadas nos han servido ya para modelar el parseado en Haskell, y las
adjunciones son la base de la lógica categórica.

Capítulo 4: Empezamos definiendo las categorías de prehaces, que serán modelos naturales
de toda la discusión posterior; esta es una clase de categorías que generaliza la categoría de con-
juntos y proporciona modelos no estándar de las mismas construcciones que estudiaríamos en
conjuntos. La perspectiva de la teoría de categorías y en especial la noción de las adjunciones
como elemento fundacional nos permiten primero dar una formalización de la estructura de

8

las teorías algebraicas, que muestra las ideas que usaremos para dotar de semántica a otras es-
tructuras sintáticas. En esta teoría, podremos dar varias axiomatizaciones de una teoría, como
la teoría de grupos, y obtener con todas ellas una sola categoría cuyos funtores representarán
cada uno un modelo de la teoría.

Usamos esta misma idea para formalizar la estructura lógica del cálculo lambda como el
lenguaje interno de las categorías cartesianas cerradas. Usando esta correspondencia, podemos
recrear demostraciones sobre categorías cartesianas usando expresiones del cálculo lambda.
En particular, aplicamos esta técnica a un teorema de William Lawvere (1969) sobre puntos
fijos en categorías cartesianas. Su particularización nos da como corolario demostraciones de
resultados de Cantor, Russell, Tarski y Gödel, y sintetiza la idea común a todas las demostra-
ciones por diagonalización. Las categorías bicartesianas suponen una primera extensión que
nos proporciona una estructura de lógica intuicionista interna a la categoría, y comprobamos
cómo la existencia de álgebras iniciales en una categoría nos permite usarla como modelo de
las variantes del cálculo lambda que contienen tipos inductivos (como los números naturales).

Una vez comprobada esta correspondencia, buscamos ampliarla hacia una lógica con cuantifi-
cadores y de orden superior que nos permita expresar nociones matemáticas más complejas.
Enriquecemos la estructura tomando categorías localmente cartesianas cerradas como modelos
e inspirando en ellas la noción de tipos dependientes. La estructura de categoría localmente
cartesiana cerrada permite sustituciones dentro de los tipos y la expresión de tipos que actúan
como proposiciones sobre elementos y otros tipos. Estos tipos dependientes nos proveen un
marco lógico que además conserva una interpretación computacional natural. Tenemos así un
lenguaje de programación cuyos tipos pueden ser proposiciones y cuyos elementos pueden ser
demostraciones en un sistema formal. Los cuantificadores existencial y universal aparecen como
casos particulares de adjunciones. La igualdad puede ser codificada usando el eliminador J,
que permite demostrar una proposición en dos elementos, P (a, b), probando P (x, x) para todo
x y probando a = b; esta codificación se extrae directamente de una construcción categórica.
Discutimos también la noción de truncamiento proposicional, que nos permite ganar expresivi-
dad matemática, ya que nos permite demostrar proposiciones sin establecer explícitamente qué
elemento las cumple en una teoría que sería, a priori, constructivista. El teorema de elección,
una variante del axioma de elección, es un ejemplo de este fenómeno.

Categorías, lógica y computación aparecen bajo esta interpretación como tres manifestaciones
de una misma noción. Terminamos intuyendo cómo todas las construcciones hasta el momento
nos dirigen naturalmente a la estructura algebraica de topos, una categoría que puede contener
en su lógica interna formulaciones completas de teorías matemáticas. La teoría de conjuntos
de Lawvere es el ejemplo que proponemos para esta correspondencia.

Capítulo 5: Como hemos detallado hasta aquí, la lógica interna de ciertas categorías es
suficientemente rica como para permitirnos desarrollar teorías matemáticas que además pueden
expresarse en un lenguaje de programación con un sistema de tipos suficientemente fuerte,
sirviendo su compilación como comprobación de corrección de la demostración. Para demostrar
el potencial de esta perspectiva, usamos el lenguaje de programación Agda y detallamos las
correspondencias explícitas entre tipos y categorías. La teoría de conjuntos de Lawvere, unida
al teorema de Diaconescu, nos permite recuperar la matemática clásica como caso particular;
sin embargo, permanecemos en el caso más general posible para desarrollar una definición de
los reales positivos por cortes de Dedekind en la teoría de tipos de Martin-Löf. Como resultado
colateral, algunas demostraciones sobre ciertas instancias del tercio excluso en esta estructura
se convierten en programas que calculan reales con precisión arbitraria. Proponemos asimismo
un ejemplo de topología sintética usando una correspondencia recientemente descubierta entre

9

la estructura de los tipos, los ∞−grupoides y la homotopía, que se hace patente una vez
incluimos el axioma de Univalencia de Voevodsky.

Nuestras referencias principales son la exposición del cálculo lambda de Selinger [Sel13] en la
primera parte, los textos de teoría de categorías de MacLane [Lan78] y Awodey [Awo10] en la
segunda, y el libro fundacional de la teoría homotópica de tipos [Uni13] en la parte final. Es
destacable la utilidad de proyecto nLab [nLa18] para localizar la bibliografía relevante entre
temas a priori dispares.

Palabras clave: categorías, cálculo lambda, lógica categórica, teoría de tipos, constructivismo.

10

What is the primary tool for such summing up of
the essence of ongoing mathematics? Algebra!

Nodal points in the progress of this kind of
research occur when, as in the case with the
finite number of axioms for the metacategory
of categories, all that we know so far can be

expressed in a single sort of algebra.

– F. William Lawvere

Introduction

Assuming A∨¬A for any arbitrary proposition A may lead to an unnecessarily narrow view of
mathematics and its relationship with computation. This principle, called the law of excluded
middle, was the subject of much debate during the beginning of the 20th century [ML08].
Constructive mathematics is mathematics done without assuming excluded middle: Brouwer’s
intuitionism [Bro07] and Bishop’s constructive analysis [Bis67a] are examples of this school of
thought (see [TVD14]). However, constructivism did never attract the interest of the majority
of mathematicians during the foundational crisis.

Some years after, in 1945, the notion of categories originated with Eilenberg and Mac Lane’s
work on cohomology theory [EM45]. Nowadays, functors, natural transformations and univer-
sal properties are used in all the different branches of mathematics. While we generally still
prefer to rely on set-theoretical foundations, many axiomatizations of mathematics based on
category theory have been proposed (see, for instance, [Law64]). It was observed that any
category with enough structure is able to interpret most of mathematics in an internal logic;
and remarkably, this internal logic does not satisfy in general the law of excluded middle.

How does all of this relate to programming? Suppose we want to design a programming lan-
guage. A possible path is to follow the functional paradigm that revolves around composition
and inductive data structures. We would borrow ideas from λ-calculus, a collection of formal
systems Alonzo Church proposed in the 1930s [Chu36]. They can be seen as models of compu-
tation, and many modern programming languages are heavily influenced by them [HHJW07],

11

specially in the typed variants of the calculus. But then, we have the realizability interpreta-
tion of logic without excluded middle by Heyting and Kolmogorov (see [TVD14]), that regards
proofs as programs and propositions as types. Under this interpretation, the simply typed
lambda calculus is precisely a language for constructive logic that loses its computational na-
ture when excluded middle is added.

Categories are the framework in which we can make sense of this. A cartesian closed category
is a category that has exponential objects (whose elements can be regarded as functions)
and all finite products. These two constructions are particular cases of adjunctions, a purely
categorical description of how certain transformations in mathematics relate (see [Law69]).
It is easy to see how these adjunctions translate into computations in lambda calculus, thus
encoding a language for logic and programming inside categories.

The logic we first obtain this way is a propositional logic. This identification suffices to prove
some theorems that have many known results as corollaries, such as the Lawvere’s diagonal
theorem ([Law16]): a surjective morphism g : A → BA implies the existence of a fixed point
for each f : B → B. However, we want to extend this logic with universal and existential
quantifiers, and locally closed cartesian categories are the tool for this task. They are categories
in which every slice generated by the morphisms to a particular object has the cartesian closed
structure. Quantifiers are adjoints on this setting, and they provide, inside the type theoretical
interpretation, dependent pairs, written with Σ, and dependent functions, written with Π.
These correspond to the existential and universal quantifier respectively and they define types
that can depend on elements of other types. Now we can prove more complex results, and the
example we study is Diaconescu’s theorem: the Axiom of Choice implies the law of excluded
middle.

Finally, Martin-Löf type theory (see [ML75] and [NPS90]) helps to synthesize all these ideas
into a formal system that is active subject of research ([KECA16], [RA11] or [BELS17] are
examples). This is the environment in which Voevodsky’s Univalence Axiom gives rise to Ho-
motopy Type Theory (see [Uni13]), a recent development relating type theory and topological
constructions. As an example, we will prove that the fundamental group of the circle is Z with
a computer verified mathematics library.

Our first objective is to build an interpreter for untyped and simply typed lambda calculus.
Results on the first section of this text provide solid theoretical grounds for this purpose.
We want the interpreter to be a didactic tool, useful for experimentation and with a clear
theoretical basis in which to interpret the constructions and programs we can write on it. Our
second main objective is to understand how dependent type theory works internally and to
develop libraries of computer verified mathematics, proving simple theorems, undertaking the
project of constructing the real numbers from scratch and formulating homotopy types within
this structure.

12

Chapter 1

Lambda calculus

1.1 Untyped λ-calculus

When are two functions equal? Classically in mathematics, functions are graphs. A function
from a domain to a codomain, f : X → Y , is seen as a subset of the product space: f ⊂ X×Y .
Any two functions are identical if they map equal inputs to equal outputs; and a function is
completely determined by what its outputs are under different inputs. This vision is called
extensional .

From a computational point of view, this perspective could seem incomplete in some cases; we
usually care not only about the result but, crucially, about how it can be computed. Classically
in computer science, functions are formulae; and two functions mapping equal inputs to equal
outputs need not to be equal. For instance, two sorting algorithms can have different efficiency
or different memory requisites, even if they output the same sorted list. This vision, where
two functions are equal if and only if they are given by essentially the same formula, is called
intensional (see [Sel13], where this difference is detailed).

The λ-calculus is a collection of formal systems, all of them based on the lambda notation
introduced by Alonzo Church in the 1930s while trying to develop a foundational notion of
functions as formulae on mathematics. It is a logical theory of functions, where application
and abstraction are primitive notions, and at the same time it is also one of the simplest
programming languages, in which many other full-fledged languages are based.

The untyped or pure λ-calculus is syntactically the simplest of these formal systems. In
it, a function does not need a domain nor a codomain; every function is a formula that can
be directly applied to any expression. It even allows functions to be applied to themselves, a
notion that would be troublesome in our usual set-theoretical foundations. In particular, if f
were a member of its own domain, the infinite descending sequence

f 3 {f, f(f)} 3 f 3 {f, f(f)} 3 . . . ,

would exist, thus contradicting the regularity axiom of Zermelo-Fraenkel set theory (see, for
example, [Kun11]). In contrast, untyped λ-calculus presents some problems that would never
appear in the usual foundations, such as non-terminating functions. An approach to solving
these is presented in Section 1.2.

This presentation of the untyped lambda calculus will follow [HS08] and [Sel13].

13

1.1.1 Untyped λ-calculus

As a formal language, the untyped λ-calculus is given by a set of equations between expressions
called λ-terms; equivalences between them can be computed using some manipulation rules.
These λ-terms can stand for functions or arguments indistinctly: they all use the same λ-
notation in order to define function abstractions and applications.

This λ-notation allows a function to be written and inlined as any other element of the
language, identifying it with the formula it determines and admitting a more succinct repre-
sentation. For example, the polynomial function p(x) = x2 + x is written in λ-calculus as
λx. x2 + x; and the particular evaluation p(2) is written as (λx. x2 + x)(2). In general, λx.M
is a function taking x as an argument and returning M , a term in which x may appear as a
symbolic variable.

The use of λ-notation also eases the writing of higher-order functions, functions whose argu-
ments or outputs are functions themselves. For instance, λf.(λy.f(f(y))) would be a function
taking f as an argument and returning λy.f(f(y)), which is itself a function most commonly
written as f ◦ f . In particular, the following expression((

λf.(λy.f(f(y)))
)(
λx.x2 + x

))
(1)

evaluates to 6. It can be read as applying the polynomial x2 + x twice to the initial argument
that 1 represents.

Definition 1.1. λ-terms are constructed using the following rules:

• every variable , taken from an infinite countable set of variables and usually written with
a lowercase single letter (x, y, z, . . .), is a λ-term;

• for any two λ-terms M,N , their application , written as MN , is a λ-term;
• for any λ-term M and for any variable x, their abstraction , written as λx.M , is a
λ-term;

• every possible λ-term can be constructed using these rules and no other λ-term exists.

Equivalently, they are given by the Backus-Naur form Term ::= x | (Term Term) | (λx.Term),
where x represents any variable.

By convention, we omit outermost parentheses and assume left-associativity. For example,
MNP will always mean (MN)P . Note that application of λ-terms is not the same as compo-
sition of functions, which is associative. We also consider λ-abstraction as having the lowest
precedence. For example, λx.MN should be read as λx.(MN) instead of (λx.M)N .

1.1.2 Free and bound variables, substitution

In λ-calculus, the scope of a variable restricts to the λ-abstraction where it appears, if any.
Thus, the same variable can be used multiple times on the same term independently. For
example, in (λx.x)(λx.x), the variable x appears twice with two different meanings.

Definition 1.2 (Free variables). Any ocurrence of a variable x inside the scope of a lambda
is said to be bound ; and any variable without bound ocurrences is said to be free . The set

14

of free variables of a term M is defined inductively on the structure of lambda terms as

FV(x) = {x}, for any variable x,
FV(MN) = FV(M) ∪ FV(N), for any two terms M and N,
FV(λx.M) = FV(M) \ {x}, for any variable x abstracted over a term M.

Evaluation in λ-calculus relies in the notion of substitution . Any free ocurrence of a variable
can be substituted by a term, as we do when evaluating function applications. For instance,
in the previous example, we can evaluate (λx. x2 + x)(2) into 6 by substituting 2 in the place
of x inside x2 + x; as in

(λx. x2 + x)(2) 22 + 2.x 7→2

This, however, should be done avoiding the unintended binding that happens when a variable
is substituted inside the scope of a binder with the same name, as in the following example:
if we were to evaluate the expression (λx.yx)(λz.xz), where x appears two times (once bound
and once free), we should substitute y by (λz.xz) on (λx.yx) and x (the free variable) would
get tied to x (the bounded variable)

(λy.λx.yx)(λz.xz) (λx.(λz.xz)x).
y 7→(λz.xz)

To avoid this, the bounded x must be given a new name before the substitution, which must
be carried as follows, keeping x free,

(λy.λu.yu)(λz. xz) (λu.(λz.xz)u).
y 7→(λz.xz)

Definition 1.3. The substitution of a variable x by a term N on M is written as M [N/x]
and defined inductively on the structure of lambda terms as

x[N/x] ≡ N,
y[N/x] ≡ y, if y 6= x,

(MP)[N/x] ≡ (M [N/x])(P [N/x]),

(λx.P)[N/x] ≡ λx.P,
(λy.P)[N/x] ≡ λy.P [N/x] if y /∈ FV(N),

(λy.P)[N/x] ≡ λz.P [z/y][N/x] if y ∈ FV(N),

where, in the last clause, z is a fresh variable that is not used anywhere inside any of the other
expressions.

We could define a criterion for choosing exactly what this new variable should be, or simply
accept that this procedure is not well-defined, but only well-defined up to a change on the
name of the variables. This equivalence relation between terms with the same structure but
different variable names is defined formally on the next section. In practice, it is common to
follow the Barendregt’s variable convention, which simply assumes that bound variables have
been renamed to be distinct.

15

1.1.3 Alpha equivalence

Variables are only placeholders; and its name, as we have seen before, is not relevant. Two λ-
terms whose only difference is the naming of the variables are called α-equivalent. For example,
(λx.λy.x y) is α-equivalent to (λf.λx.f x).

The relation of α-equivalence formally captures the fact that the name of a bound variable
can be changed without changing the meaning of the term. This idea appears repeatedly on
mathematics; for example, the renaming of variables of integration or the variable on a limit
are a examples of α-equivalence.∫ 1

0
x2 dx =

∫ 1

0
y2 dy; lim

x→∞

1

x
= lim

y→∞

1

y
.

Definition 1.4. α-equivalence is the smallest relation =α on λ-terms that is both an equiv-
alence relation, that is,

• it is reflexive, M =α M ;
• it is symmetric, if M =α N , then N =α M ;
• and it is transitive, if M =α N and N =α P , then M =α P ;

and compatible with the structure of lambda terms, that is,

• if M =α M
′ and N =α N

′, then MN =α M
′N ′;

• if M =α M
′, then λx.M =α λx.M

′;
• if y does not appear on M , λx.M =α λy.M [y/x].

The last clause captures the idea of freely substituting unused variables inside an expression.

1.1.4 Beta reduction

The core notion of evaluation in λ-calculus is captured by the idea of β-reduction. Until now,
evaluation has been only informally described; it is time to define it as a relation, �β , going
from the initial term to any of its partial evaluations. We consider first a one-step reduction
relationship, called →β , and we extend it later by transitivity to �β .

Ideally, we would like to define evaluation as a series of reductions into a canonical form which
could not be further reduced. Unfortunately, as we will see later, it is not possible to find that
canonical form in general.

Definition 1.5. Single-step β-reduction is the smallest relation on λ-terms capturing the
notion of evaluation and preserving the structure of λ-abstractions and applications. That is,
the smallest relation containing

• (λx.M)N →β M [N/x] for any terms M,N and any variable x,
• MN →β M

′N and NM →β NM
′ for any M,M ′ such that M →β M

′, and
• λx.M →β λx.M

′, for any M,M ′ such that M →β M
′.

The reflexive transitive closure of→β is written as�β . The symmetric closure of�β is called
β-equivalence and is written as =β , or simply =.

16

1.1.5 Eta reduction

Although we lost the extensional view of functions when we decided to adopt the functions
as formulae perspective, some notion of function extensionality in λ-calculus can be partially
recovered by the notion of η-reduction: any term which simply applies a function to the
argument it takes can be reduced to that function. That is, given any termM , the abstraction
λx.Mx can be reduced to M .

Definition 1.6. η-reduction is the smallest relation on λ-terms satisfiying

• λx.Mx→η M , for any x /∈ FV(M),
• MN →η M

′N and NM →η NM
′ for any M,M ′ such that M →η M

′, and
• λx.M →η λx.M

′, for any M,M ′ such that M →η M
′.

Note that, in the particular case where M is itself a λ-abstraction, η-reduction is simply a
particular case of β-reduction. We define single-step βη-reduction as the union of β-reduction
and η-reduction. This relation is written as →βη and its reflexive transitive closure is written
as �βη.

1.1.6 Confluence

It is not possible in general to evaluate a λ-term into a canonical, non-reducible term. We
discuss many examples of this phenomenon in the following sections. However, we will be able
to prove that, in the cases where it exists, it is unique. This property is a consequence of a
sightly more general one called confluence , which can be defined in any abstract rewriting
system.

Definition 1.7 (Confluence). A relation → on a set S is confluent if, given its reflexive
transitive closure� and any terms M,N,P ∈ S, the relations M � N and M � P imply the
existence of some Z ∈ S such that N � Z and P � Z.

Given any binary relation → of which � is its reflexive transitive closure, we can consider
three related properties:

• the confluence property (also called Church-Rosser property) we have just defined;
• the quasidiamond property, similar to the confluence property but assumingM → N

and M → P instead of the weaker hypothesis of M � N and M � P ;
• and the diamond property, which is defined by substituting � by → in the definition

of confluence.

The three properties can be represented respectively as follows (left: confluence, center: qua-
sidiamond property, right: diamond property).

M M M

N P N P N P

Z Z Z

We can show that the diamond property implies confluence; while the quasidiamond property
does not. In fact, the following figure provides a relation satisfying the quasidiamond property

17

but not the confluence property (example from [Sel13]). If we want to prove confluence for a
given relation, we must use the diamond property instead of the quasidiamond property.

•
• •

• • •
• • •

• • •
• • •

.

The statement of�β and�βη being confluent is what we call the Church-Rosser Theorem .
The definition of a relation satisfying the diamond property and whose reflexive transitive
closure is �βη will be the core of our proof.

1.1.7 The Church-Rosser theorem

The proof presented here is due to Tait and Per Martin-Löf; an earlier but more convoluted
proof was discovered by Alonzo Church and Barkley Rosser in 1935 (see [Bar84] and [Pol95]).
It is based on the idea of parallel one-step reduction.

Definition 1.8. We define the parallel one-step reduction relation on λ-terms, B, as the
smallest relation satisfying that the following properties hold for any variable x and any terms
N,N ′,M,M ′ such that M BM ′ and N BN ′:

• reflexivity for variables, xB x;
• parallel application, MN BM ′N ′;
• λ-abstraction congruence, λx.N B λx.N ′;
• parallel substitution, (λx.M)N BM ′[N ′/x];
• and extensionality, λx.MxBM ′, if x 6∈ FV(M).

Using the first three rules, it is trivial to show inductively that this relation is in fact reflexive.

Lemma 1.9. The reflexive transitive closure of B is �βη. In particular, given any λ-terms P
and P ′,

1. if P →βη P
′, then P B P ′;

2. if P B P ′, then P �βη P
′.

Proof. In both cases, we apply induction on the structure of the derivation.

1. All possible ways in which we can arrive at P →βη P
′ imply P B P ′. They are

• (λx.M)N →M [N/x]; where we know that, by parallel substitution and reflexivity
(λx.M)N BM [N/x];

• MN → M ′N and NM → NM ′; where we know that, by induction M BM ′, and
by parallel application and reflexivity, MN BM ′N and NM BNM ′;

• congruence to λ-abstraction, which is a shared property between the two relations;

18

• λx.Mx → M with x 6∈ FV(M); where we can apply extensionality for B and
reflexivity.

2. All the possible ways in which we can deduce M BM ′ imply M →βη M
′. They are

• the trivial one, reflexivity;
• parallel application NM B N ′M ′, where, by induction, we have M � M ′ and
N � N ′. Using two steps, NM � N ′M � N ′M ′ we prove NM � N ′M ′;

• congruence to λ-abstraction λx.N B λx.N ′, where, by induction, we know that
N � N ′, so λx.N � λx.N ′;

• parallel substitution, (λx.M)NBM ′[N ′/x], where, by induction, we know thatM �
M ′ and N � N ′. Using multiple steps, (λx.M)N � (λx.M ′)N � (λx.M ′)N ′ →
M ′[N ′/x];

• extensionality, λx.MxBM ′, where by induction M �M ′, and trivially, λx.Mx�
λx.M ′x.

Because of this, the reflexive transitive closure of B is a subset and a superset of � at the
same time. It follows that they must be equal.

In order to prove that this newly defined relation has the diamond property, we will define a
reduction of a term with the property that it can be reached from any of its parallel one-step
reductions. We first prove a lemma on substitution that will handle later the more challenging
cases of the proof.

Lemma 1.10 (Substitution Lemma). Let M,M ′, U and U ′ be four lambda terms such that
M BM ′ and U B U ′. Then, we have M [U/y]BM ′[U ′/y] for any variable y.

Proof. By structural induction on the derivations of M B M ′ we have the following cases,
depending on what was the last derivation rule we used. Note that we are implicitly assuming
the Barendregt’s variable convention: all variables have been renamed to avoid clashes.

• Reflexivity, M = x. If x precisely is the variable we are substituting, with x = y, we
simply use U B U ′; if not, x 6= y, we use reflexivity on x to get xB x.

• Parallel application. Let M and M ′ be PN and P ′N ′ respectively, where P B P ′ and
N B N ′. By induction hypothesis P [U/y] B P ′[U ′/y] and N [U/y] B N ′[U ′/y], hence
(PN)[U/y]B (P ′N ′)[U ′/y] by definition of substitution.

• Congruence. By induction, N [U/y]BN ′[U ′/y] and therefore λx.N [U/y]B λx.N ′[U ′/y].
• Parallel substitution. Let M and M ′ be (λx.P)N and (λx.P ′)N ′ respectively, where
P BP ′ and N BN ′. By induction hypothesis, P [U/y]BP ′[U ′/y] and N [U/y]BN [U ′/y],
hence ((λx.P)N)[U/y]B P ′[U ′/y][N ′[U ′/y]/x] = P ′[N ′/x][U ′/y].

• Extensionality. Let M and M ′ be λx.Px and λx.P ′x respectively, where x /∈ FV(P). By
induction hypothesis, P B P ′, hence λx.P [U/y]xB P ′[U ′/y].

Definition 1.11. The maximal parallel one-step reduct M∗ of a λ-term M is defined
inductively as

• x∗ = x, if x is a variable;
• (PN)∗ = P ∗N∗;
• ((λx.P)N)∗ = P ∗[N∗/x];
• (λx.N)∗ = λx.N∗;
• (λx.Px)∗ = P ∗, given x /∈ FV(P).

19

Lemma 1.12 (Diamond property of parallel reduction). Given any M ′ such that M BM ′, it
can be proved that M ′ BM∗. Parallel one-step reduction has the diamond property.

Proof. We apply again induction on the possible derivations of M BM ′.

• Reflexivity gives us M ′ = x = M∗.
• Parallel application. By induction, we have P BP ∗ and N BN∗; depending on the form

of P , we have
– P is not a λ-abstraction and P ′N ′ B P ∗N∗ = (PN)∗.
– P = λx.Q and P B P ′ could be derived using congruence to λ-abstraction or ex-

tensionality. On the first case we know by induction hypothesis that Q′ B Q∗ and
(λx.Q′)N ′BQ∗[N∗/x]. On the second case, we can take P = λx.Rx, where, RBR′.
By induction, (R′x) B (Rx)∗ and now we apply the substitution lemma to have
R′N ′ = (R′x)[N ′/x]B (Rx)∗[N∗/x].

• Congruence. Given N BN ′; by induction N ′ BN∗, and depending on the form of N we
have two cases
– N is not of the form Px where x 6∈ FV(P); we can apply congruence to λ-

abstraction.
– N = Px where x /∈ FV(P); and N B N ′ could be derived by parallel application

or parallel substitution. On the first case, given P B P ′, we know that P ′ B P ∗

by induction hypothesis and λx.P ′x B P ∗ by extensionality. On the second case,
N = (λy.Q)x and N ′ = Q′[x/y], where QBQ′. Hence P Bλy.Q′, and by induction
hypothesis, λy.Q′ B P ∗.

• Parallel substitution, with N B N ′ and Q B Q′; we know that M∗ = Q∗[N∗/x] and we
can apply the substitution lemma (lemma 1.10) to get M ′ BM∗.

• Extensionality. We know that P BP ′ and x /∈ FV(P). By induction hypothesis, we have
P ′ B P ∗ = M∗.

Theorem 1.13 (Church-Rosser Theorem). The relation �βη is confluent.

Proof. (Tait, Martin-Löf). Parallel reduction, B, satisfies the diamond property (Lemma 1.12),
which implies the Church-Rosser property. Its reflexive transitive closure is�βη (Lemma 1.9),
whose diamond property implies confluence for →βη.

1.1.8 Normalization

Once the Church-Rosser theorem is proved, we can formally define the notion of a normal form
as a completely reduced lambda term.

Definition 1.14. A λ-term is said to be in β-normal form if β-reduction cannot be applied
to it or any of its subformulas. We define η-normal forms and βη-normal forms analogously.

Fully evaluating λ-terms means to iteratively apply reductions to them until a normal form
is reached. We know, by virtue of Theorem 1.13, that if a normal form for a particular term
exists, then it is unique; but we do not know whether a normal form actually exists. We say
that a term has a normal form if it can be reduced to a normal form.

Definition 1.15. A term is weakly normalizing if there exists a sequence of reductions from
it to a normal form. A term is strongly normalizing if every possible sequence of reductions is
finite.

20

A consequence of Theorem 1.13 is that a weakly normalizing term has a unique normal form.
Strong normalization implies weak normalization, but the converse is not true; as an example,
the term Ω = (λx.(xx))(λx.(xx)) is neither weakly nor strongly normalizing; and the term
(λx.λy.y) Ω (λx.x) is weakly but not strongly normalizing. It can be reduced to a normal form
as

(λx.λy.y) Ω (λx.x) −→β (λx.x).

1.1.9 Standardization and evaluation strategies

We would like to find a β-reduction strategy such that, if a term has a normal form, it can
be found by following that strategy. Our basic result will be the standardization theorem,
which shows that, if a β-reduction to a normal form exists, then a sequence of β-reductions
from left to right on the λ-expression will be able to find it. From this result, we will be able
to prove that the reduction strategy that always reduces the leftmost β-abstraction will always
find a normal form if it exists. This section follows [Kas00], [Bar94] and [Bar84].

Definition 1.16. Any two lambda terms M and N are related by →n, and we write this as
M →n N , when N can be obtained by β-reducing the n-th leftmost β-reducible application in
the lambda term M . We call →1 the leftmost one-step reduction and we write it as →l;
accordingly, �l is its reflexive transitive closure.

Definition 1.17 (Standard sequence). Let M0,M1, . . . ,Mk be a sequence of lambda terms.
A sequence of reductions M0 →n1 M1 →n2 M2 →n3 · · · →nk

Mk is standard if n0 ≤ n1 ≤
· · · ≤ nk, that is, {ni} is a non-decreasing sequence.

We will prove that every term that can be reduced to a normal form can be reduced to it using
a standard sequence. This will imply the existence of an optimal beta reduction strategy that
will always reach a normal form if one exists.

Theorem 1.18 (Standardization theorem). IfM �β N , there exists a standard sequence from
M to N .

Proof. (Kashima, 2000) We start by defining the following two binary relations. The first one
is the minimal reflexive transitive relation on λ-terms capturing a form of β-reduction called
head β-reduction; that is, it is the minimal relation �h such that

• A�h A,
• (λx.A0)A1A2 . . . Am �h A0[A1/x]A2 . . . Am, for any term of the form A1A2 . . . An, and
• A�h C for any terms A,B,C such that A�h B �h C.

The second one is called standard reduction. It is the minimal relation between λ-terms such
that

• M �h x implies M �s x, for any variable x,
• M �h AB, A�s C and B �s D, imply M �s CD,
• M �h λx.A and A�s B imply M →s λx.B.

We can check the following trivial properties by structural induction

1. �h implies �l,
2. �s implies the existence of a standard β-reduction,
3. �s is reflexive, by induction on the structure of a term,

21

4. if M �h N , then MP �h NP ,
5. if M �h N �s P , then M �s P ,
6. if M �h N , then M [P/x]�h N [P/x],
7. if M �s N and P �s Q, then M [P/z]�s N [Q/z].

Now we can prove that, given any lambda term K, the relation K �s (λx.M)N implies
K �s M [N/x]. From the fact that K �s (λx.M)N , we know that there must exist P and Q
such that K �h PQ, P �s λx.M and Q �s N ; and from P �s λx.M , we know that there
exists W such that P �h λx.W and W �s M . From all this information, we can conclude
that

K �h PQ�h (λx.W)Q�W [Q/x]�s M [N/x];

which, by the third clause (3.), implies K �s M [N/x].

We finally prove that, if K �s M →β N , then K �s N . This proves the theorem, as every β-
reduction M �s M �β N implies M �s N . We analyze the possible ways in which M →β N
can be derived.

1. If K �s (λx.M)N →β M [N/x], it has been already shown that K �s M [N/x].
2. If K �s MN →β M

′N with M →β M
′, we know that there exist K �h WQ such that

W �s M and Q �s N ; by induction W �s M
′, and then WQ �s M

′N . The case
K �s MN →β MN ′ is entirely analogous.

3. If K �s λx.M →β λx.M ′, with M →β M ′, we know that there exists W such that
K �h λx.W and W �s M . By induction W �s M

′, and K �s λx.M
′.

Corollary 1.19 (Leftmost reduction theorem). We define the leftmost reduction strategy
as the strategy that reduces the leftmost β-reducible application at each step. If M has a normal
form, the leftmost reduction strategy will lead to it.

Proof. Note that, if M →n N , where N is in β-normal form; n must be exactly 1. If M has a
normal form and M �β N , by Theorem 1.18, there must exist a standard sequence from M
to N whose last step is of the form→l; as the sequence is non-decreasing, every step has to be
of the form →l.

1.1.10 SKI combinators

As we have seen in previous sections, untyped λ-calculus is already a very syntactically simple
system; but it can be further reduced to a few λ-terms without losing its expressiveness. In
particular, untyped λ-calculus can be essentially recovered from only two of its terms; these
are

• S = λx.λy.λz.xz(yz), and
• K = λx.λy.x.

A language can be defined with these combinators and function application. Every λ-term can
be translated to this language and recovered up to =βη equivalence. For example, the identity
λ-term, I, can be written as I = λx.x = SKK.

It is common to also add the I = λx.x as a basic term to this language, even if it can be written
in terms of S and K, as a way to ease the writing of long complex terms. Terms written with
these combinators are called SKI-terms.

22

The language of SKI-terms can be defined by the Backus-Naus form

SKI ::= x | (SKI SKI) | S | K | I,

where x can represent any free variable.

Definition 1.20. The λ-transform of a SKI-term is a λ-term defined recursively as

• L(x) = x, for any variable x;
• L(I) = (λx.x);
• L(K) = (λx.λy.x);
• L(S) = (λx.λy.λz.xz(yz));
• L(XY) = L(X)L(Y), where X and Y are any two SKI-terms.

Definition 1.21. Before translating back lambda terms to SKI combinators, we need the
auxiliary notion of bracket abstraction. The bracket abstraction of the SKI-term W on the
variable x is written as [x].W and defined recursively as

• [x].x = I;
• [x].U = KU , if x /∈ FV(U);
• [x].V x = V , if V is a term such that x /∈ FV(V);
• [x].V V ′ = S([x].V)([x].V ′), otherwise.

where FV is the set of free variables as in Definition 1.2.

Definition 1.22 (SKI abstraction). The SKI abstraction of a λ-term P , written as H(P) is
defined recursively as

• H(x) = x, for any variable x;
• H(MN) = H(M)H(N);
• H(λx.M) = [x].H(M);

where [x].U is the bracket abstraction of the SKI-term U .

Theorem 1.23 (SKI combinators and lambda terms). The SKI-abstraction is a retraction of
the Lambda-transform of the term, that is, for any SKI-term U , we have that H(L(U)) = U .

Proof. By structural induction on U ,

• HL(x) = x, for any variable x;
• HL(I) = [x].x = I;
• HL(K) = [x].[y].x = [x].Kx = K;
• HL(S) = [x].[y].[z].xz(yz) = [x].[y].Sxy = S; and
• HL(MN) = MN .

In general this translation is not an isomorphism. For instance, L(H(λu.vu)) = L(v) = v.
However, the λ-terms can be essentially recovered if we relax equality between λ-terms to
mean =βη.

Theorem 1.24 (Recovering lambda terms from SKI combinators). For any λ-term M ,

L(H(M)) =βη M.

23

Proof. We can firstly prove by structural induction that L([x].M) = λx.L(M) for any M . In
fact, we know that L([x].x) = λx.x for any variable x; we also know that

L([x].MN) = L(S([x].M)([x].N))

= (λx.λy.λz.xz(yz))(λx.L(M))(λx.L(N))

= λz.L(M)L(N);

also, if x is free in M , we know that L([x].M) = L(KM) = (λx.λy.x)L(M) =β λx.L(M); and
finally, if x is free in U , we have that L([x].Ux) = L(U) =η λx.L(U)x. Now we can use this
result to prove the main theorem. Again by structural induction,

• LH(x) = x;
• LH(MN) = LH(M)LH(N) = MN ;
• LH(λx.M) = L([x].H(M)) =βη λx.LH(M) = λx.M .

1.1.11 Turing completeness

Three different notions of computability were proposed in the 1930s,

• the general recursive functions were defined by Herbrand and Gödel; they form a
class of functions over the natural numbers closed under composition, recursion and
unbounded search;

• the λ-definable functions were proposed by Church; they are functions on the natural
numbers that can be represented by λ-terms;

• the Turing computable functions, proposed by Alan Turing as the functions that can
be computed using Turing machines, theoretical models of a machine.

In [Chu36] and [Tur37], Church and Turing proved the equivalence of the three definitions. This
lead to the metatheoretical Church-Turing thesis, which postulated the equivalence between
these models of computation and the intuitive notion of effective calculability mathematicians
were using. In practice, this means that the λ-calculus, as a programming language, is as
expressive as Turing machines; it can define every computable function. It is Turing-complete.

A complete implementation of untyped λ-calculus is discussed in Chapter 2.1; and a detailed
description on how to use the untyped λ-calculus as a programming language is given in
Chapter 2.5. General recursive functions, for example, can be encoded using these techniques,
thus proving that it is in fact Turing complete (see 2.5.7). Note that the lambda calculus has
even a cost model allowing us to develop complexity theory within it (see [DLM08]). It is
however beyond the scope of this text.

1.2 Simply typed λ-calculus

Types were introduced in mathematics as a response to the Russell’s paradox found in the first
naive axiomatizations of set theory (see Corollary 4.19). An attempt to use untyped λ-calculus
as a foundational logical system by Church suffered from a variant called the Rosser-Kleene
paradox and types were a method to avoid it, as detailed in [KR35] and [Cur46]. Once types are
added to the calculus, a deep connection between λ-calculus and logic arises. This connection
will be discussed in Section 1.3.

24

In programming languages, types indicate how the programmer intends to use the data, prevent
errors and enforce certain invariants and levels of abstraction in programs. The role of types in
λ-calculus when interpreted as a programming language closely matches the usual notion, and
typed λ-calculus has been the basis of many modern type systems for programming languages.

Simply typed λ-calculus is a refinement of the untyped λ-calculus. On it, each term has
a type that limits how it can be combined with other terms. Only a set of basic types and
function types between any to types are considered in this system. Whereas functions in
untyped λ-calculus can be applied over any term, once we introduce types, a function of type
A→ B can only be applied over a term of type A to produce a new term of type B. Note that
A and B can be, themselves, function types.

We present now an account of simply typed λ-calculus based on [HS08]. Our description will
rely only on the arrow type constructor →. While other presentations of simply typed λ-
calculus extend this definition with type constructors providing pairs or union types, as it is
done in [Sel13], it is clearer to present first a minimal version of the λ-calculus. Such extensions
will be explained later, and its exposition will profit from the logical interpretation that we
develop in Section 1.3.3.

1.2.1 Simple types

We start by assuming a set of basic types. Those basic types would correspond, in a pro-
gramming language interpretation, with the fundamental types of the language, such as the
strings or the integers. Minimal presentations of λ-calculus tend to use only one basic type.

Definition 1.25 (Simple types). The set of simple types is generated by the Backus-Naur
form Type ::= ι | Type → Type, where ι can be any basic type. That is to say that, for every
two types A,B, there exists a function type A→ B between them.

1.2.2 Typing rules for simply typed λ-calculus

We define the terms of simply typed λ-calculus using the same constructors we used on the
untyped version. The set of typed lambda terms is given by the following Backus-Naus
form.

Term ::= x | Term Term | λxType.Term.

The main difference here with Definition 1.1 is that every bound variable has a type, and
therefore, every λ-abstraction of the form (λxA.m) can be applied only over terms type A; if
m is of type B, this term will be of type A→ B.

However, the set of raw typed λ-terms contains some meaningless terms under this type inter-
pretation, such as (λxA.m)(λxA.m). In particular, we cannot apply a function of type A→ B
to a term of type A→ B; as it can only be applied to a term of type A. Typing rules will give
terms this desired expressive power. Only a subset of the raw lambda terms can be obtained
using typing rules, and we will choose to work only with this subset. When a particular term
m has type A, we write this relation as m : A. The : symbol should be read as ”is of type”.

Definition 1.26. A typing context is a sequence of type assumptions Γ = (x1 : A1, . . . , xn :
An), where no variable xi appears more than once. We will implicitly assume that the order
in which these assumptions appear does not matter.

25

Every typing rule assumes a typing context, usually denoted by Γ. Concatenation of two typing
contexts Γ and ∆ is written with a comma, as in Γ,∆; and the fact that ψ follows from Γ is
written as Γ ` ψ. Typing rules are written as rules of inference; the premises are listed above
and the conclusion is written below the line.

1. The (var) rule simply makes explicit the type of a variable from the context. That is, a
context that assumes that x : A can be written as Γ, x : A; and we can trivially deduce
from it that x : A.

(var)
Γ, x : A ` x : A

2. The (abs) rule declares that the type of a λ-abstraction is the type of functions from the
variable type to the result type. If a term m : B can be built from the assumption that
x : A, then λxA.m : A→ B. It acts as an introduction of function terms.

Γ, x : A ` m : B
(abs)

Γ ` λx.m : A→ B
3. The (app) rule declares the type of a well-typed application. A term f : A→ B applied

to a term a : A is a term f a : B. It acts as an elimination of function terms.

Γ ` f : A→ B Γ ` a : A
(app)

Γ ` f a : B

A term m is typeable in a giving context Γ if a typing judgment of the form Γ ` m : T can be
derived using only the previous typing rules. From now on, we only consider typeable terms
as the terms of simply typed λ-calculus: the set of λ-terms of simply typed λ-calculus is only
a subset of the terms of untyped λ-calculus.

Example 1.27 (Typeable and non-typeable terms). The term λf.λx.f(fx) is typeable. If we
abbreviate Γ = f : A→ A, x : A, the detailed typing derivation can be written as

(var)
Γ ` f : A→ A

(var)
Γ ` x : A

(var)
Γ ` f : A→ A

(app)
Γ ` f x : A

(app)
f : A→ A, x : A ` f(fx) : A

(abs)
f : A→ A ` λx.f(fx) : A→ A

(abs)
` λf.λx.f(fx) : (A→ A)→ A→ A

The term (λx.x x), however, is not typeable. If x were of type ψ, it also should be of type
ψ → σ for some σ in order for x x to be well-typed; but ψ ≡ ψ → σ is not solvable, as it can
be shown by structural induction on the term ψ.

It can be seen that the typing derivation of a term somehow encodes the complete λ-term. If
we were to derive the term bottom-up, there would be only one possible choice at each step on
which rule to use. In Section 1.2.4 we will discuss a type inference algorithm that determines
if a type is typeable and what its type should be, and we will make precise this intuition.

1.2.3 Curry-style types

Two different approaches to typing in λ-calculus are commonly used.

• Church-style typing, also known as explicit typing, originated from the work of Alonzo
Church in [Chu40], where he described a simply-typed lambda calculus with two basic

26

types. The term’s type is defined as an intrinsic property of the term; and the same term
has to be always interpreted with the same type.

• Curry-style typing, also known as implicit typing, creates a formalism where every
single term can be given an infinite number of possible types. This technique is called
polymorphism when it is a formal part of the language; but here, it is only used to allow
us to build intermediate terms without having to directly specify their type.

As an example, we can consider the identity term I = λx.x. It would have to be defined
for each possible type. That is, we should consider a family of different identity terms IA =
λx.x : A → A for each type A. Curry-style typing allows us to consider type templates with
type variables, and to type the identity as I = λx.x : σ → σ where σ is a free type variable.
The difference between the two typing styles is then not a mere notational convention, but a
difference on the expressive power that we assign to each term.

Assuming an infinite numerable set of type variables, we define type templates as in-
ductively generated by TypeTemp ::= ι | Tvar | TypeTemp → TypeTemp, where ι is a basic
type and TVar is a type variable. That is, all basic types and type variables are atomic type
templates; and we also consider the arrow type between two type templates. The interesting
property of type variables is that they can act as placeholders and be substituted for other
type templates.

Definition 1.28. A type substitution ψ is any function from type variables to type tem-
plates. Any type substitution ψ can be extended to a function between type templates called
ψ and defined inductively by

• ψι = ι, for any basic type ι;
• ψσ = ψσ, for any type variable σ;
• ψ(A→ B) = ψA→ ψB, for any two type templates A and B.

That is, the type template ψA is the same as A but with every type variable replaced according
to the substitution ψ.

We consider a type to be more general than other if the latter can be obtained by applying
a substitution to the former. In this case, the latter is called an instance of the former.
For example, A → B is more general than its instance (C → D) → B, where A has been
substituted by C → D. A crucial property of simply typed λ-calculus is that every type has a
most general type, called its principal type; this is proved in Theorem 1.31.

Definition 1.29 (Principal type). A closed λ-term M has a principal type π if M : π, and
given any typing judgment M : τ , we can obtain τ as an instance of π, that is, σπ = τ .

1.2.4 Unification and type inference

The unification of two type templates is the construction of two substitutions making them
equal as type templates; that is, the construction of a type that is a particular instance of both
at the same time. We will not only aim for an unifier but for the most general one between
them, the universal one.

A substitution ψ is called an unifier of two sequences of type templates A1 . . . , An and
B1, . . . , Bn if ψAi = ψBi for all i = 1, . . . , n. We say that it is the most general unifier if
given any other unifier φ exists a substitution ϕ such that φ = ϕ ◦ ψ.

27

Lemma 1.30 (Unification). If an unifier of {A1, . . . , An} and {B1, . . . , Bn} exists, the most
general unifier is unify(A1, . . . , An;B1, . . . , Bn), which is partially defined by induction as fol-
lows, where x is any type variable.

1. unify(x;x) = id and unify(ι, ι) = id.
2. unify(x;B) = (x 7→ B), the substitution that only changes x by B; if x does not occur in

B. The algorithm fails if x occurs in B.
3. unify(A;x) is defined symmetrically.
4. unify(A→ A′;B → B′) = unify(A,A′;B,B′).
5. unify(A,A1, . . . ;B,B1, . . .) = ψ◦ρ where ρ = unify(A1, . . . ;B1, . . .) and ψ = unify(ρA; ρB).
6. unify fails in any other case.

Moreover, the two sequences of types, A1 . . . , An and B1, . . . , Bn, have no unifier if and only
if unify(A1, . . . , An;B1, . . . , Bn) fails.

Proof. It is easy to notice by structural induction that, if unify(A;B) exists, it is in fact an
unifier. If the unifier fails in clause 2, there is obviously no possible unifier: the number of
constructors on the first type template will be always smaller than the second one. If the
unifier fails in clause 6, the type templates are fundamentally different, they have different
head constructors and this is invariant to substitutions. This proves that the failure of the
algorithm implies the non existence of an unifier.

We now prove that, if A and B can be unified, unify(A,B) is the most general unifier. For
instance, in the clause 2, if we call ψ = (x 7→ B) and, if η were another unifier, then ηx =
ηx = ηB = η(ψ(x)); hence η ◦ ψ = η by definition of ψ. A similar argument can be applied to
clauses 3 and 4. In the clause 5, we suppose the existence of some unifier ψ′. The recursive call
gives us the most general unifier ρ of A1, . . . , An and B1, . . . , Bn; and since it is more general
than ψ′, there exists an α such that α ◦ ρ = ψ′. Now, α(ρA) = ψ′(A) = ψ′(B) = α(ρB), hence
α is a unifier of ρA and ρB; we can take the most general unifier to be ψ, so β ◦ ψ = α; and
finally, β ◦ (ψ ◦ ρ) = α ◦ ρ = ψ′.

We also need to prove that the unification algorithm terminates. Firstly, we note that every
substitution generated by the algorithm is either the identity or it removes at least one type
variable. We can perform induction on the size of the argument on all clauses except for clause
5, where a substitution is applied and the number of type variables is reduced. Therefore, we
need to apply induction both on the number of type variables and the size of the arguments.

Using unification, we can write an algorithm inferring types.

Theorem 1.31 (Type inference). The function typeinfer(M,B), partially defined as follows,
finds the most general substitution σ such that x1 : σA1, . . . , xn : σAn ` M : σB is a valid
typing judgment if it exists; and fails otherwise.

1. typeinfer(xi : Ai,Γ ` xi : B) = unify(Ai, B);
2. typeinfer(Γ ` MN : B) = ϕ ◦ ψ, where ψ = typeinfer(Γ ` M : X → B) and ϕ =

typeinfer(ψΓ ` N : ψX) for a fresh type variable X;
3. typeinfer(Γ ` λx.M : B) = ϕ ◦ ψ where ψ = unify(B; z → z′) and ϕ = typeinfer(ψΓ, x :

ψz `M : ψz′) for fresh type variables z, z′.

Note that the existence of fresh type variables is always asserted by the set of type variables
being infinite. The output of this algorithm is defined up to a permutation of type variables.

28

Proof. The algorithm terminates by induction on the size ofM . It is easy to check by structural
induction that the inferred type judgments are in fact valid. If the algorithm fails, by Lemma
1.30, it is also clear that the type inference is not possible.

On the first case, the type is obviously the most general substitution by virtue of the previous
Lemma 1.30. On the second case, if α were another possible substitution, in particular, it
should be less general than ψ, so α = β ◦ψ. As β would be then a possible substitution making
ψΓ ` N : ψx valid, it should be less general than ϕ, so α = β ◦ ψ = γ ◦ ϕ ◦ β. On the third
case, if α were another possible substitution, it should unify B to a function type, so α = β ◦ψ.
Then β should make the type inference ψΓ, x : ψz ` M : ψz′ possible, so β = γ ◦ ϕ. We have
proved that the inferred type is in general the most general one.

Corollary 1.32 (Principal type property). Every typeable pure λ-term has a principal type.

Proof. Given a typeable term M , we can compute typeinfer(x1 : A1, . . . , xn : An ` M : B),
where x1, . . . , xn are the free variables on M and A1, . . . , An, B are fresh type variables. By
virtue of Theorem 1.31, the result is the most general type of M if we assume the variables to
have the given types.

1.2.5 Subject reduction and normalization

A crucial property is that type inference and β-reductions do not interfere with each other. A
term can be β-reduced without changing its type.

Theorem 1.33 (Subject reduction). Types are preserved on β-reductions; that is, if Γ `M : A
and and M �β M

′, then Γ `M ′ : A.

Proof. If M ′ has been derived by β-reduction, M = (λx.P) and M ′ = P [Q/x]. Γ ` M : A
implies Γ, x : B ` P : A and Γ ` Q : B. Again by structural induction on P (where the only
crucial case uses that x and Q have the same type) we can prove that substitutions do not
alter the type and thus, Γ, Q : B ` P [Q/x] : A.

We have seen previously that the term Ω = (λx.xx)(λx.xx) is not weakly normalizing; but it
is also non-typeable. In this section we will prove that, in fact, every typeable term is strongly
normalizing. We start proving some lemmas about the notion of reducibility, which will lead
us to the Strong Normalization Theorem. This proof will follow [GTL89].

The notion of reducibility is an abstract concept originally defined by Tait in [Tai67] which
we will use to ease this proof. It should not be confused with the notion of β-reduction. We
inductively define the set RedT of reducible terms of type T for basic and arrow types.

• If t : T where T is a basic type, t ∈ RedT if t is strongly normalizable.
• If t : U → V , an arrow type, t ∈ RedU→V if t u ∈ RedV for all u ∈ RedU .

We prove three properties of reducibility at the same time in order to use mutual induction.

Proposition 1.34 (Properties of reducibility). The following three properties hold;

1. if t ∈ RedT , then t is strongly normalizable;
2. if t ∈ RedT and t→β t

′, then t′ ∈ RedT ; and
3. if t is not a λ-abstraction and t′ ∈ RedT for every t→β t

′, then t ∈ RedT .

29

Proof. For basic types, 1. holds by definition; 2. holds by the definition of strong normalization;
and 3. follows from the fact that if any one-step β-reduction leads to a strongly normalizing
term then the term itself must be strongly normalizing.

For arrow types,

1. if x : U is a variable, we can inductively apply (3) to get x ∈ RedU ; then, t x ∈ RedV is
strongly normalizing and t in particular must be strongly normalizing;

2. if t→β t
′ then for every u ∈ RedU , t u ∈ RedV and t u→β t

′ u. By induction, t′ u ∈ RedV ;
3. if u ∈ RedU , it is strongly normalizable. As t is not a λ-abstraction, he term t u can only

be reduced to t′ u or t u′. If t →β t
′; by induction, t′ u ∈ RedV . If u →β u

′, we could
proceed by induction over the length of the longest chain of β-reductions starting from u
and assume that t u′ is irreducible. In every case, we have proved that t u only reduces
to already reducible terms; thus, t u ∈ RedU .

Lemma 1.35 (Abstraction lemma). If v[u/x] ∈ RedV for all u ∈ RedU , then λx.v ∈ RedU→V .

Proof. We apply induction over the sum of the lengths of the longest β-reduction sequences
from v[x/x] and u. The term (λx.v)u can be β-reduced to

• v[u/x] ∈ RedU ; in the base case of induction, this is the only choice;
• (λx.v′)u where v →β v

′, and, by induction, (λx.v′)u ∈ RedV ;
• (λx.v)u′ where u→β u

′, and, again by induction, (λx.v)u′ ∈ RedV .

Thus, by Proposition 1.34, (λx.v) ∈ RedU→V .

A final lemma is needed before the proof of the Strong Normalization Theorem. It is a gener-
alization of the main theorem, useful because of the stronger induction hypothesis it provides.

Lemma 1.36 (Strong Normalization lemma). Given an arbitrary t : T with free variables
x1 : U1, . . . , xn : Un, and reducible terms u1 ∈ RedU1 , . . . , un ∈ RedU2, we know that

t[u1/x1][u2/x2] . . . [un/xn] ∈ RedT .

Proof. We call t̃ = t[u1/x1][u2/x2] . . . [un/xn] and apply structural induction over t,

• if t = xi, then we simply use that ui ∈ RedUi ,
• if t = v w, then we apply induction hypothesis to get ṽ ∈ RedR→T , w̃ ∈ RedR for some

type R. Then, by definition, t̃ = ṽ w̃ ∈ RedT ,
• if t = λy.v : R→ S, then by induction ṽ[r/y] ∈ RedS for every r : R. We can then apply

Lemma 1.35 to get that t̃ = λy.ṽ ∈ RedR→S .

Theorem 1.37 (Strong Normalization Theorem). In simply typed λ-calculus, all terms are
strongly normalizing.

Proof. It is the particular case of Lemma 1.36 where we take ui = xi.

Every term normalizes in simply typed λ-calculus and every computation ends, therefore,
simply typed λ-calculus cannot be Turing complete.

30

1.3 The Curry-Howard correspondence

1.3.1 Extending the simply typed λ-calculus

We will add now special syntax for some terms and types, such as pairs, unions and unit
types. This new syntax will make our λ-calculus more expressive, but the unification and type
inference algorithms will continue to work in a similar way. The previous proofs and algorithms
can be extended to cover all the new cases.

The new set of simple types is given by the following Backus-Naur form,

Type ::= ι | Type→ Type | Type× Type | Type + Type | 1 | 0,

where ι is any basic type. That is to say that, for any given types A,B, there exists a product
type A×B, consisting of the pairs of elements where the first one is of type A and the second
one of type B; there exists the union type A + B, consisting of a disjoint union of tagged
terms from A or B; an unit type 1 with only an element, and an empty or void type 0 without
inhabitants.

The new set of typed lambda terms is given by the following Backus-Naur form.

Term ::= x | TermTerm | λx.Term |
〈Term,Term〉 | π1Term | π2Term |
inl Term | inr Term | case Term of Term; Term |
abort Term | ∗.

And the use of these new terms is formalized by the following extended set of typing rules.

1. The (var) rule simply makes explicit the type of a variable from the context.

(var)
Γ, x : A ` x : A

2. The (abs) and (app) rules construct and apply function terms.

Γ, x : A ` m : B
(abs)

Γ ` λx.m : A→ B

Γ ` f : A→ B Γ ` a : A
(app)

Γ ` f a : B

3. The (pair) rule constructs pairs of elements. The (π1) and (π2) rules destruct a pair into
its projections.

Γ ` a : A Γ ` b : B(pair)
Γ ` 〈a, b〉 : A×B

Γ ` m : A×B
(π1)

Γ ` π1 m : A
Γ ` m : A×B

(π2)
Γ ` π2 m : B

4. The (inl) and (inr) rules provide the two ways of creating a tagged union type, while the
(case) rule extracts a term from a union type applying case analysis. Note that we write
[a].n and [b].p to explicitly indicate that n and p can depend on a and b, respectively.

Γ ` a : A(inl)
Γ ` inl a : A+B

Γ ` b : B(inr)
Γ ` inr b : A+B

Γ ` m : A+B Γ, a : A ` n : C Γ, b : B ` p : C
(case)

Γ ` (case m of [a].n; [b].p) : C

5. The (∗) rule simply creates the only element of type 1.

31

(∗)
Γ ` ∗ : 1

6. The (abort) rule extracts a term of any type from the void type. If we reach a void type,
we have reached an error, and thus we can throw any typed exception.

Γ ` m : 0(abort)
Γ ` abortA m : A

The β-reduction of terms is defined the same way as for the untyped λ-calculus; except for the
inclusion of β-rules governing the new terms, each for every new destruction rule.

1. Function application, (λx.m) n→β m[n/x].
2. First projection, π1 〈m,n〉 →β m.
3. Second projection, π2 〈m,n〉 →β n.
4. Case rule, (case m of [x].n; [y].p) →β n[a/x] if m is of the form m = inl a; and

(case m of [x].n; [y].p)→β p[b/y] if m is of the form m = inr b.

On the other hand, new η-rules are defined, each for every new construction rule.

1. Function extensionality: λx.f x→η f for any f : A→ B.
2. Definition of product: 〈π1 m,π2 m〉 →η m for any m : A×B.
3. Uniqueness of the unit: t→η ∗ for any t : 1.
4. Case rule: (case m of [a].p[inl a/c]; [b].p[inr b/c])→η p[m/c] for any m : A+B.

1.3.2 Natural deduction

The natural deduction is a logical system due to Gentzen. We introduce it here following
[Sel13] and [Wad15]. Its relationship with the simply-typed lambda calculus will be made
explicit in Section 1.3.3.

We use the logical binary connectives→,∧,∨, and two unary connectives, > and ⊥, represent-
ing respectively the trivially true and false propositions. The rules defining natural deduction
come in pairs; there are introducers and eliminators for every connective. Every introducer
uses a set of assumptions to generate a formula and every eliminator gives a way to extract
precisely that set of assumptions.

1. Every axiom on the context can be used.

(Ax)
Γ, A ` A

2. Introduction and elimination of the → connective. Note that the elimination rule corre-
sponds to modus ponens and the introduction rule corresponds to the deduction theorem.

Γ, A ` B
(I→)

Γ ` A→ B
Γ ` A→ B Γ ` A (E→)

Γ ` B
3. Introduction and elimination of the ∧ connective. Note that the introduction in this case

takes two assumptions, and there are two different elimination rules.

Γ ` A Γ ` B (I∧)Γ ` A ∧B
Γ ` A ∧B (E1

∧)Γ ` A
Γ ` A ∧B (E2

∧)Γ ` B
4. Introduction and elimination of the ∨ connective. Here, we need two introduction rules

to match the two assumptions we use on the eliminator.

32

Γ ` A (I1
∨)Γ ` A ∨B

Γ ` B (I2
∨)Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
(E∨)Γ ` C

5. Introduction for >. It needs no assumptions and, consequently, there is no elimination
rule for it.

(I>)Γ ` >
6. Elimination for ⊥. It can be eliminated in all generality, and, consequently, there are

no introduction rules for it. This elimination rule represents the "ex falsum quodlibet"
principle that says that falsity implies anything.

Γ ` ⊥ (E⊥)Γ ` C

Proofs on natural deduction are written as deduction trees, and they can be simplified according
to some simplification rules, which can be applied anywhere on the deduction tree. On these
rules, a chain of dots represents any given part of the deduction tree.

1. An implication and its antecedent can be simplified using the antecedent directly on the
implication.

[A]

...
1

B
A→ B

...
2

A
B
...

=⇒

...
2

A

...
1

B
...

2. The introduction of an unused conjunction can be simplified as

...
1

A

...
2

B
A ∧B
A
...

=⇒

...
1

A
...

and, similarly, on the other side as follows.

...
1

A

...
2

B
A ∧B
B
...

=⇒

...
2

B
...

3. The introduction of a disjunction followed by its elimination can be also simplified

...
1

A
A ∨B

[A]

...
2

C

[B]

...
3

C
C
...

=⇒

...
1

A

...
2

C
...

33

and a similar pattern is used on the other side of the disjunction.

...
1

B
A ∨B

[A]

...
2

C

[B]

...
3

C
C
...

=⇒

...
1

B

...
3

C
...

1.3.3 Propositions as types

In 1934, Curry observed in [Cur34] that the type of a function (A→ B) could be read as an
implication and that the existence of a function of that type was equivalent to the provabil-
ity of the proposition. Previously, the Brouwer-Heyting-Kolmogorov interpretation of
intuitionistic logic had given a definition of what it meant to be a proof of an intuitionistic
formula, where a proof of the implication (A→ B) was a function converting a proof of A into
a proof of B. It was not until 1969 that Howard pointed a deep correspondence between the
simply-typed λ-calculus and the natural deduction at three levels

1. propositions are types;
2. proofs are programs; and
3. simplification of proofs is evaluation of programs.

In the case of simply typed λ-calculus and natural deduction, the correspondence starts when
we describe the following one-to-one relation between types and propositions.

Types Propositions
Unit type (1) Truth (>)

Product type (×) Conjunction (∧)
Union type (+) Disjunction (∨)

Function type (→) Implication (→)
Empty type (0) False (⊥)

Where, in particular, the negation of a proposition ¬A is interpreted as the fact that that
proposition implies falsehood, A→ ⊥; and its corresponding type is a function from the type
A to the empty type, A→ 0.

Now it is easy to notice that every deduction rule of Section 1.3.2 has a correspondence with a
typing rule of Section 1.3.1. The only distinction between them is the appearance of λ-terms
on the first set of rules. As every typing rule results on the construction of a particular kind
of λ-term, they can be interpreted as encodings of proofs in the form of derivation trees. That
is, terms are proofs of the propositions represented by their types.

Example 1.38 (Curry-Howard correspondence example). In particular, the typing derivation
of the term

λa.λb.〈a, b〉
can be seen as a deduction tree proving A→ B → A ∧B; as the following diagram shows.

a : A b : B (pair)
〈a, b〉 : A×B

(abs)
λb.〈a, b〉 : B → A×B

(abs)
λa.λb.〈a, b〉 : A→ B → A×B

34

Furthermore, under this interpretation, simplification rules are precisely β-reduction
rules. This makes execution of λ-calculus programs correspond to proof simplification on nat-
ural deduction. The Curry-Howard correspondence is then not only a simple bijection between
types and propositions, but a deeper isomorphism regarding the way they are constructed,
used in derivations, and simplified.

Example 1.39 (Curry-Howard simplification example). As an example of this duality, we will
write a proof/term of the proposition/type A→ B +A and we are going to simplify/compute
it using proof simplification rules/β-rules. Similar examples can be found in [Wad15].

We start with the following derivation tree;

m : [A+B]
c : A (inr)

inr c : B +A
c : B (inl)

inl c : B +A
(case)

case m of [c].inr c; [c].inl c : B +A
(abs)

λm.case m of [c].inr c; [c].inl c : A+B → B +A
a : A (inl)

inl a : A+B
(app)

(λm.case m of [c].inr c; [c].inl c) (inl a) : B +A
(abs)

λa.((λm.case m of [c].inr c; [c].inl c) (inl a)) : A→ B +A

which is encoded by the term λa.(λm.case m of [c].inr c; [c].inl c) (λa.inl a). We apply the
simplification rule/β-rule of the implication/function application to get

z : A (inl)
inl z : A+B

a : A (inr)
inr a : B +A

b : B (inl)
inl b : B +A

(case)
case (inl z) of [a].inr a; [b].inl b : B +A

(abs)
λz.case (inl z) of [a].inr a; [b].inl b : A→ B +A

which is encoded by the term λz.case (inl z) of [a].inr a; [b].inl b. We finally apply the case
simplification/reduction rule to get

a : A (inr)
inr a : B +A

(abs)
λa.inr a : A→ B +A

which is encoded by λa.inr a.

On Chapter 2.1, we develop a λ-calculus interpreter which is able to check and simplify proofs
in intuitionistic logic. This example could be checked and simplified by this interpreter as it is
shown at Figure 1.1.

1.4 Other type systems

1.4.1 λ-cube

The λ-cube is a taxonomy for Church-style type systems given by Barendregt in [Bar92].
It describes eight type systems based on the λ-calculus along three axes, representing three
properties of the systems.

1. Parametric polymorphism: terms that depend on types. This is achieved via univer-
sal quantification over types. It allows type variables and binders for them. An example

35

Figure 1.1: An example of the Curry-Howard correspondence in Mikrokosmos.

is the following parametric identity function where Λ acts as a λ for types, and τ is a
type variable.

id ≡ Λτ.λx.x : ∀τ.τ → τ,

It can be applied to any particular type A to obtain the specific identity function for
that type as

idA ≡ λx.x : A→ A.

2. Type operators: types that depend on types. An example of type operator is [−],
which sends each type A to the type [A] of lists of elements of A. If we also assume
polymorphism, a higher-order function mapping a function argument over a list would
have the following type.

map : ∀τ.∀σ.(τ → σ)→ [τ]→ [σ]

3. Dependent types: types that depend on terms. An example is the type Vect(n) of
vectors of a fixed length n, where n is, itself, an element of a natural numbers type n : N.
The type of vectors of any length, Vect(0) + Vect(1) + Vect(2) + . . ., is written as∑

n:N
Vect(n).

Chapters 4.4 and 5.1 are devoted to the study of dependent types.

36

The λ-cube is shown in the following figure.

λω

System Fω

λΠω

CoC

λ2System F λΠ2

λω λΠω wCoC

λ→

STLC

λΠ

DTLC

terms depend

on types

types depend

on terms

types depend

on types

It presents the following type systems. Some of which are not commonly used, but all of them
are strongly normalizing.

• Simply typed λ-calculus (λ→); as described in Section 1.2.2.
• Simply typed λ-calculus with operators (λω).
• System F (λ2) and System F-omega (λω) add polymorphism to the simply typed
λ-calculus and type operators. The Haskell programming language is based on System
F-omega with some restrictions.

• Dependently typed λ-calculus (λΠ); used in the Edinburgh Logical Framework for
logic programming (see [HHP93]).

• Calculus of constructions (λΠω); where full mathematical theories can be developed
(see [CH88]). It is used in the Coq Proof Assistant.

The λ-cube is generalized by the theory of pure type systems, described in [Bar92] and [Geu93].

37

Chapter 2

Mikrokosmos

2.1 Implementation of λ-expressions

2.1.1 The Haskell programming language

Haskell is the purely functional programming language of our choice to implement our λ-
calculus interpreter. Its own design is heavily influenced by the λ-calculus and it is a general-
purpose language with a rich ecosystem and plenty of consolidated libraries1 in areas such as
parsing, testing or system interaction; matching the requisites of our project. In the following
sections, we describe this ecosystem in more detail and justify our choice.

In the 1980s, many lazy programming languages were independently being written by re-
searchers such as Miranda, Lazy ML, Orwell, Clean or Daisy. All of them were similar in
expressive power, but their differences were holding back the efforts to communicate ideas on
functional programming, so the Haskell 98 Report was a first standardized reference of a
common lazy functional language. A revised version can be read in [P+03]. We will use its
most standard implementation: the Glasgow Haskell Compiler (GHC); an open source
compiler written in Haskell and C. The complete history of Haskell and its design decisions is
detailed on [HHJW07], but we are interested in the following properties: Haskell is

1. strongly and statically typed, meaning that it only compiles well-typed programs and
it does not allow implicit type casting; type declarations are then useful in our interpreter
to keep a track of what kind of data are we dealing with at each specific function;

2. lazy, with non-strict semantics, meaning that it will not evaluate a term or the argument
of a function until it is needed; this can help to solve the traditional efficiency problems
on functional programming (see [Hug89]);

3. purely functional; as the evaluation order is demand-driven and not explicitly known,
it is not possible to perform ordered input/output actions or any other side-effects that
rely on the evaluation order; this helps modularity of our code, testing, and verification;

4. referentially transparent; as a consequence of its purity, every term on the code can be
replaced by its definition without changing the global meaning of the program; this allows
equational reasoning with rules that are directly derived from λ-calculus and makes it
easier to reason about our functions;

1: A categorized list of libraries can be found in the central package archive of the Haskell community:
https://hackage.haskell.org/packages/

38

https://hackage.haskell.org/packages/

5. based on System Fω with some restrictions; crucially, it implements System F adding
quantification over type operators even if it does not allow abstraction on type operators;
the GHC Haskell compiler, however, allows the user to activate extensions that implement
dependent types.

Example 2.1 (A first example in Haskell). This example shows the basic syntax and how its
type system and its implicit laziness can be used.

-- The type of the term can be declared.
id :: a -> a -- Polymorphic type variables are allowed,
id x = x -- and the function is defined equationally.
-- This definition performs short circuit evaluation thanks
-- to laziness. The unused argument can be omitted.
(&&) :: Bool -> Bool -> Bool
True && x = x -- (true and x) is always x
False && _ = False -- (false and y) is always false
-- Laziness also allows infinite data structures.
nats :: [Integer] -- List of all natural numbers,
nats = 1 : map (+1) nats -- defined recursively.

Where most imperative languages use semicolons to separate sequential commands, Haskell
has no notion of sequencing, and programs are written in a purely declarative way. A Haskell
program essentially consist on a series of definitions (of both types and terms) and type dec-
larations. The following example shows the definition of a binary tree and its preorder.

-- A tree is either empty or a node with two subtrees.
data Tree a = Empty | Node a (Tree a) (Tree a)
-- The preorder function takes a tree and returns a list
preorder :: Tree a -> [a]
preorder Empty = []
preorder (Node x lft rgt) = preorder lft ++ [x] ++ preorder rgt

We can see on the previous example that function definitions allow pattern matching, that is,
data constructors can be used in definitions to decompose values of the type. This increases
readability when working with algebraic data types or implementing inductive definitions.
Note that the majority of the definitions we discussed in Sections 1.1 and 1.2 are precisely
structurally inductive.

While infix operators are allowed, function application is left-associative in general. Definitions
using partial application are allowed, meaning that functions on multiple arguments can use
currying and can be passed only one of its arguments to define a new function. For example,
a function that squares every number on a list could be written in two ways, as the following
example shows. The second one, because of its simplicity, is usually preferred.

squareList :: [Int] -> [Int]
squareList list = map square list
squareList' :: [Int] -> [Int]
squareList' = map square

A characteristic piece of Haskell are type classes, which allow defining common interfaces
for different types. In the following example, we define Monad as the type class of types with
suitably typed return and >>= operators.

class Monad m where

39

return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

And lists, for example, are monads in this sense.

instance Monad [] where
return x = [x] -- returns a one-element list
xs >>= f = concat (map f xs) -- map and concatenation

Monads are used in I/O, error propagation and stateful computations. Another characteristic
syntax feature of Haskell is the do notation, which provides a nicer, cleaner way to concatenate
computations with monads that resembles an imperative language. The following example
uses the list monad to compute the list of Pythagorean triples.

pythagorean = do
a <- [1..] -- let a be any natural
b <- [1..a] -- let b be a natural between 1 and a
c <- [1..b] -- let c be a natural between 1 and b
guard (a^2 == b^2 + c^2) -- filter the list
return (a,b,c) -- return matching tuples

Note that this list is infinite. As the language is lazy, this does not represent a problem: the
list will be evaluated only on demand.

Another common example of an instance of the Monad typeclass is the Maybe monad used to
deal with error propagation. A Maybe a type can consist of a term of type a, written as Just
a; or as a Nothing constant, signalling an error. The monad is then defined as

instance Monad Maybe where
return x = Just x
xs >>= f = case xs of Nothing -> Nothing | Just a -> Just (f a)

and can be used as in the following example to use exception-like error handling in a pure
declarative language.

roots :: (Float,Float,Float) -> Maybe Int
roots (a,b,c) = do
-- Some errors can occur during this computation
discriminant <- sqroot (b*b - 4*c*a) -- roots of negative numbers?
root1 <- safeDiv ((-b) + discriminant) (2*a) -- division by zero?
root2 <- safeDiv ((-b) - discriminant) (2*a)
-- The monad ensures that we return a number only if no error has been raised
return (root1,root2)

A more detailed treatment of monads from the perspective of category theory is presented in
Section 3.5.3.

2.1.2 De Bruijn indexes

Nicolaas Govert De Bruijn proposed (see [dB72]) a way of defining λ-terms modulo α-
conversion based on indices. The main goal of De Bruijn indices is to remove all variables
from binders and replace every variable on the body of an expression with a number, called in-
dex, representing the number of λ-abstractions in scope between the occurrence and its binder.

40

Consider the following example where we draw arrows between each term and its intermediate
λ-abstractions: the λ-term

λy. y (λz. y z)

can be written with De Bruijn indices as λ (1 λ (2 1)).

De Bruijn also proposed a notation for the λ-calculus changing the order of binders and λ-
applications. A review on the syntax of this notation, its advantages and De Bruijn indexes,
can be found in [Kam01]. In this section, we are going to describe De Bruijn indexes while
preserving the usual notation of λ-terms; that is, De Bruijn indexes and De Bruijn notation
are two different concepts and we are going to use only the former one for clarity of exposition.

Definition 2.2 (De Bruijn indexed terms). We define recursively the set of λ-terms using De
Bruijn notation as the terms generated from the following Backus normal form.

Exp ::= N︸︷︷︸
variable

| (λ Exp)︸ ︷︷ ︸
abstraction

| (Exp Exp)︸ ︷︷ ︸
application

N ::= 0 | 1 | 2 | . . .

Our internal definition closely matches the formal one. The names of the constructors are Var,
Lambda and App, representing variables, abstractions and applications, respectively.

-- | A lambda expression using DeBruijn indexes.
data Exp = Var Integer -- ^ integer indexing the variable.

| Lambda Exp -- ^ lambda abstraction
| App Exp Exp -- ^ function application
deriving (Eq, Ord)

This notation avoids the need for the Barendregt’s variable convention and the α-reductions.
It will be useful to implement λ-calculus without having to worry about the specific names of
variables.

2.1.3 Substitution

We now implement the substitution operation described in Section 1.1.2, as it will be needed
for β-reducing terms on De Bruijn indices. In order to define the substitution of the n-th
variable by a λ-term P on a given term, we must

• find all the occurrences of the variable. At each level of scope we are looking for the
successor of the number we were looking for before;

• decrease the higher variables to reflect the disappearance of a lambda;
• replace the occurrences of the variables by the new term, taking into account that free

variables must be increased to avoid them getting captured by the outermost lambda
terms.

In our code, we can apply the function subs to any expression. When it is applied to a λ-
abstraction, the index and the free variables of the replaced term are increased with an auxiliary
function called incrementFreeVars; whenever it is applied to a variable, the previous cases are
taken into consideration.

-- | Substitutes an index for a lambda expression
subs :: Integer -> Exp -> Exp -> Exp

41

subs n p (Lambda e) = Lambda (subs (n+1) (incrementFreeVars 0 p) e)
subs n p (App f g) = App (subs n p f) (subs n p g)
subs n p (Var m)
| n == m = p -- The lambda is replaced directly
| n < m = Var (m-1) -- A more exterior lambda decreases a number
| otherwise = Var m -- An unrelated variable remains untouched

Now β-reduction can be defined using this subs function.

betared :: Exp -> Exp
betared (App (Lambda e) x) = substitute 1 x e
betared e = e

2.1.4 De Bruijn-terms and λ-terms

The internal language of the interpreter uses De Bruijn expressions, while the user interacts
with it using lambda expressions with alphanumeric variables. Our definition of a lambda
expression with variables will be used in parsing and output formatting.

data NamedLambda = LambdaVariable String
| LambdaAbstraction String NamedLambda
| LambdaApplication NamedLambda NamedLambda

The translation from a natural lambda expression to De Bruijn notation is done using a dic-
tionary which keeps track of bounded variables.

tobruijn :: Map.Map String Integer -- ^ names of the variables used
-> Context -- ^ names already binded on the scope
-> NamedLambda -- ^ initial expression
-> Exp

-- Every lambda abstraction is inserted in the variable dictionary,
-- and every number in the dictionary increases to reflect we are entering
-- a deeper context.
tobruijn d context (LambdaAbstraction c e) =

Lambda $ tobruijn newdict context e
where newdict = Map.insert c 1 (Map.map succ d)

-- Translation distributes over applications.
tobruijn d context (LambdaApplication f g) =

App (tobruijn d context f) (tobruijn d context g)

-- We look for every variable on the local dictionary and the current scope.
tobruijn d context (LambdaVariable c) =

case Map.lookup c d of
Just n -> Var n
Nothing -> fromMaybe (Var 0) (MultiBimap.lookupR c context)

The translation from a de Bruijn expression to a natural one is done considering an infinite
list of possible variable names and keeping a list of currently-on-scope variables to name the
indices.

-- | An infinite list of all possible variable names
-- in lexicographical order.
variableNames :: [String]

42

variableNames = concatMap (`replicateM` ['a'..'z']) [1..]

-- | A function translating a deBruijn expression into a
-- natural lambda expression.
nameIndexes :: [String] -> [String] -> Exp -> NamedLambda
nameIndexes _ _ (Var 0) = LambdaVariable "undefined"
nameIndexes used _ (Var n) =

LambdaVariable (used !! pred (fromInteger n))
nameIndexes used new (Lambda e) =

LambdaAbstraction (head new) (nameIndexes (head new:used) (tail new) e)
nameIndexes used new (App f g) =

LambdaApplication (nameIndexes used new f) (nameIndexes used new g)

2.1.5 Evaluation

As we proved on Corollary 1.19, the leftmost reduction strategy will find the normal form
of any given term provided that it exists. Consequently, we will implement reduction in our
interpreter using a function that simply applies the leftmost possible reductions at each step.
As a side benefit, this will allow us to easily show how the interpreter performs step-by-step
evaluations to the final user (see Section 2.2.2).

-- | Simplifies the expression recursively.
-- Applies only one parallel beta reduction at each step.
simplify :: Exp -> Exp
simplify (Lambda e) = Lambda (simplify e)
simplify (App (Lambda f) x) = betared (App (Lambda f) x)
simplify (App (Var e) x) = App (Var e) (simplify x)
simplify (App a b) = App (simplify a) (simplify b)
simplify (Var e) = Var e

-- | Applies repeated simplification to the expression until it stabilizes and
-- returns all the intermediate results.
simplifySteps :: Exp -> [Exp]
simplifySteps e
| e == s = [e]
| otherwise = e : simplifySteps s
where s = simplify e

From the code we can see that the evaluation finishes whenever the expression stabilizes. This
can happen in two different cases

• there are no more possible β-reductions, and the algorithm stops; or
• β-reductions do not change the expression. The computation would lead to an infi-

nite loop, so it is immediately stopped. An common example of this is the λ-term
(λx.xx)(λx.xx).

2.1.6 Principal type inference

The interpreter implements the unification and type inference algorithms described in Lemma
1.30 and Theorem 1.31. Their recursive nature makes them very easy to implement directly on
Haskell. We implement a simply-typed lambda calculus with Curry-style typing (see Section

43

1.2.3) and type templates. Our type system has a unit type; a void type; product types; union
types; and function types.

-- | A type template is a free type variable or an arrow between two
-- types; that is, the function type.
data Type = Tvar Variable

| Arrow Type Type
| Times Type Type
| Union Type Type
| Unitty
| Bottom
deriving (Eq)

We will work with substitutions on type templates. They can be directly defined as functions
from types to types. A basic substitution that inserts a given type on the place of a variable
will be our building block for more complex ones.

type Substitution = Type -> Type

-- | A basic substution. It changes a variable for a type
subs :: Variable -> Type -> Substitution
subs x typ (Tvar y)

| x == y = typ
| otherwise = Tvar y

subs x typ (Arrow a b) = Arrow (subs x typ a) (subs x typ b)
subs x typ (Times a b) = Times (subs x typ a) (subs x typ b)
subs x typ (Union a b) = Union (subs x typ a) (subs x typ b)
subs _ _ Unitty = Unitty
subs _ _ Bottom = Bottom

Unification will be implemented making extensive use of the Maybe monad. If the unification
fails, it will return an error value, and the error will be propagated to the whole computation.
The algorithm is exactly the same that was defined in Lemma 1.30.

-- | Unifies two types with their most general unifier. Returns the substitution
-- that transforms any of the types into the unifier.
unify :: Type -> Type -> Maybe Substitution
unify (Tvar x) (Tvar y)

| x == y = Just id
| otherwise = Just (subs x (Tvar y))

unify (Tvar x) b
| occurs x b = Nothing
| otherwise = Just (subs x b)

unify a (Tvar y)
| occurs y a = Nothing
| otherwise = Just (subs y a)

unify (Arrow a b) (Arrow c d) = unifypair (a,b) (c,d)
unify (Times a b) (Times c d) = unifypair (a,b) (c,d)
unify (Union a b) (Union c d) = unifypair (a,b) (c,d)
unify Unitty Unitty = Just id
unify Bottom Bottom = Just id
unify _ _ = Nothing

-- | Unifies a pair of types
unifypair :: (Type,Type) -> (Type,Type) -> Maybe Substitution

44

unifypair (a,b) (c,d) = do
p <- unify b d
q <- unify (p a) (p c)
return (q . p)

The type inference algorithm from Theorem 1.31 is more involved. It takes a list of fresh
variables, a type context, a lambda expression and a constraint on the type, expressed as a
type template. It outputs a substitution. As an example, the following code shows the type
inference algorithm for function types.

-- | Type inference algorithm. Infers a type from a given context and expression
-- with a set of constraints represented by a unifier type. The result type must
-- be unifiable with this given type.
typeinfer :: [Variable] -- ^ List of fresh variables

-> Context -- ^ Type context
-> Exp -- ^ Lambda expression whose type has to be inferred
-> Type -- ^ Constraint
-> Maybe Substitution

typeinfer (x:vars) ctx (App p q) b = do -- Writing inside the Maybe monad.
sigma <- typeinfer (evens vars) ctx p (Arrow (Tvar x) b)
tau <- typeinfer (odds vars) (applyctx sigma ctx) q (sigma (Tvar x))
return (tau . sigma)

The final form of the type inference algorithm will use a normalization algorithm shortening
the type names and will apply the type inference to the empty type context. A generalized
version of the type inference algorithm is used to generate derivation trees from terms, as it was
described in Section 1.3.3. In order to draw these diagrams in Unicode characters, a data type
for character blocks has been defined. A monoidal structure is defined over them; blocks can
be joined vertically and horizontally; and every deduction step can be drawn independently.

newtype Block = Block { getBlock :: [String] }
deriving (Eq, Ord)

instance Monoid Block where
mappend = joinBlocks -- monoid operation, joins blocks vertically
mempty = Block [[]] -- neutral element

-- Type signatures
joinBlocks :: Block -> Block -> Block
stackBlocks :: String -> Block -> Block -> Block
textBlock :: String -> Block
deductionBlock :: Block -> String -> [Block] -> Block
box :: Block -> Block

2.2 User interaction

2.2.1 Monadic parser combinators

The common approach to building parsers in functional programming is to model parsers as
functions. Higher-order functions on parsers act as combinators, which are used to implement

45

complex parsers in a modular way from a set of primitive ones. In this setting, parsers exhibit
a monad algebraic structure, which can be used to simplify the combination of parsers. A
technical report on monadic parser combinators can be found on [HM96].

The use of monads for parsing was discussed for the first time in [Wad85], and later in [Wad90]
and [HM98]. The parser type is defined as a function taking an input String and returning a
list of pairs, representing a successful parse each. The first component of the pair is the parsed
value and the second component is the remaining input. The Haskell code for this definition
is the following, where the monadic structure is defined by >>= and return.

-- A parser takes a string an returns a list of possible parsings with
-- their remaining string.
newtype Parser a = Parser (String -> [(a,String)])
parse :: Parser a -> String -> [(a,String)]
parse (Parser p) = p
-- A parser can be composed monadically, the composed parser (p >>= q)
-- applies q to every possible parsing of p. A trivial one is defined.
instance Monad Parser where
return x = Parser (\s -> [(x,s)]) -- Trivial parser, directly returns x.
p >>= q = Parser (\s -> concat [parse (q x) s' | (x,s') <- parse p s])

Given a value, the return function creates a parser that consumes no input and simply returns
the given value. The >>= function acts as a sequencing operator for parsers; it takes two parsers
and applies the second one over the remaining inputs of the first one, using the parsed values
on the first parsing as arguments.

An example of primitive parser is the item parser, which consumes a character from a non-
empty string. It is written in Haskell code using pattern matching on the string as follows.

item :: Parser Char
item = Parser (\s -> case s of "" -> []; (c:s') -> [(c,s')])

An example of parser combinator is the many function, which creates a parser that allows
one or more applications of the given parser. In the following example many item would be a
parser consuming all characters from the input string.

many :: Paser a -> Parser [a]
many p = do
a <- p
as <- many p
return (a:as)

Parsec is a monadic parser combinator Haskell library described in [Lei01]. We have chosen
to use it due to its simplicity and extensive documentation. As we expect to use it to parse
user live input, which will tend to be short, performance is not a critical concern. A high-
performace library supporting incremental parsing, such as Attoparsec [O’S16], would be
suitable otherwise.

2.2.2 Verbose mode

As we mentioned previously, the evaluation of lambda terms can be analyzed step-by-step.
The interpreter allows us to see the complete evaluation when the verbose mode is activated.

46

To activate it, we can execute :verbose on in the interpreter. The difference can be seen
on the following example, which shows the execution of the expression 1 + 2, first without
intermediate results, and later, showing every intermediate step.

mikro> plus 1 2
ńa.ńb.(a (a (a b))) ⇒ 3

mikro> :verbose on
verbose: on
mikro> plus 1 2
((plus 1) 2)
((ńńńń((4 2) ((3 2) 1)) ńń(2 1)) ńń(2 (2 1)))
(ńńń((ńń(2 1) 2) ((3 2) 1)) ńń(2 (2 1)))
ńń((ńń(2 1) 2) ((ńń(2 (2 1)) 2) 1))
ńń(ń(3 1) (ń(3 (3 1)) 1))
ńń(2 (ń(3 (3 1)) 1))
ńń(2 (2 (2 1)))
ńa.ńb.(a (a (a b))) ⇒ 3

The interpreter output can be colored to show specifically where it is performing reductions.
It is activated by default, but can be deactivated by executing :color off. The following code
implements verbose mode in both cases.

-- | Shows an expression, coloring the next reduction if necessary
showReduction :: Exp -> String
showReduction (Lambda e) = "ń" ++ showReduction e
showReduction (App (Lambda f) x) = betaColor (App (Lambda f) x)
showReduction (Var e) = show e
showReduction (App rs x) = "("++showReduction rs++" "++showReduction x++")"
showReduction e = show e

2.2.3 SKI mode

Every λ-term can be written in terms of SKI combinators. SKI combinator expressions can be
defined as a binary tree having variables, S, K, and I as possible leafs.

data Ski = S | K | I | Comb Ski Ski | Cte String

The SKI-abstraction and bracket abstraction algorithms are implemented on Mikrokosmos,
and they can be used by activating the ski mode with :ski on. When this mode is activated,
every result is written in terms of SKI combinators.

mikro> 2
ńa.ńb.(a (a b)) ⇒ S(S(KS)K)I ⇒ 2
mikro> and
ńa.ńb.((a b) a) ⇒ SSK ⇒ and

The code implementing these algorithms follows directly from the theoretical version in [HS08].

-- | Bracket abstraction of a SKI term, as defined in Hindley-Seldin
-- (2.18).
bracketabs :: String -> Ski -> Ski
bracketabs x (Cte y) = if x == y then I else Comb K (Cte y)
bracketabs x (Comb u (Cte y))

47

| freein x u && x == y = u
| freein x u = Comb K (Comb u (Cte y))
| otherwise = Comb (Comb S (bracketabs x u)) (bracketabs x (Cte y))

bracketabs x (Comb u v)
| freein x (Comb u v) = Comb K (Comb u v)
| otherwise = Comb (Comb S (bracketabs x u)) (bracketabs x v)

bracketabs _ a = Comb K a

-- | SKI abstraction of a named lambda term. From a lambda expression
-- creates a SKI equivalent expression. The following algorithm is a
-- version of the algorithm (9.10) on the Hindley-Seldin book.
skiabs :: NamedLambda -> Ski
skiabs (LambdaVariable x) = Cte x
skiabs (LambdaApplication m n) = Comb (skiabs m) (skiabs n)
skiabs (LambdaAbstraction x m) = bracketabs x (skiabs m)

2.3 Usage

2.3.1 Installation

The complete Mikrokosmos suite is divided in multiple parts:

1. the Mikrokosmos interpreter, written in Haskell;
2. the Jupyter kernel, written in Python;
3. the CodeMirror Lexer, written in Javascript;
4. the Mikrokosmos libraries, written in the Mikrokosmos language;
5. the Mikrokosmos-js compilation, which can be used in web browsers.

These parts will be detailed on the following sections. A system that already satisfies all
dependencies (Stack, Pip and Jupyter), can install Mikrokosmos using the following script,
which is detailed on this section

stack install mikrokosmos # Mikrokosmos interpreter
sudo pip install imikrokosmos # Jupyter kernel for Mikrokosmos
git clone https://github.com/mroman42/mikrokosmos-lib.git ~/.mikrokosmos # Libs

The Mikrokosmos interpreter is listed in the central Haskell package archive2. The packag-
ing of Mikrokosmos has been done using the cabal tool; and the configuration of the package
can be read in the file mikrokosmos.cabal of the source code. As a result, Mikrokosmos can
be installed using the Haskell package managers cabal and stack.

cabal install mikrokosmos # Installation with cabal
stack install mikrokosmos # Installation with stack

The Mikrokosmos Jupyter kernel is listed in the central Python package archive3. Jupyter
is a dependency of this kernel, which only can be used in conjunction with it. It can be installed
with the pip package manager.

2: Hackage can be accessed in http://hackage.haskell.org/ and the Mikrokosmos package can be found in
https://hackage.haskell.org/package/mikrokosmos

3: The Jupyter-Mikrokosmos package can be found in https://pypi.org/project/imikrokosmos/.

48

http://hackage.haskell.org/
https://hackage.haskell.org/package/mikrokosmos
https://pypi.org/project/imikrokosmos/

sudo pip install imikrokosmos # Installation with pip

The installation can be checked by listing the available Jupyter kernels.

jupyter kernelspec list # Checks installation

The Mikrokosmos libraries can be downloaded directly from their GitHub repository4.
They have to be placed under ~/.mikrokosmos if we want them to be locally available or under
/usr/lib/mikrokosmos if we want them to be globally available.

git clone https://github.com/mroman42/mikrokosmos-lib.git ~/.mikrokosmos

The following script installs the complete Mikrokosmos suite on a fresh system. It has been
tested under Ubuntu 16.04.3 LTS (Xenial Xerus).

1. Installs Stack, the Haskell package manager
wget -qO- https://get.haskellstack.org | sh
STACK=$(which stack)

2. Installs the ncurses library, used by the console interface
sudo apt install libncurses5-dev libncursesw5-dev

3. Installs the Mikrokosmos interpreter using Stack
$STACK setup
$STACK install mikrokosmos

4. Installs the Mikrokosmos standard libraries
sudo apt install git
git clone https://github.com/mroman42/mikrokosmos-lib.git ~/.mikrokosmos

5. Installs the IMikrokosmos kernel for Jupyter
sudo apt install python3-pip
sudo -H pip install --upgrade pip
sudo -H pip install jupyter
sudo -H pip install imikrokosmos

2.3.2 Mikrokosmos interpreter

Once installed, the Mikrokosmos λ interpreter can be opened from the terminal with the
mikrokosmos command. It will enter a read-eval-print loop where λ-expressions and interpreter
commands can be evaluated.

$> mikrokosmos
Welcome to the Mikrokosmos Lambda Interpreter!
Version 0.7.0. GNU General Public License Version 3.
mikro> _

The interpreter evaluates every line as a lambda expression. Examples on the use of the
interpreter can be read on the following sections. Apart from the evaluation of expressions,
the interpreter accepts the following commands

4: The repository can be accessed in: https://github.com/mroman42/mikrokosmos-lib.git

49

https://github.com/mroman42/mikrokosmos-lib.git

• :quit and :restart, stop the interpreter;
• :verbose activates verbose mode;
• :ski activates SKI mode;
• :types changes between untyped and simply typed λ-calculus;
• :color deactivates colored output;
• :load loads a library.

Figure 2.1 is an example session on the Mikrokosmos interpreter.

2.3.3 Jupyter kernel

The Jupyter Project [Jup] is an open source project providing support for interactive sci-
entific computing. Specifically, the Jupyter Notebook provides a web application for creating
interactive documents with live code and visualizations.

We have developed a Mikrokosmos kernel for the Jupyter Notebook, allowing the user to write
and execute arbitrary Mikrokosmos code on this web application. An example session can be
seen on Figure 2.2.

The implementation is based on the pexpect library for Python. It allows direct interaction
with any REPL and collects its results. Specifically, the following Python lines represent the
central idea of this implementation.

Initialization
mikro = pexpect.spawn('mikrokosmos')
mikro.expect('mikro>')

Interpreter interaction
Multiple-line support
output = ""
for line in code.split('\n'):

Send code to mikrokosmos
self.mikro.sendline(line)
self.mikro.expect('mikro> ')

Receive and filter output from mikrokosmos
partialoutput = self.mikro.before
partialoutput = partialoutput.decode('utf8')
output = output + partialoutput

A pip installable package has been created following the Python Packaging Authority guide-
lines5. This allows the kernel to be installed directly using the pip python package manager.

sudo -H pip install imikrokosmos

2.3.4 CodeMirror lexer

CodeMirror 6 is a text editor for the browser implemented in Javascript. It is used internally
by the Jupyter Notebook.

5: The PyPA packaging user guide can be found in its official page: https://packaging.python.org/
6: Documentation for CodeMirror can be found in its official page: https://codemirror.net/

50

https://packaging.python.org/
https://codemirror.net/

Figure 2.1: Mikrokosmos interpreter session.

51

Figure 2.2: Jupyter notebook Mikrokosmos session.

52

A CodeMirror lexer for Mikrokosmos has been written. It uses Javascript regular expressions
and signals the occurrence of any kind of operator to CodeMirror. It enables syntax highlighting
for Mikrokosmos code on Jupyter Notebooks. It comes bundled with the kernel specification
and no additional installation is required.

CodeMirror.defineSimpleMode("mikrokosmos", {
start: [
// Comments
{regex: /\#.*/,
token: "comment"},
// Interpreter
{regex: /\:load|\:verbose|\:ski|\:restart|\:types|\:color/,
token: "atom"},
// Binding
{regex: /(.*?)(\s*)(=)(\s*)(.*?)$/,
token: ["def",null,"operator",null,"variable"]},
// Operators
{regex: /[=!]+/,
token: "operator"},
],
meta: {

dontIndentStates: ["comment"],
lineComment: "#"

}
}

2.3.5 JupyterHub

JupyterHub manages multiple instances of independent single-user Jupyter notebooks. It
has been used to serve Mikrokosmos notebooks and tutorials to students. In order to install
Mikrokosmos on a server and use it as root user, we perform the following steps.

• Cloning the libraries into /usr/lib/mikrokosmos. They should be available system-wide.
• Installing the Mikrokosmos interpreter into /usr/local/bin. In this case, we can choose

not to install Mikrokosmos from source, but simply copy the binaries and check the
availability of the ncurses library.

• Installing the Mikrokosmos Jupyter kernel as usual.

A JupyterHub server was made available at iemath1.ugr.es. Our server used a SSL certificate
and OAuth authentication via GitHub. Mikrokosmos tutorials and exercises were installed for
every student.

2.3.6 Calling Mikrokosmos from Javascript

The GHCjs7 compiler allows transpiling from Haskell to Javascript. Its foreign function inter-
face allows a Haskell function to be passed as a continuation to a Javascript function.

A particular version of the Main.hs module of Mikrokosmos was written in order to provide
a mikrokosmos function, callable from Javascript. This version includes the standard libraries
automatically and reads blocks of text as independent Mikrokosmos commands. The relevant

7: The GHCjs documentation is available on its web page https://github.com/ghcjs/ghcjs

53

https://github.com/ghcjs/ghcjs

use of the foreign function interface is shown in the following code, which provides mikrokosmos
as a Javascript function once the code is transpiled.

foreign import javascript unsafe "mikrokosmos = $1"
set_mikrokosmos :: Callback a -> IO ()

In particular, the following is an example of how to call Mikrokosmos from Javascript.

button.onclick = function () {
editor.save();
outputcode.getDoc().setValue(mikrokosmos(inputarea.value).mkroutput);
textAreaAdjust(outputarea);

}

A small script has been written in Javascript to help with the task of embedding Mikrokosmos
into a web page. It and can be included directly from the following direction, using GitHub as
a CDN.

https://mroman42.github.io/mikrokosmos-js/mikrobox.js

The script will convert any HTML script tag written as follows into a CodeMirror pad where
Mikrokosmos can be executed.

<div class="mikrojs-console">
<script type="text/mikrokosmos">
(ńx.x)
... your code
</script>
</div>

The Mikrokosmos tutorials are an example of this feature and can be seen on Figure 2.3. They
can be accessed from the following direction.

https://mroman42.github.io/mikrokosmos/

2.4 Programming environment

2.4.1 Cabal, Stack and Haddock

The Mikrokosmos documentation as a Haskell library is included in its own code. It uses
Haddock, a tool that generates documentation from annotated Haskell code; it is the de facto
standard for Haskell software.

Dependencies and packaging details for Mikrokosmos are specified in a file distributed with the
source code called mikrokosmos.cabal. It is used by the package managers stack and cabal
to provide the necessary libraries even if they are not available system-wide. The stack tool
is also used to package the software, which is uploaded to Hackage.

2.4.2 Testing

Tasty is the Haskell testing framework of our choice for this project. It allows the user to
create a comprehensive test suite combining multiple types of tests. The Mikrokosmos code is

54

https://mroman42.github.io/mikrokosmos-js/mikrobox.js
https://mroman42.github.io/mikrokosmos/

Figure 2.3: Mikrokosmos embedded into a web page.

55

tested using the following techniques

• unit tests, in which individual core functions are tested independently of the rest of the
application;

• property-based testing, in which multiple test cases are created automatically in or-
der to verify that a specified property always holds; this has been useful to test our
implementation of several algorithms on the lambda calculus;

• golden tests, a special case of unit tests in which the expected results of an IO action,
as described on a file, are checked to match the actual ones; they have been used to check
correctness of the Mikrokosmos language.

We are using the HUnit library for unit tests. It tests particular cases of type inference,
unification and parsing. The following is an example of unit test, as found in tests.hs. It
checks that the type inference of the identity term is correct.

-- Checks that the type of ńx.x is exactly A → A
testCase "Identity type inference" $
typeinference (Lambda (Var 1)) @?= Just (Arrow (Tvar 0) (Tvar 0))

We are using the QuickCheck library for property-based tests. It tests transformation prop-
erties of lambda expressions. In the following example, it tests that any De Bruijn expression
keeps its meaning when translated into a λ-term.

-- Tests if translation preserves meaning
QC.testProperty "Expression -> named -> expression" $

\expr -> toBruijn emptyContext (nameExp expr) == expr

We are using the tasty-golden package for golden tests. Mikrokosmos can be passed a file as
an argument to interpret it and show only the results. This feature is used to create a golden
test in which the interpreter is asked to provide the correct interpretation of a given file. This
file is called testing.mkr, and contains library definitions and multiple tests. Its expected
output is testing.golden. For example, the following Mikrokosmos code can be found on the
testing file.

:types on
caseof (inr 3) (plus 2) (mult 2)

While the expected output is the following.

-- types: on
-- ńa.ńb.(a (a (a (a (a (a b)))))) ⇒ 6 :: (A → A) → A → A

2.4.3 Version control and continuous integration

Mikrokosmos uses git as its version control system and the code, which is licensed under
GPLv3, can be publicly accessed on the following GitHub repository:

https://github.com/mroman42/mikrokosmos

Development takes place on the development git branch and permanent changes are released
into the master branch. Some more minor repositories have been used in the development;
they directly depend on the main one.

56

https://github.com/mroman42/mikrokosmos

• https://github.com/mroman42/mikrokosmos-js
• https://github.com/mroman42/jupyter-mikrokosmos
• https://github.com/mroman42/mikrokosmos-lib

The code uses the Travis CI continuous integration system to run tests and check that the
software builds correctly after each change and in a reproducible way on a fresh Linux instal-
lation provided by the service.

2.5 Programming in untyped λ-calculus

This section explains how to use untyped λ-calculus to encode data structures such as booleans,
linked lists, natural numbers or binary trees. All of this is done in pure λ-calculus, avoiding
the addition of new syntax or axioms.

This presentation follows the Mikrokosmos tutorial on λ-calculus, which aims to teach how it
is possible to program using untyped λ-calculus without discussing more advanced technical
topics such as those we addressed on Chapter 1.1. It also follows the exposition on [Sel13] of
the usual Church encodings.

All the code on this section is valid Mikrokosmos code.

2.5.1 Basic syntax

In the interpreter, λ-abstractions are written with the symbol \, representing a λ. This is
a convention used on some functional languages such as Haskell or Agda. Any alphanumeric
string can be a variable and can be defined to represent a particular λ-term using the = operator.

As a first example, we define the identity function (id), function composition (compose) and a
constant function on two arguments which always returns the first one untouched (const).

id = \x.x
compose = \f.\g.\x.f (g x)
const = \x.\y.x

Evaluation of terms will be presented as comments to the code, as in the following example.

compose id id -- [1]: ńa.a ⇒ id

It is important to notice that multiple argument functions are defined as higher one-argument
functions that return different functions as arguments. These intermediate functions are also
valid λ-terms. For example,

discard = const id

is a function that discards one argument and returns the identity, id. This way of defining
multiple argument functions is called the currying of a function in honor to the American
logician Haskell Curry in [CF58]. It is a particular instance of a deeper fact we will detail on
Chapter 4.2: exponentials are defined by the adjunction hom(A×B,C) ∼= hom(A,hom(B,C)).

57

https://github.com/mroman42/mikrokosmos-js
https://github.com/mroman42/jupyter-mikrokosmos
https://github.com/mroman42/mikrokosmos-lib

2.5.2 A technique on inductive data encoding

We will implicitly use a technique on the majority of our data encodings that allows us to write
an encoding for any algebraically inductive generated data. This technique is used without
explicit comment on [Sel13] and represents the basis of what is called the Church encoding
of data in λ-calculus.

We start considering the usual inductive representation of a data type with constructors,
as we do when representing a syntax with a Backus-Naus form. For example, the naturals
can be written as Nat ::= Zero | Succ Nat; and, in general a datatype D with constructors
C1, C2, C3, . . . is written as D ::= C1 | C2 | C3 |

It is not possible to directly encode constructors on λ-calculus. Even if we were able to declare
constants, they would have no computational content; the data structure would not be reduced
under any λ-term, and we would need at least the ability to pattern-match on the constructors
to define functions on them. Our λ-calculus would need to be extended with additional syntax
for every new data structure.

Our technique, instead, is to define a data term as a function on multiple arguments rep-
resenting the missing constructors. For instance, the number 2, which would be written as
Succ(Succ(Zero)) using the Backus-Naus form, is encoded as 2 = λs. λz. s(s(z)). In general,
any instance of the data structure D is encoded as a λ-expression depending on all of its
constructors, as in λc1. λc2. λc3. . . . λcn.(term).

This acts as the definition of an initial algebra over the constructors (see Section 3.5.4) and
lets us to compute over instances of that algebra by instantiating it on particular cases. We
will develop explicit examples of this technique on the following sections.

2.5.3 Booleans

Booleans can be defined as the data generated by a pair of zero-ary constructors, each one
representing a truth value, as in Bool ::= True | False. Consequently, the Church encoding of
booleans takes these constructors as arguments and defines the following two elements.

true = \t.\f.t
false = \t.\f.f

Note that true and the const function we defined earlier are exactly the same term up to α-
conversion. The same thing happens with false and alwaysid. The absence of types prevents
any effort to discriminate between these two uses of the same λ-term. Another side-effect of
this definition is that our true and false terms can be interpreted as binary functions choosing
between two arguments, that is, true(a, b) = a, and false(a, b) = b.

We can test this interpretation on the interpreter to get the expected results.

true id const --- [1]: id
false id const --- [2]: const

And this inspires the definition of an ifelse combinator as the identity, when applied to
boolean values.

58

ifelse = \b.b
(ifelse true) id const --- [1]: id
(ifelse false) id const --- [2]: const

The usual logic gates can be defined using this interpretation of the booleans.

and = \p.\q.p q p
or = \p.\q.p p q
not = \b.b false true
xor = \a.\b.a (not b) b
implies = \p.\q.or (not p) q

xor true true --- [1]: false
and true true --- [2]: true

2.5.4 Natural numbers

Our definition of natural numbers is inspired by the Peano natural numbers. We use two
constructors

• zero is a natural number, written as Z;
• the successor of a natural number is a natural number, written as S;

and the Backus-Naus form we defined when discussing how to encode inductive data in Section
2.5.2.

0 = \s.\z.z
succ = \n.\s.\z.s (n s z)

This definition of 0 is trivial: given a successor function and a zero, return zero. The successor
function seems more complex, but it uses the same underlying idea: given a number, a successor
and a zero, apply the successor to the interpretation of that number using the same successor
and zero.

We can then name some natural numbers as follows, even if we can not define an infinite
number of terms as we might wish.

1 = succ 0
2 = succ 1
3 = succ 2
4 = succ 3
5 = succ 4
6 = succ 5
...

The interpretation a natural number n as a higher order function is a function taking an
argument f and applying them n times over the second argument. See the following examples.

5 not true --- [1]: false
4 not true --- [2]: true
double = \n.\s.\z.n (compose s s) z
double 3 --- [3]: 6

59

Addition n+m applies the successor m times to n; and multiplication nm applies the n-fold
application of the successor m times to 0.

plus = \m.\n.\s.\z.m s (n s z)
mult = \m.\n.\s.\z.m (n s) z
plus 2 1 --- [1]: 3
mult 2 4 --- [2]: 8

2.5.5 The predecessor function and predicates on numbers

The predecessor function is much more complex than the previous ones. As we can see, it
is not trivial how we could compute the predecessor using the limited form of induction that
Church numerals allow.

Stephen Kleene, one of the students of Alonzo Church only discovered how to write the prede-
cessor function after thinking about it for a long time (and he only discovered it while a long
visit at the dentist’s, which is the reason why this definition is often called the wisdom tooth
trick, see [Cro75]). We will use a slightly different version of that definition, as we consider it
to be simpler to understand.

We will start defining a reverse composition operator, called rcomp; and we will study what
happens when it is composed to itself; that is, the operator we define in the following code

rcomp = \f.\g.\h.h (g f)
\f.3 (inc f) --- [1]: ńa.ńb.ńc.c (a (a (b a)))
\f.4 (inc f) --- [2]: ńa.ńb.ńc.c (a (a (a (b a))))
\f.5 (inc f) --- [3]: ńa.ńb.ńc.c (a (a (a (a (b a)))))

allows us to use the b argument to discard the first instance of the a argument and return the
same number without the last constructor. Thus, our definition of pred is the following.

pred = \n.\s.\z.(n (inc s) (\x.z) (\x.x))

From the definition of pred, some predicates on numbers can be defined. The first predicate
will be a function distinguishing a successor from a zero. It will be user later to build more
complex ones. It is built by applying a const false function n times to a true constant. Only
if it is applied 0 times, it will return a true value.

iszero = \n.(n (const false) true)
iszero 0 --- [1]: true
iszero 2 --- [2]: false

From this predicate, we can derive predicates on equality and ordering.

leq = \m.\n.(iszero (minus m n))
eq = \m.\n.(and (leq m n) (leq n m))

2.5.6 Lists and trees

We would need two constructors to represent a list: a nil signaling the end of the list and a cons,
appending an element to the head of the list. For instance, a list would be cons 1 (cons 2 (cons 3 nil)).
Our definition takes those two constructors into account.

60

nil = \c.\n.n
cons = \h.\t.\c.\n.(c h (t c n))

The interpretation of a list as a higher-order function is its fold function, a function taking a
binary operation and an initial element and applying the operation repeatedly to every element
on the list.

cons 1 (cons 2 (cons 3 nil))
fold plus 0−→ plus 1 (plus 2 (plus 3 0)) = 6

The fold operation can be defined as follows. Many operations on lists are particular instances
of it.

fold = \c.\n.\l.(l c n)
sum = fold plus 0
prod = fold mult 1
all = fold and true
any = fold or false
length = fold (\h.\t.succ t) 0

sum (cons 1 (cons 2 (cons 3 nil))) --- [1]: 6
all (cons true (cons true (cons true nil))) --- [2]: true

The two most commonly used particular cases of fold and frequent examples of the functional
programming paradigm are map and filter.

• The map function applies a function f to every element on a list.
• The filter function removes the elements of the list that do not satisfy a given predicate.

It filters the list, leaving only elements that satisfy the predicate.

They can be defined as follows.

map = \f.(fold (\h.\t.cons (f h) t) nil)
filter = \p.(fold (\h.\t.((p h) (cons h t) t)) nil)

The map function, given a list of the form cons h t, returns a new list cons (f h) t; and given
an empty list nil, returns nil. On the filter fuction, we use a boolean to decide at each step
whether to return a list with a head or return the tail ignoring the head.

mylist = cons 1 (cons 2 (cons 3 nil))
sum (map succ mylist) --- [1]: 9
length (filter (leq 2) mylist) --- [2]: 2

Lists have been defined using two constructors and binary trees will be defined using the
same technique. The only difference with lists is that the cons constructor is replaced by a
node constructor, which takes two binary trees as arguments. That is, a binary tree is

• an empty tree; or
• a node, containing a label, a left subtree, and a right subtree.

Defining functions using a fold-like combinator is again very simple due to the chosen repre-
sentation. We need a variant of the usual function acting on three arguments, the label, the
right node and the left node.

61

-- Binary tree definition
node = \x.\l.\r.\f.\n.(f x (l f n) (r f n))
-- Example on natural numbers
mytree = node 4 (node 2 nil nil) (node 3 nil nil)
triplesum = \a.\b.\c.plus (plus a b) c
mytree triplesum 0 --- [1]: 9

2.5.7 Fixed points

A fixpoint combinator is a term representing a higher-order function that, given any function
f , solves the equation x = f x for x, meaning that, if (fix f) is the fixpoint of f , the following
sequence of equations holds

fix f = f(fix f) = f(f(fix f)) = f(f(f(fix f))) = . . .

Such a combinator exists; and it can be defined and used as follows.

fix := (\f.(\x.f (x x)) (\x.f (x x)))
fix (const id) --- [1]: id

Where := defines a function without trying to evaluate it to a normal form; this is useful in
cases like the previous one, where the function has no normal form. Examples of its applications
are a factorial function or a Fibonacci function, as in

fact := fix (\f.\n.iszero n 1 (mult n (f (pred n))))
fib := fix (\f.\n.iszero n 1 (plus (f (pred n)) (f (pred (pred n)))))
fact 3 --- [1]: 6
fib 3 --- [2]: 5

Note the use of iszero to stop the recursion.

The fix function cannot be evaluated without arguments into a closed form, so we have to delay
the evaluation of the expression when we bind it using !=. Our evaluation strategy, however,
will always find a way to reduce the term if it is possible, as we saw in Corollary 1.19; even if
it has intermediate irreducible terms.

fix -- diverges
true id fix -- evaluates to id
false id fix -- diverges

Other examples of the interpreter dealing with non terminating functions include infinite lists
as in the following examples, where we take the first term of an infinite list without having to
evaluate it completely or compare an infinite number arising as the fix point of the successor
function with a finite number.

-- Head of an infinite list of zeroes
head = fold const false
head (fix (cons 0))
-- Compare infinity with other numbers
infinity := fix succ --- [1]: 0
leq infinity 6 --- [2]: false

62

These definitions unfold as

• fix (cons 0) = cons 0 (cons 0 (cons 0 . . .)), an infinite list of zeroes;
• fix succ = succ (succ (succ . . .)), an infinite natural number.

As a final example, we define a minimization operator that finds the first natural causing a
given predicate to return true. This, with all the previous considerations about how to program
with natural numbers, can be used to prove that Gödel’s µ-recursive functions can be encoded
inside untyped lambda calculus, and thus, it is Turing-complete.

mu := \p.fix (\f.\n.(p n) n (f (succ n))) 0
mu (\n.eq (mult 2 n) 10) --- [1]: 5

2.6 Programming in the simply typed λ-calculus

This section explains how to use the simply typed λ-calculus to encode compound data struc-
tures and proofs in intuitionistic logic. We will use the interpreter as a typed language and, at
the same time, as a proof assistant for the intuitionistic propositional logic.

This presentation of simply typed structures follows the Mikrokosmos tutorial and the previous
sections on simply typed λ-calculus (see Section 1.2). All the code on this section is valid
Mikrokosmos code.

2.6.1 Function types and typeable terms

Types can be activated with the command :types on. If types are activated, the interpreter
will infer (see Section 2.1.6) the principal type of every term before its evaluation. The type
will then be displayed after the result of the computation.

Example 2.3 (Typed terms on Mikrokosmos). The following are examples of already defined
terms on lambda calculus and their corresponding types. It is important to notice how our
previously defined booleans have two different types; while our natural numbers will have all
the same type except from zero, whose type is a generalization on the type of the natural
numbers.

id --- [1]: ńa.a ⇒ id, I, ifelse :: A → A
true --- [2]: ńa.ńb.a ⇒ K, true :: A → B → A
false --- [3]: ńa.ńb.b ⇒ nil, 0, false :: A → B → B
0 --- [4]: ńa.ńb.b ⇒ nil, 0, false :: A → B → B
1 --- [5]: ńa.ńb.(a b) ⇒ 1 :: (A → B) → A → B
2 --- [6]: ńa.ńb.(a (a b)) ⇒ 2 :: (A → A) → A → A
S --- [7]: ńa.ńb.ńc.((a c) (b c)) ⇒ S :: (A → B → C) → (A → B) → A → C
K --- [8]: ńa.ńb.a ⇒ K, true :: A → B → A

If a term is found to be non-typeable, Mikrokosmos will output an error message signaling the
fact. In this way, the evaluation of λ-terms that could potentially not terminate is prevented.
Only typed λ-terms will be evaluated while the option :types is on; this ensures the termination
of every computation on typed terms.

63

Example 2.4 (Non-typeable terms on Mikrokosmos). Fixed point operators are a common
example of non typeable terms. Its evaluation on untyped λ-calculus would not terminate; and
the type inference algorithm fails on them.

fix
--- Error: non typeable expression
fix (\f.\n.iszero n 1 (plus (f (pred n)) (f (pred (pred n))))) 3
--- Error: non typeable expression

Note that the evaluation of compound λ-expressions where the fixpoint operators appear ap-
plied to other terms can terminate, but the terms are still non typeable.

2.6.2 Product, union, unit and void types

Until now, we have only used the function type. That is to say that we are working on the
implicational fragment of the simply-typed lambda calculus we described when first describing
typing rules. We are now going to extend our type system in the same sense we extended
(see Section 1.3.1) that simply-typed lambda calculus. The following types are added to the
system.

Type Name Description
→ Function type Functions from a type to another
× Product type Cartesian product of types
+ Union type Disjoint union of types
> Unit type A type with exactly one element
⊥ Void type A type with no elements

And the following typed constructors are added to the language.

Constructor Type Description
(-,-) A → B → A × B Pair of elements
fst (A × B) → A First projection
snd (A × B) → B Second projection
inl A → A + B First inclusion
inr B → A + B Second inclusion
caseof (A + B) → (A → C) → (B → C) → C Case analysis of an union
unit > Unital element
abort ⊥ → A Empty function
absurd ⊥ → ⊥ Particular empty function

They correspond to the constructors we described on previous sections. The only new term is
the absurd function, which is only a particular case of abort, useful when we want to make
explicit that we are deriving an instance of the empty type. This addition will only make the
logical interpretation on the following sections clearer.

Example 2.5 (Extended STLC on Mikrokosmos). The following are examples of typed terms
and functions on Mikrokosmos using the extended typed constructors. The following terms
are presented

• a function swapping pairs, as an example of pair types;
• two-case analysis of a number, deciding whether to multiply it by two or to compute its

predecessor;

64

• difference between abort and absurd;
• example term containing the unit type.

:load types
swap = \m.(snd m,fst m)
swap --- [1]: ńa.((SND a),(FST a)) ⇒ swap :: (A × B) → B × A
caseof (inl 1) pred (mult 2) --- [2]: ńa.ńb.b ⇒ nil, 0, false :: A → B → B
caseof (inr 1) pred (mult 2) --- [3]: ńa.ńb.(a (a b)) ⇒ 2 :: (A → A) → A → A
\x.((abort x),(absurd x)) --- [4]: ńa.((ABORT a),(ABSURD a)) :: ⊥ → A × ⊥

Now it is possible to define a new encoding of the booleans with an uniform type. The type >
+ > has two inhabitants, inl > and inr >; and they can be used by case analysis.

btrue = inl unit
bfalse = inr unit
bnot = \a.caseof a (\a.bfalse) (\a.btrue)
bnot btrue --- [1]: (INR UNIT) ⇒ bfalse :: A + >
bnot bfalse --- [2]: (INL UNIT) ⇒ btrue :: > + A

With these extended types, Mikrokosmos can be used as a proof checker on first-order intu-
itionistic logic by virtue of the Curry-Howard correspondence.

2.6.3 A proof in intuitionistic logic

Under the logical interpretation of Mikrokosmos, we can transcribe proofs in intuitionistic logic
to λ-terms and check them on the interpreter. The translation between logical propositions and
types is straightforward, except for the negation of a proposition ¬A, that must be written
as (A→ ⊥), a function to the empty type.

Theorem 2.6. In intuitionistic logic, the double negation of the Law of Excluded Middle holds
for every proposition. That is, we know that ¬¬(A ∨ ¬A) for an arbitrary proposition A.

Proof. Suppose ¬(A ∨ ¬A). We are going to prove first that, under this specific assumption,
¬A holds. If A were true, A ∨ ¬A would be true and we would arrive to a contradiction, so
¬A. But then, if we have ¬A we also have A ∨ ¬A and we arrive to a contradiction with the
assumption. We must conclude that ¬¬(A ∨ ¬A).

Note that this is, in fact, a constructive proof. Although it seems to use the intuitionistically
forbidden technique of proving by contradiction, it is actually only proving a negation. There
is a difference between assuming A to prove ¬A and assuming ¬A to prove A: the first one is
simply a proof of a negation, the second one uses implicitly the law of excluded middle.

This can be translated to the Mikrokosmos implementation of simply typed λ-calculus as the
following term, whose type is precisely ((A+ (A→ ⊥))→ ⊥)→ ⊥.

notnotlem = \f.absurd (f (inr (\a.f (inl a))))
notnotlem
--- [1]: ńa.(ABSURD (a (INR ńb.(a (INL b))))) :: ((A + (A → ⊥)) → ⊥) → ⊥

The derivation tree can be seen directly on the interpreter as Figure 1.1 shows.

65

Figure 2.4: Proof of the double negation of the Law of Excluded Middle in Mikrokosmos.

66

Chapter 3

Category theory

3.1 Categories

Categories are algebraic structures that capture the notion of composition. They consist
of objects linked by composable arrows; to which associativity and identity laws will apply.
Thus, a category has to rely in some notion of collection of objects. When interpreted inside
set-theory, this term can denote sets or proper classes. We want to talk about categories
containing subsets of the class of all sets, and thus it is necessary to allow the objects to form a
proper class (which is not itself a set) in order to avoid inconsistent results such as the Russell’s
paradox. This is why we will consider a particular class of categories of small set-theoretical
size to be specially well-behaved.

Definition 3.1 (Small and locally small categories). A category is said to be small if the
collection of its objects can be given by a set (instead of a proper class). It is locally small
if the collection of arrows between any two objects can be given by a set.

A different approach, however, would be to simply take objects and arrows as fundamental
concepts of our theory. These foundational concerns will not cause any explicit problem in this
presentation of category theory, so we will keep it deliberately open to both interpretations.

3.1.1 Definition of category

Definition 3.2. A category C (following [Lan78] or [Awo10]) is given by a collection whose
elements are called objects, sometimes denoted obj(C) or simply C; and a collection whose
elements are called morphisms. Every morphism f is assigned two objects, its domain and its
codomain; we write f : A→ B to indicate that f has domain A and codomain B.

Given any two morphisms f : A → B and g : B → C, there exists a composition morphism
g ◦ f : A → C. Composition of morphisms is a partially defined binary operation satisfying
the following two axioms. It must be associative, verifying that h ◦ (g ◦ f) = (h ◦ g) ◦ f for
any composable morphisms f, g, h; and there must exist an identity morphism idA : A→ A for
each object A, verifying that f ◦ idA = f = idB ◦ f for all f : A→ B.

The collection of morphisms between two objects A and B is called an hom-set and it is
written as hom(A,B). When necessary, we can use a subscript, as in homC(A,B), to explicitly
specify the category we are working in.

67

3.1.2 Morphisms

Objects in category theory are an atomic concept and can be only studied by their morphisms;
that is, by how they relate to each other. In other words, the essence of a category is given
not by its objects, but by the morphisms between them and how composition is defined. It
is so much so, that we will consider two objects essentially equivalent (and we will call them
isomorphic) whenever they relate to other objects in the exact same way. This occurs if we
can find an invertible morphism connecting both: composition by this morphism or its inverse
will translate arrows from one object to the other.

Definition 3.3. A morphism f : A → B is an isomorphism if there exists a morphism
f−1 : B → A such that f−1 ◦ f = idA and f ◦ f−1 = idB. This morphism is called an inverse
of f . When an isomorphism between two objects A and B exists, we say they are isomorphic,
and we write A ∼= B.

Proposition 3.4. There is, at most, a single way to invert a morphism. If the inverse of a
morphism exists, it is unique. In fact, if a morphism has a left-side inverse and a right-side
inverse, they must be equal.

Proof. Given f : A→ B with a left-side inverse g1 : B → A and a right-side inverse g2 : B → A;
we have that

g1 = g1 ◦ idA = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = id ◦ g2 = g2.

As expected, to be isomorphic to is an equivalence relation. In particular, reflexivity follows
from the fact that the identity is its own inverse, id = id−1; symmetry follows from the inverse
of an isomorphism being itself an isomorphism, (f−1)−1 = f ; and transitivity follows by the fact
that the composition of isomorphisms is itself an isomorphism, (f ◦g)−1 = g−1 ◦f−1. All these
equalities can be checked from the axioms of a category. We can notice that morphisms are an
abstraction of the notion of structure-preserving maps between mathematical structures. Two
structures can be identified if they are related by an isomorphism. From this perspective, it
seems natural to ask how injective and surjective can be described only in terms of composition.
Monomorphisms and epimorphisms will be abstractions of the usual injective and surjective
homomorphisms, respectively.

Definition 3.5 (Monomorphisms and epimorphisms). Amonomorphism is a left-cancellable
morphism, that is, f : A→ B is a monomorphism if, for every pair of morphisms g, h : B → A,
the equality f ◦ g = f ◦ h implies g = h.

Dually, an epimorphism is a right-cancellable morphism, that is, f : A → B is an epimor-
phism if, for every g, h : B → A, the equality g ◦ f = h ◦ f implies g = h.

Note that we could have chosen a stronger and non-equivalent notion to generalize the notions
of injective and surjective functions.

Definition 3.6 (Retractions and sections). A retraction is a left inverse, that is, a morphism
that has a right inverse; conversely, a section is a right inverse or, in other words, a morphism
that has a left inverse.

By virtue of Proposition 3.4, a morphism that is both a retraction and a section is an isomor-
phism. In general, however, not every epimorphism is a section and not every monomorphism

68

is a retraction. Consider for instance a category with two objects and a single morphism con-
necting them; it is a monomorphism and an epimorphism, but it has no inverse. In any case,
we will usually work with the more general notion of monomorphisms and epimorphisms.

3.1.3 Products and sums

Products and sums are very widespread notions in mathematics. Whenever a new structure
is defined, it is common to ask what the product or sum of two of these structures would be.
Examples of products are the cartesian product of sets, the product topology or the product
of abelian groups; examples of sums are the disjoint union of sets, topological sum or the free
product of groups. Following this idea, we can consider certain structures to constitute a 0 or
a 1 for these operations; these are called initial and final objects.

We will abstract categorically these notions in terms of universal properties. This point of view,
however, is an important shift with respect to how these properties are classically defined. We
will not define the product of two objects in terms of their internal structure (categorically,
objects are atomic and do not have any); but in terms of all the other objects, that is, in terms
of the complete structure of the category. This turns inside-out the focus of the definitions.
Moreover, objects defined in terms of universal properties are usually not uniquely determined,
but only determined up to isomorphism. This reinforces our previous idea of considering two
isomorphic objects in a category as essentially the same object.

Definition 3.7 (Initial and terminal objects). An object 0 is an initial object if for every
object A exists an unique morphism of the form oA : 0→ A. An object 1 is a terminal object
if for every object A exists an unique morphism of the form ∗A : A→ 1.

Note that these objects may not exist in any given category; but when they do, they are
essentially unique. If A,B are initial objects, by definition, there are a unique morphism
f : A → B, a unique morphism g : B → A, and two unique morphisms A → A and B → B.
By uniqueness, f ◦ g = id and g ◦ f = id, hence A ∼= B. An analogous proof can be written for
terminal objects.

Definition 3.8 (Products and sums). An object A×B with two morphisms π1 : A×B → A
and π2 : A× B → B is a product of A and B if for any other object D with two morphisms
f1 : D → A and f2 : D → B, there exists a unique morphism h : D → A × B, such that
f1 = π1 ◦ h and f2 = π2 ◦ h as in the following commutative diagram.

D

A A×B B

∃!h

f2f1

π2π1

An object A + B with two morphisms i1 : A → A + B and i2 : B → A + B is the sum of A
and B for any other object D with two morphisms f1 : A → D and f2 : B → D, there exists
a unique morphism h : D → A + B, such that f1 = h ◦ i1 and f2 = h ◦ i2 as in the following
commutative diagram.

D

A A+B B

f1

i1

∃!h

f2

i2

69

Note that neither the product nor the sum of two objects necessarily exist on a category; but
when they do, they are essentially unique. This justifies writing them as A × B and A + B.
The proof is similar to that of the unicity of initial and terminal objects.

3.1.4 Examples of categories

Many mathematical structures, such as sets, groups, or partial orders, are particular cases of
a category. Apart from these, we will be also interested in categories whose objects are known
mathematical structures (the category of all groups, the category of all sets, and so on). The
following are examples on how general the definition of a category is.

Example 3.9. A category is discrete if it has no other morphisms than the identities. A
discrete small category is uniquely defined by the underlying set of its objects and every class
of objects defines a discrete category. Thus, small discrete categories can be regarded as sets.

Example 3.10. A single-object category is a monoid. A category in which every morphism is
an isomorphism is a groupoid. A group is a category which is a monoid and a groupoid at
the same time. These definitions are equivalent to the usual ones if we take morphisms as the
elements and composition as the binary operation.

Example 3.11. Partially ordered sets are categories with, at most, one morphism between
any two objects. We say a ≤ b whenever ρa,b : a → b exists. In a partially ordered set, the
product of two objects would be its join, the coproduct would be its meet and the initial and
terminal objects would be the greatest and the least element, respectively.

In particular, every ordinal can be seen as a partially ordered set and defines a category. For
example, if we take the finite ordinal [n] = (0 < · · · < n), it could be interpreted as the
category given by the following diagram.

0 1 2 . . . n

Example 3.12 (The category of sets). The category Set is defined as the category with all sets
as objects and functions between them as morphisms. It is trivial to check associativity of
composition and the existence of the identity function for any set.

In this category, the product is given by the usual cartesian product

A×B =
{

(a, b) | a ∈ A, b ∈ B
}
,

with the projections πA(a, b) = a and πB(a, b) = b. We can easily check that, if we have
f : C → A and g : C → B, there is a unique function given by h(c) = (f(c), g(c)) such that
πA ◦ h = f and πB ◦ h = g.

The initial object in Set is given by the empty set ∅: given any set A, the only function of the
form f : ∅→ A is the empty one. The final object, however, is only defined up to isomorphism:
given any set with a single object {u}, there exists a unique function of the form f : A→ {u}
for any set A; namely, the one defined as ∀a ∈ A : f(a) = u. Every two sets with exactly one
object are trivially isomorphic.

70

Similarly, the sum of two sets A,B is given by its disjoint union A tB; which can be defined
in many different (but equivalent) ways. For instance, we can add a label to the elements of
each sets before joining them in order to ensure that the union is in fact disjoint. That is, a
possible coproduct is

A tB = {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B}

with the inclusions iA(a) = (a, 0) and iB(b) = (b, 1). Given any two functions f : A→ C and
g : A→ C, there exists a unique function h : A tB → C, given by

h(x, n) =

{
f(x) if n = 0,
g(x) if n = 1,

such that f = h ◦ iA and g = h ◦ iB.

Example 3.13 (Groups and modules). The category Grp is defined as the category with groups
as objects and group homomorphisms between them as morphisms. The category R-Mod is
defined as the category with R-modules as objects and module homomorphisms between them
as morphisms. We know that the composition of module homomorphisms and the identity are
also module homomorphisms. In particular, abelian groups form a category as Z-modules.

Example 3.14 (The category of topological spaces). The category Top is defined as the category
with topological spaces as objects and continuous functions between them as morphisms.

3.2 Functors and natural transformations

"Category" has been defined in order to define "functor" and "functor" has been
defined in order to define "natural transformation".

– Saunders MacLane, Categories for the working mathematician, [EM42].

Functors and natural transformations were defined for the first time by Eilenberg and MacLane
in [EM42] and [EM45] while studying cohomology theory. While initially they were devised
mainly as a language for this study, they have proven its foundational value with the passage
of time. The notion of naturality will be a key element of our presentation of algebraic theories
and categorical logic.

3.2.1 Functors

Functors can be seen as a homomorphisms of categories that preserve composition and identity
arrows. A functor between two categories, F : C → D, is given by

• an object function, F : obj(C)→ obj(D);
• and an arrow function, F : hom(A,B) → hom(FA,FB), for any two objects A,B of

the category;

such that F (id) = id, and F (f ◦ g) = Ff ◦ Fg. We can arrange functors, at least in the case
of small categories, into a category of categories.

Definition 3.15. The category Cat is defined as the category of (small) categories as objects
and functors as morphisms.

71

• Given two functors F : C → B and G : B → A, their composite functor G ◦ F : C → A
is given by the composition of the object and arrow functions of the functors. This
composition is trivially associative.

• The identity functor on a category IdC : C → C is given by identity object and arrow
functions. It is trivially neutral with respect to composition.

We now consider certain properties of functors in this category. We say that a functor F is full
if every g : FA→ FB is of the form Ff for some morphism f : A→ B. We say F is faithful
if, for every two arrows f1, f2 : A → B, Ff1 = Ff2 implies f1 = f2. It is easy to notice that
the composition of faithful (respectively, full) functors is again a faithful functor (respectively,
full).

These notions are equivalent to notions of injectivity and surjectivity on the arrow function
between any two objects. Note, however, that a faithful functor needs not to be injective on
objects nor on morphisms. In particular, if A,A′, B,B′ are four different objects, it could be
the case that FA = FA′ and FB = FB′; and, if f : A → B and f ′ : A′ → B′ were two
morphisms, it could be the case that Ff = Ff ′. The following notion of isomorphism does
require the complete functor to have an inverse.

Definition 3.16. An isomorphism of categories is a functor F whose object and arrow
functions are bijections. Equivalently, it is a functor F such that there exists an inverse functor
G such that F ◦G and G ◦ F are the identity functor.

Unfortunately, this notion of isomorphism of categories is too strict in some cases. Sometimes,
the two compositions F ◦G and G ◦ F are not exactly the identity functor, but isomorphic to
it in some sense yet to be made precise. We develop weaker notions in the next section.

3.2.2 Natural transformations

We have defined functors relating structures on different categories, and now, we could consider
if any two given functors can be related in a canonical way, involving no arbitrary choices. An
example is the relation between the identity functor and the double dual functor in vector
spaces. They are related by the canonical isomorphism that sends each vector to the operator
that evaluates a function over it. In this case, the isomorphism can be described without
making any explicit reference to the space. On the other hand, the isomorphism relating
a vector space to its dual depends on the choice of a basis. A family of canonical linear
isomorphisms σV : V → V ∗ translating between an space and its dual, should be invariant
to linear maps µ : V → W , so it should satisfy σV (v)(w) = σW (µ(v))(µ(w)), but this is not
possible for all µ linear. The notion of natural transformation formalizes this intuitive idea.

A natural transformation between two functors F and G with the same domain and
codomain, written as α : F ⇒ G, is a family of morphisms parameterized by the objects
of the domain category, {αC : FC → GC}C∈C , such that αC′ ◦ Ff = Gf ◦ αC for every arrow
f : C → C ′. That is, the following diagram commutes.

C FC GC

C ′ FC ′ GC ′

f

αC

Ff Gf

αC′

Sometimes, we also say that the family of morphisms α is natural in its argument. This

72

naturality property is what allows us to "translate" a commutative diagram from a functor to
another, as in the following example.

A FA GA

B FB GB

C FC GC

h

f

Fh

Ff

αA

Gf

g Fg

αB

Gg
αC

Natural isomorphisms are natural transformations in which every component, every mor-
phism of the parameterized family, is invertible. In this case, the inverses form themselves
a new transformation, whose naturality follows from the naturality of the original transfor-
mation. We say that F and G are naturally isomorphic, F ∼= G, when there is a natural
isomorphism between them.

The notion of a natural isomorphism between functors allows us to weaken the condition of
strict equality we imposed when talking about isomorphisms of categories (Definition 3.16).
We say that two categories C and D are equivalent if there exist two functors F : C → D and
G : D → C such that G ◦ F ∼= IdC and F ◦ G ∼= IdD. The pair of functors endowed with the
two natural isomorphisms is called an equivalence of categories

3.2.3 Composition of natural transformations

The next reasonable step is to ask how natural transformations compose. If we draw natural
transformations between functors as double arrows, as in the following diagram,

C D

F

G

α

we notice that two different notions of composition arise; we have a vertical composition of
natural transformations, which, diagrammatically, composes the two sequential natural trans-
formations on the left side into a single transformation on the right side of the following
diagram;

C D C D

F

H

G

α

β

F

H

α·β

and we have a horizontal composition of natural transformations, which composes the two
parallel natural transformations on the left side into a single transformation on the right side
of the following diagram.

C D E C E

F

G

α

F ′

G′

α′

F ′◦F

G′◦G

α′◦α

73

Definition 3.17. The vertical composition of two natural transformations α : F ⇒ G and
β : G⇒ H, denoted by β ·α is the family of morphisms defined by the objectwise composition
of the morphisms of the two natural transformations. That is, (β · α) = {βC ◦ αC}C∈C .

Naturality of this family follows from the naturality of its two factors. Given any morphism
f : A → B, the commutativity of the external square on the diagram below follows from the
commutativity of the two internal squares.

FA FB

GA GB

HA HB

Ff

αA

(β·α)A

αB

(β·α)B
Gf

βA βB

Hf

Definition 3.18 (Horizontal composition of natural transformations). The horizontal com-
position of two natural transformations α : F → G and α′ : F ′ → G′, with domains and
codomains as in the following diagram

C D E

F

G

α

F ′

G′

α′

is denoted by α′ ◦ α : F ′ ◦ F → G′ ◦ G and is defined as the family of morphisms given by
α′ ◦ α = {G′αC ◦ α′FC}C∈C = {α′GC ◦ F ′αC}C∈C , that is, by the diagonal of the following
square, which is commutative by the naturality of α′.

F ′FC G′FC

F ′GC G′GC

α′FC

(α′◦α)C
F ′αC G′αC

α′GC

Naturality of this family follows again from the naturality of its two factors. Given any mor-
phism f : A → B, the following diagram is commutative because it is the composition of two
naturality squares given by the naturality of F ′α and α′.

F ′FA F ′GA G′GA

F ′FB F ′GB G′GB

F ′α

F ′Ff

α′

F ′Gf G′Gf

F ′α α′

Proposition 3.19 (Interchange law). The two possible ways of composing vertical and hori-
zontal transformations in a diagram like the following one

C D E

F

H

G

α

β

F ′

H′

G′

α′

β′

are actually equivalent. That is, (β′ · α′) ◦ (β · α) = (β′ ◦ β) · (α′ ◦ α).

74

Proof. By naturality of α′, we have

(β′ · α′) ◦ (β · α) = {β′HC ◦ α′HC ◦ F ′βC ◦ F ′αC}C∈C
= {β′HC ◦G′βC ◦ α′GC ◦ F ′αC}C∈C
= (β′ ◦ β) · (α′ ◦ α).

3.3 Constructions on categories

Before continuing our study of functors and universal properties, we provide some constructions
and examples of categories we will need in the future. In particular, we consider some variations
on the definition of functors and we use them to construct new categories.

3.3.1 Product categories

The product category (see [EM45]) of two categories C and D, denoted by C × D, is their
product object in the category Cat. Explicitly, it is given by

• objects of the form 〈C,D〉, where C ∈ C and D ∈ D;
• and morphisms of the form 〈f, g〉 : 〈C,D〉 → 〈C ′, D′〉, where f : C → C ′ and g : D → D′

are morphisms in their respective categories.

The identity morphism of any object 〈C,D〉 is 〈idC , idD〉, and composition is defined compo-
nentwise as 〈f ′, g′〉◦〈f, g〉 = 〈f ′◦f, g′◦g〉. The definition of the product also provides projection
functors P : C × D → C and Q : C × D → D on arrows as P 〈f, g〉 = f and Q〈f, g〉 = g.

The product functor of two functors F : C → C′ and G : D → D′ is the unique functor
F ×G : C × D → C′ ×D′ making the following diagram commute.

C C × D D

C′ C′ ×D′ D′
F

QP

F×G G

Q′P ′

Explicitly, it acts on arrows as (F ×G)〈f, g〉 = 〈Ff,Gg〉. In this sense, the × operation could
be seen as a functor with two arguments acting on objects and morphisms of the Cat category.
We now formalize this idea of a functor in two variables.

Bifunctors are functors from a product category, but they can also be regarded as functors
on two variables. As we will show in the following proposition, they are completely determined
by the two families of functors we obtain when we fix any of the arguments. We will also study
a characterization of naturality between these functors.

Proposition 3.20 (Conditions for the existence of bifunctors). Let B, C,D categories with two
families of functors

{FC : B → D}C∈C and {GB : C → D}B∈B,

such that GB(C) = FC(B) for all B,C. A bifunctor S : B × C → D such that S(−, C) = FC
and S(B,−) = GB for all B ∈ B and C ∈ C exists if and only if for every f : B → B′ and
g : C → C ′,

GB′g ◦ FCf = FC′f ◦GBg.

75

Proof. If the equality holds, the bifunctor can be defined as S(b, c) = GB(c) = FC(b) in
objects and as S(f, g) = GB′g ◦ FCf = FC′f ◦ GBg on morphisms. This bifunctor preserves
identities, as S(id, id) = GB(id) ◦ FC(id) = id ◦ id = id; and it preserves composition, as, for
any morphisms f, f ′, g, g′ with suitable domain and codomain, we have

S(f ′, g′) ◦ S(f, g) = Gg′ ◦ Ff ′ ◦Gg ◦ Ff = Gg′ ◦Gg ◦ Ff ′ ◦ Ff = S(f ′ ◦ f, g′ ◦ g).

On the other hand, if a bifunctor exists, the condition is satisfied because

GB′(g) ◦ FC(f) = S(idB′ , g) ◦ S(f, idC) = S(idB′ ◦ f, g ◦ idC)

= S(f ◦ idB, idC′ ◦ g) = S(f, idC′) ◦ S(idB, g)

= FC′(f) ◦GB(f).

Proposition 3.21 (Naturality for bifunctors). Naturality on both components of a bifunctor is
equivalent to naturality in the usual sense. Given S, S′ bifunctors, the family αB,C : S(B,C)→
S′(B,C) is a natural transformation if and only if αB,C is natural in B for each C and natural
in C for each B.

Proof. If α is natural, in particular, we can use the identities to prove that it must be natural
in its two components.

S(B,C) S′(B,C) S(B,C) S′(B,C)

S(B′, C) S′(B′, C) S(B,C ′) S′(B,C ′)

α

S〈f,id〉 S′〈f,id〉

α

S〈id,g〉 S′〈id,g〉

α α

If both components of α are natural, the naturality of the natural transformation follows from
the composition of these two squares

S(B,C) S′(B,C)

S(B′, C) S′(B′, C)

S(B′, C ′) S′(B′, C ′)

α

S〈f,id〉 S′〈f,id〉

α

S〈id,g〉 S′〈id,g〉

α

where each square is commutative by the naturality of each component of α.

3.3.2 Opposite categories and contravariant functors

For many constructions in categories, it makes sense to consider how the process of reverting
all the arrows yields a new construction.

The opposite category Cop of a category C is a category with the same objects as C but
with all its arrows reversed. That is, for each morphism f : A → B, there exists a morphism
fop : B → A in Cop. Composition is defined as fop◦gop = (g◦f)op, exactly when the composite
g ◦ f is defined in C.

Reversing all the arrows is a process that directly translates every property of the category
into its dual property. A morphism f is a monomorphism if and only if fop is an epimorphism;

76

a terminal object in C is an initial object in Cop and a right inverse becomes a left inverse on
the opposite category. This process is also an involution, where (fop)op can be seen as f , and
(Cop)op is trivially isomorphic to C.

Definition 3.22 (Contravariant functor). A contravariant functor from C to D is a functor
from the opposite category, that is, F : Cop → D. Non-contravariant functors are often called
covariant functors, to emphasize the difference.

Example 3.23 (Hom functors). In a locally small category C, theHom-functor is the bifunctor
hom: Cop × C → Set, defined as hom(A,B) for any two objects A,B ∈ C. Given f : A →
A′ and g : B → B′, this functor is defined on any p ∈ hom(A,B) as postcomposition and
precomposition, hom(f, g)(p) = f ◦ p ◦ g ∈ hom(A′, B′). Partial applications of the functor
give rise to

• hom(A,−), a covariant functor for any fixed A ∈ C that maps g : B → B′ to the precom-
position − ◦ g : hom(A,B)→ hom(A,B′);

• hom(−, B), a contravariant functor for any fixed B ∈ C that maps f : A → A′ to the
postcomposition f ◦ − : hom(A′, B)→ hom(A,B).

Note that this is a well-defined bifunctor by virtue of Proposition 3.20 and the fact that
(−◦ g) ◦ (f ◦−) = (f ◦−) ◦ (−◦ g) by associativity. This kind of functor, contravariant on the
first variable and covariant on the second, is usually called a profunctor.

3.3.3 Functor categories

Given two categories B, C, the functor category BC has all functors from C to B as objects
and natural transformations between them as morphisms. If we consider the category of small
categories Cat, there is a hom-profunctor −− : Catop × Cat → Cat sending any two categories
B and C to their functor category BC . Many mathematical constructions are examples of
functor categories. In [LS09], multiple examples of usual mathematical constructions in terms
of functor categories can be found. Graphs, for instance, can be seen as functors; and graphs
homomorphisms as the natural transformations between them.

Example 3.24 (Graphs as functors). We consider the category given by two objects and two
non-identity morphisms,

· ·

usually called ↓↓. To define a functor from this category to Set amounts to choose two sets
E, V (not necessarily different) called the set of edges and the set of vertices; and two functions
s, t : E → V , called source and target. That is, our usual definition of directed multigraph,

E V

s

t

can be seen as an object in the category Set↓↓. Note how a natural transformation between
two graphs (E, V) and (E′, V ′) is a pair of morphisms αE : E → E′ and αV : V → V ′ such
that s ◦ αE = αV ◦ s and t ◦ αE = αV ◦ t. This provides a convenient notion of graph
homomorphism: a pair of morphisms preserving the incidence of edges. We can call Graph to
this functor category.

77

Example 3.25 (Dynamical systems as functors). A set endowed with an endomorphism (S, α)
can be regarded as a dynamical system in an informal way. Each state of the system is repre-
sented by an element of the set and the transition function is represented by the endomorphism.
That is, if we start at an initial state s ∈ S and the transition function is given by α : S → S,
the evolution of the system will be given by

s, α(s), α(α(s)), α(α(α(s))), . . .

and we could say that it evolves discretely over time, being αt(s) the state of the system at
the instant t.

This structure can be described as a functor from the monoid of natural numbers with addition,
seen as a category. Note that any functor D : N → Set has to choose a set S, and an image
for the morphism (1+) : N → N, of the form α : S → S. The image of any natural number n
is now determined by the image of (1+) because the functor must preserve composition and
identities; if D(1+) = α, it follows that D(t+) = αt, where α0 = id.

Once the structure has been described as a functor, the homomorphisms preserving this kind of
structure can be described as natural transformations. A natural transformation between two
functors D,D′ : N → Set describing two dynamic systems (S, α), (T, β) is given by a function
f : S → T such that the following diagram commutes

S T

S T

f

αn βn

f

that is, f ◦ α = β ◦ f . A natural notion of homomorphism has arisen from the categorical
interpretation of the structure.

A further generalization is now possible: if we want to consider continuously-evolving dynam-
ical systems, we can define functors from the monoid of real numbers under addition, that is,
functors R → Set. Note that these functors are given by a set S and a family of morphisms
{αr}r∈R such that αr ◦ αs = αr+s for all r, s ∈ R. This example is discussed in [LS09].

3.4 Universality and limits

3.4.1 Universal arrows

A universal property is commonly given in mathematics by some conditions of existence and
uniqueness on morphisms, representing some sort of natural isomorphism. They can be used
to define certain constructions up to isomorphism and to operate with them in an abstract
setting. We will formally introduce universal properties using universal arrows from an object
C to a functor G; the property of these arrows is that every arrow of the form C → GD will
factor uniquely through the universal arrow.

A universal arrow from C ∈ C to G : D → C is a morphism u : C → GD0 such that for every
g : C → GD exists a unique morphism f : D0 → D making the following diagram commute.

GD D

C GD0 D0u

g
Gf ∃!f

78

Note how an universal arrow is, equivalently, the initial object of the comma category (C ↓ G).
Thus, universal arrows must be unique up to isomorphism.

Proposition 3.26 (Universality in terms of hom-sets). The arrow u : C → GD0 is universal
if and only if f 7→ Gf ◦u is a bijection hom(D0, D) ∼= hom(C,GD) natural in D. Any natural
bijection of this kind is determined by a unique universal arrow.

Proof. On the one hand, given an universal arrow, bijectivity follows from the definition of
universal arrow; and naturality follows from the fact that G(g ◦ f) ◦ u = Gg ◦Gf ◦ u. On the
other hand, given a bijection ϕ, we define u = ϕ(idD0). By naturality, we have the bijection
ϕ(f) = Gf ◦ u; and every arrow can be written in this form.

The categorical dual of an universal arrow from an object to a functor is the notion of universal
arrow from a functor to an object. Note how, in this case, we avoid the name couniversal arrow ;
as both arrows are representing what we usually call a universal property.

A dual universal arrow from G to C is a morphism v : GD0 → C such that for every
g : GD → C exists a unique morphism f : D → D0 making the following diagram commute.

D GD

D0 GD0 C

∃!f Sf
g

v

3.4.2 Representability

A representation of a functor from a locally small category to the category of sets, K : D →
Set, is a natural isomorphism ψ : homD(r,−) ∼= K making it isomorphic to a partially applied
hom-functor. A functor is representable if it has a representation and the object r used in the
representation is called its representing object.

Proposition 3.27 (Representations in terms of universal arrows). If u : 1→ Kr is a universal
arrow for a functor K : D → Set, then the map f 7→ Kf(u(∗)) is a representation. Every
representation is obtained in this way.

Proof. There is a trivial natural isomorphism homSet(1, X) ⇒ X for each X; in particular
homSet(1,K−)⇒ K− is a natural isomorphism. Every representation is then built as

homD(r,−) ∼= homSet(1,K−) ∼= K,

using universality of u. Moreover, every natural isomorphism homD(r,−) ∼= K determines
an natural isomorphism homD(r,−) ∼= homSet(1,K−), which in turn determines a universal
arrow by Proposition 3.26.

3.4.3 Yoneda Lemma

The Yoneda lemma is one of the first results in pure category theory. It allows us to embed
any small category into a functor category over the category of sets. It will be very useful
when studying presheaves and algebraic theories (see Section 4.2.1) to create models of these
theories.

79

Lemma 3.28 (Yoneda Lemma). For any K : D → Set and r ∈ D, there is a bijection
y : Nat(homD(r,−),K) ∼= Kr sending any natural transformation α : homD(r,−) ⇒ K to
its image on the identity, αr(idr).

Proof. The complete natural transformation α is determined by αr(idr). By naturality, given
any f : r → s, it must be the case that αs(f) = Kf(αr(idr)).

hom(r, r) Kr

idr αr(idr)

f αs(f)

hom(r, s) Ks

αr

f◦− Kf

αs

Corollary 3.29 (Characterization of natural transformations between representable functors).
Given r, s ∈ D, any natural transformation hom(r,−)⇒ hom(s,−) is of the form − ◦ h for a
unique morphism h : s→ r.

Proof. Using Yoneda Lemma (Lemma 3.28), we know that

Nat(homD(r,−), homD(s,−)) ∼= homD(s, r),

sending the natural transformation to a morphism α(idr) = h : s→ r. The rest of the natural
transformation is determined as − ◦ h by naturality.

Proposition 3.30 (Naturality of the Yoneda Lemma). The bijection on the Yoneda Lemma
(Lemma 3.28), y : Nat(homD(r,−),K) ∼= Kr, is a natural isomorphism between two functors
SetD ×D → Set.

Proof. We define N : SetD × D → Set on objects as N〈r,K〉 = Nat(hom(r,−),K). Given
f : r → r′ and F : K ⇒ K ′, the functor is defined on morphisms as

N〈f, F 〉(α) = F ◦ α ◦ (− ◦ f) ∈ Nat(hom(r′,−),K),

where α ∈ Nat(hom(r,−),K). We define E : SetD × D → Set on objects as E〈r,K〉 = Kr.
Given f : r → r′ and F : K ⇒ K ′, the functor is defined on morphisms as

E〈f, F 〉(a) = F (Kf(a)) = K ′f(Fa) ∈ K ′r′,

where a ∈ Kr, and the equality holds because of the naturality of F . The naturality of y is
equivalent to the commutativity of the following diagram

Nat(hom(r,−),K) Kr

Nat(hom(r′,−),K ′) K ′r′

y

N〈f,F 〉 E〈f,F 〉

y

80

where, given any α ∈ Nat(hom(r,−),K), it follows from naturality of α that

y
(
N〈f, F 〉(α)

)
= y
(
F ◦ α ◦ (− ◦ f)

)
= F ◦ α ◦ (− ◦ f)(idr′) = F (α(f))

= F (α(idr′ ◦ f)) = F (Kf(αr(idr))) = E〈f, F 〉αr(idr)
= E〈f, F 〉

(
y(α)

)
.

Definition 3.31. In the conditions of the Yoneda Lemma (Lemma 3.28) theYoneda functor,
Y : Dop → SetD, is defined with the arrow function

(f : A→ B) 7→
(

homD(f,−) : homD(B,−)→ homD(A,−)
)
.

It can be also written as Y : D → SetD
op
. By the Yoneda Lemma, there is a bijection

y : Nat(hom(B,−), hom(A,−)) ∼= hom(A,B) given by Y (hom(f,−)) = f ; making the Yoneda
functor full and faithful.

3.4.4 Limits

In the definition of product, we chose two objects of the category, we considered all possible
cones over two objects and we picked the universal one.

D

C A×B

A B A B

∃!

In this previous commutative diagram, C is a cone and A×B is the universal one: every cone
factorizes through it. In this particular case, the base of each cone is given by two objects; or,
in other words, by the image of a functor from the discrete category with only two objects,
called the index category.

We will be able to create new constructions on categories by formalizing the notion of cone and
generalizing to arbitrary bases, given as functors from arbitrary index categories. Constant
functors are the first step into formalizing the notion of cone.

Definition 3.32 (Constant functor). The constant functor ∆: C → CJ sends each object
c ∈ C to a constant functor ∆c : J → C defined as

• the constantly-c function for objects, ∆(j) = c;
• and the constantly-idc function for morphisms, ∆(f) = idc.

The constant functor sends a morphism g : c→ c′ to a natural transformation ∆g : ∆c→ ∆c′

whose components are all g.

We could say that ∆c compresses the whole category J into c. A natural transformation from
this functor to some other F : J → C should be regarded as a cone from the object c to a

81

copy of J inside the category C; as the following diagram exemplifies.

c

· · · ·
· · · ·

∆

J
F

FJ

The components of the natural transformation appear highlighted in the diagram. The natu-
rality of the transformation implies that each triangle

·

· ·

on that cone must be commutative. Thus, natural transformations are a way to recover all the
information of an arbitrary index category J that was encoded in c by the constant functor.
As we did with products, we want to find the cone that best encodes that information; a
universal cone, such that every other cone factorizes through it. Diagrammatically an r such
that, for each d,

d

r

· ·
· ·

∃!

That factorization will be represented in the formal definition of limit by a universal natural
transformation between the two constant functors.

Definition 3.33. The limit of a functor F : J → C is an object r ∈ C such that there exists
a universal arrow v : ∆r ⇒ F from ∆ to F . It is usually written as r = limF .

That is, for every natural transformation w : ∆d ⇒ F , there is a unique morphism f : d → r
such that

d ∆d

r ∆r F

∃!f ∆f w

v

commutes. This reflects directly on the universality of the cone we described earlier and proves
that limits are unique up to isomorphism.

By choosing different index categories, we will be able to define multiple different constructions
on categories as limits.

3.4.5 Examples of limits

For our first example, we will take the following category, called ↓↓ as index category,

· ·

82

A functor F : ↓↓→ C is a pair of parallel arrows in C. Limits of functors from this category
are called equalizers. With this definition, the equalizer of two parallel arrows f, g : A → B
is an object eq(f, g) with a morphism e : eq(f, g) → A such that f ◦ e = g ◦ e; and such that
any other object with a similar morphism factorizes uniquely through it.

D

eq(f, g)

A B

∃!
e′

e

f

g

Note how the right part of the cone is completely determined as f ◦e. Because of this, equalizers
can be written without specifying it, and the diagram can be simplified to the following one.

eq(f, g) A B

D

e
f

g

e′
∃!

Example 3.34 (Equalizers in the category of sets). The equalizer of two parallel functions
f, g : A → B in Set is {x ∈ A | f(a) = g(a)} with the inclusion morphism. Given any other
function h : D → A such that f ◦ h = g ◦ h, we know that f(h(d)) = g(h(d)) for any d ∈ D.
Thus, h can be factorized through the equalizer.

{x ∈ A | f(a) = g(a)} A B

D

i
f

g

h
∃!

Example 3.35 (Kernels). In the category of abelian groups, ker(f), the kernel of a function
f , is the equalizer of the functions f : G → H and z : G → H, where z is the function that
sends each element to the zero element of H. The same notion of kernel can be defined in the
category of R-Modules, for an arbitrary ring R.

Pullbacks are defined as limits whose index category is · → · ← ·. Any functor from that
category is a pair of arrows with a common codomain; and the pullback is the universal cone
over them.

D

A

X Z Y

p′ q′
∃!

qp

f g

Again, the central arrow of the diagram is determined as f ◦ q = g ◦ p; so it can be omitted in
the diagram. The usual definition of a pullback for two morphisms f : X → Z and g : Y → Z
is the universal pair of morphisms p : A → X and q : A → Y such that f ◦ q = g ◦ p, that is,

83

given any pair of morphisms p′ : D → X and q′ : D → Y , there exists a unique u : D → A
making the diagram commute. Usually we write the pullback object as X ×Z Y and we write
this property diagrammatically as follows.

D

X ×z Y X

Y Z

∃!u

p′

q′ q

p

f

g

The square in this diagram is usually called a pullback square, and the pullback object is
sometimes called a fibered product. Pullbacks will be a central notion when developing semantics
for dependent types in Section 4.4.

Example 3.36 (Pullbacks in the category of sets). Given two functions f : A→ C and g : B → C
in the category Set, their pullback is given by the subset of the cartesian product A × B
determined by those pairs of elements whose two images under f and g coincide. That is,
A ×C B = {(a, b) ∈ A×B | f(a) = g(b)} with the usual projections. Note that any function
making the pullback square commute factorizes uniquely though this set.

3.4.6 Colimits

A colimit is the dual notion of a limit. We could consider cocones to be the dual of cones
and pick the universal one. Once an index category J and a base category C are fixed, a
cocone is a natural transformation from a functor on the base category to a constant functor.
Diagrammatically,

c

· · · ·
· · · ·

∆

J
F

FJ

is an example of a cocone. The universal one would be the r, such that, for each cone d,

d

r

· ·
· ·

∃!

Naturality implies that each triangle of the following form commutes.

·

· ·

84

Definition 3.37. The colimit of a functor F : J → C is an object r ∈ C such that there exists
a universal arrow u : F ⇒ ∆r from F to ∆. It is usually written as r = colimF .

That is, for every natural transformation w : F ⇒ ∆d, there is a unique morphism f : r → d
such that

d ∆d

r ∆r F

∃!f ∆f

v

w

commutes. This reflects directly on the universality of the cocone we described earlier and
proves that colimits are unique up to isomorphism.

3.4.7 Examples of colimits

Coequalizers are the dual of equalizers; colimits of functors from ↓↓. The coequalizer of two
parallel arrows is an object coeq(f, g) with a morphism e : b→ coeq(f, g) such that e◦f = e◦g;
and such that any other object with a similar morphism factorizes uniquely through it.

d

coeq(f, g)

a b

∃!

f

g

e

e′

As the arrows on the right of the cocone are completely determined by the fact that the diagram
must be commutative, we can simplify the diagram as follows.

a b coeq(f, g)

d

f

g

e

e′
∃!

Example 3.38 (Coequalizers in Sets). The coequalizer of two parallel functions f, g : A→ B in
Set is B/(∼f=g), where ∼f=g is the minimal equivalence relation for which we have f(a) ∼ g(a)
for each a ∈ A. Given any other function h : B → D such that h(f(a)) = h(g(a)), the universal
property precisely states that it can be factorized in a unique way by h′ : B/ ∼f=g→ D.

A B B/(∼f=g)

D

f

g

e

e′
∃!

Pushouts are the dual of pullbacks; colimits whose index category is · ← · → ·, that is, the

85

dual of the index category for pullbacks.

d

a

x z y

∃!

p

p′

f g

q

q′

We can define the pushout of two morphisms f : z → x and g : z → y as a pair of morphisms
p : x→ a and q : y → a such that p ◦ f = q ◦ g which are also universal, that is, given any pair
of morphisms p′ : x → d and q′ : y → d, there exists a unique u : a → d making the following
diagram commute.

z y

x xqz y

d

g

f q
q′

p

p′

∃!u

The square in this diagram is usually called a pushout square, and the pullback object is
sometimes called a fibered coproduct.

3.5 Adjoints, monads and algebras

3.5.1 Adjunctions

An adjunction from categories X to Y is a pair of functors F : X → Y, G : Y → X with a
bijection ϕ : hom(FX, Y) ∼= hom(X,GY), natural in both X ∈ X and Y ∈ Y. We say that F
is left-adjoint to G and that G is right-adjoint to F and we denote this as F a G.

Naturality of ϕ, by Proposition 3.21, means that both

hom(FX, Y) hom(X,GY) hom(FX, Y) hom(X,GY)

hom(FX ′, Y) hom(X ′, GY) hom(FX, Y ′) hom(X,GY ′)

ϕ

−◦Fh −◦h

ϕ

k◦− Gk◦−

ϕ ϕ

commute for every h : X → X ′ and k : Y → Y ′. That is, for every f : FX → Y , we have
ϕ(f) ◦ h = ϕ(f ◦ Fh) and Gk ◦ ϕ(f) = ϕ(k ◦ f). Equivalently, ϕ−1 is natural, and that means
that, for every g : X → GY , we have k ◦ ϕ−1(g) = ϕ−1(Gk ◦ g) and ϕ−1(g) ◦ Fh = ϕ−1(g ◦ h).

A different and maybe more intuitive way to write adjunctions is by logical diagrams (see
[Law]). An adjunction F a G can be written as

FX Y
f

X GY
ϕ(f)

86

to emphasize that, for each morphism f : FX → Y , there exists a unique morphism ϕ(f) : X →
GY ; written in a way that resembles bidirectional logical inference rules. Naturality, in this
setting, means that precomposition and postcomposition of arrows are preserved by the in-
ference rule. Given morphisms h : X ′ → X and k : Y → Y ′, we know by naturality that the
composed arrows of the following diagrams are adjoint to one another.

FX ′ FX Y

f◦Fh

Fh f

X ′ X GY

ϕ(f)◦h

h ϕ(f)

FX Y Y ′

k◦f

f k

X GY GY ′

Gk◦ϕ(f)

ϕ(f) Gk

In other words, ϕ(f) ◦ h = ϕ(f ◦ Fh) and Gk ◦ ϕ(f) = ϕ(k ◦ f), as we wrote earlier. In
the following two propositions, we will characterize all this information in terms of natural
transformations made up of universal arrows. Given an adjunction F a G, we define

• the unit η as the family of morphisms ηX = ϕ(idFX) : X → GFX, for each X;
• the counit ε as the family of morphisms εY = ϕ−1(idGY) : FGY → Y , for each Y .

Diagrammatically, they can be obtained by taking Y to be FX and X to be GY , respectively,
in the definition of adjunction.

FX FXid

X GFX
ηx

FGY Y
εy

GY GYid

Proposition 3.39 (Units and counits are natural transformations). The unit and the counit
are natural transformations such that

1. for each f : FX → Y , ϕ(f) = Gf ◦ ηx;
2. for each g : X → GY , ϕ−1(g) = εy ◦ Fg.

Moreover, they follow the triangle identities, Gε ◦ ηG = idG and εF ◦ Fη = idF .

G GFG FGF F

G F

ηG

Gε εF

Fη

Proof. The right and left adjunct formulas are particular instances of the naturality equations
we gave in the definition of ϕ;

• Gf ◦ η = Gf ◦ ϕ(id) = ϕ(f ◦ id) = ϕ(f);
• εy ◦ Fg = ϕ−1(id) ◦ Fg = ϕ−1(id ◦ g) = ϕ−1(g);

diagrammatically,

87

FX FGY Y

ε◦Fg

Fg εY

X GY GY

g

g id

FX FX Y

f

id f

X GFX GY

Gf◦ηX

ηX Gf

The naturality of η and ε can be deduced again from the naturality of ϕ; given any two
functions h : X → X ′ and k : Y → Y ′,

• GFh ◦ ηX = GFh ◦ ϕ(idFX) = ϕ(Fh) = ϕ(idFX′) ◦ h = ηX′ ◦ h;
• εY ′ ◦ FGk = ϕ−1(idGY ′) ◦ FGk = ϕ−1(Gk) = k ◦ ϕ−1(idGY) = k ◦ εY ;

diagrammatically, we can prove that the adjunct of Fh is GFh ◦ ηX and η′X ◦ h at the same
time; while the adjunct of Gk is k ◦ εY and εY ′ ◦ FGk at the same time.

X Y GFYh η

FX FX FY FYid Fh id

X GFX GFY
η GFh

FGX X Yε k

GX GX GY GYid Gk id

FGx FGy yFGk ε

Finally, the triangle identities follow directly from the previous ones: we have id = ϕ(ε) = Gε◦η
and id = ϕ−1(η) = ε ◦ Fη.

Proposition 3.40 (Characterization of adjunctions). Each adjunction is F a G between cat-
egories X and Y is completely determined by any of the following data,

1. functors F,G and η : 1⇒ GF where ηX : X → GFX is universal to G.
2. functor G and universals ηX : X → GF0X, where F0X ∈ Y, creating a functor F .
3. functors F,G and ε : FG⇒ 1 where εY : FGY → Y is universal from F .
4. functor F and universals εY : FG0Y → Y , where G0Y ∈ X , creating a functor G.
5. functors F,G, with natural transformations satisfiying the triangle identities Gε◦ηG = id

and εF ◦ Fη = id.

Proof. 1. Universality of ηX gives a isomorphism ϕ : hom(FX, Y) ∼= hom(X,GY) between
the arrows in the following diagram

GY Y

X GFX FXηx

f
Gg ∃!g

defined as ϕ(g) = Gg ◦ ηX . This isomorphism is natural in X; for every h : X ′ → X we know
by naturality of η that Gg ◦ η ◦ h = G(g ◦ Fh) ◦ η. The isomorphism is also natural in Y ; for
every k : Y → Y ′ we know by functoriality of G that Gh ◦Gg ◦ η = G(h ◦ g) ◦ η.

88

2. We can define a functor F on objects as FX = F0X. Given any h : X → X ′, we can use
the universality of η to define Fh as the unique arrow making this diagram commute

GFX ′ FX ′

X GFX FXηX

ηX′◦h
GFh ∃!Fh

and this choice makes F a functor and η a natural transformation, as it can be checked in the
following diagrams using the existence and uniqueness given by the universality of η in both
cases.

X ′′ GFX ′′ FX ′′

GFX FX X ′ GFX ′ FX ′

X GFX FX X GFX FX

ηX′′

h′

ηX′

GFh′ ∃!Fh′

ηX

ηX
id id

ηX

h GFh ∃!Fh′

∃!F (h′◦h)

3. The proof is dual to that of 1.

4. The proof is dual to that of 2.

5. We can define two functions ϕ(f) = Gf ◦ ηX and θ(g) = εY ◦ Fg. We checked in 1 (and 3)
that these functions are natural in both arguments; now we will see that they are inverses of
each other using naturality and the triangle identities

• ϕ(θ(g)) = Gε ◦GFg ◦ η = Gε ◦ η ◦ g = g;
• θ(ϕ(f)) = ε ◦ FGf ◦ Fη = f ◦ ε ◦ Fη = f .

Proposition 3.41 (Essential uniqueness of adjoints). Two adjoints to the same functor F, F ′ a
G are naturally isomorphic.

Proof. Note that the two different adjunctions give two units η, η′, and for each X both
ηX : X → GFX and ηX′ : X → GF ′X are universal arrows from X to G. As universal
arrows are unique up to isomorphism, we have a unique isomorphism θX : FX → F ′X such
that GθX ◦ ηX = η′X .

We know that θ is natural because there are two arrows, θ ◦ Ff and F ′f ◦ θ, making this
universal diagram commute

Y GF ′Y F ′Y

X GFX FX

η′

η

f ∃!

because

• G(θ ◦ Ff) ◦ η = Gθ ◦GFf ◦ η = Gθ ◦ η ◦ f = η′ ◦ f ;
• G(F ′f ◦ θ) ◦ η = GF ′f ◦Gθ ◦ η = GF ′f ◦ η′ = η′ ◦ f ;

thus, they must be equal, θ ◦ Ff = F ′f ◦ θ.

89

Theorem 3.42 (Composition of adjunctions). Given two adjunctions ϕ : F a G and θ : F ′ a
G′ between categories X ,Y and Y,Z respectively, the composite functors yield a composite
adjunction ϕ · θ : F ′ ◦F a G ◦G′. Let the unit and counit of ϕ be 〈η, ε〉 and the unit and counit
of θ be 〈η′, ε′〉; the unit and counit of the composite adjunction are 〈Gη′F ◦ η, ε′ ◦ F ′εG′〉.

Proof. We see that the vertical composition of two natural isomorphisms is itself an natural
isomorphism because the composition of isomorphisms is itself an isomorphism. We compose
as in the following diagram.

F ′FX Y
f

FX G′Y
θ(f)

X GG′Y
ϕθ(f)

If we apply the two natural isomorphisms to the identity, we find the unit and the counit of
the adjunction.

F ′FX F ′FXid

FX FX G′F ′FXid η′FX

X GFX GG′F ′FXη Gη′FX

GG′Z GG′Zid

FGG′Z G′Z G′Z
εG′Z id

F ′FGG′Z F ′G′Z Z
F ′εG′Z ε′

3.5.2 Examples of adjoints

Example 3.43 (Product and coproduct as adjoints). Given any category C, we define a diagonal
functor to a product category ∆: C → C × C, sending every object X to a pair (X,X), and
each morphism f : X → Y to the pair 〈f, f〉 : (X,X)→ (Y, Y).

The right adjoint to this functor will be the categorical product × : C × C → C, sending each
pair of objects to their product and each pair of morphisms to their unique product. The left
adjoint to this functor will be the categorical sum, +: C × C → C, sending each pair of objects
to their sum and each pair of morphisms to their unique sum. That is, we have the following
chain of adjoints,

+ a ∆ a ×.

More precisely, knowing that a morphism (X,X ′) → (Y,Z) is actually pair of morphisms
X → Y and X ′ → Z, the adjoint properties for the diagonal functor

∆X (Y,Z)

X ×(Y,Z)

+(X,Y) Z

(X,Y) ∆Z

can be rewritten as bidirectional inference rules with two premises

X → Y X → Z

X Y × Z

X + Y Z

X → Z Y → Z

90

which are exactly the universal properties of the product and the sum. The necessary natural
isomorphism is given by the existence and uniqueness provided by the inference rule.

Example 3.44 (Free and forgetful functors). Let Mon be the category of monoids with monoid
homomorphisms. A functor U : Mon → Set can be defined by sending each morphism to
its underlying set and each monoid homomorphism to its underlying function between sets.
Funtors of this kind are called forgetful functors, as they simply forget part of the algebraic
structure.

Left adjoints to forgetful functors are called free functors. In this case, the functor F : Set→
Mon taking each set to the free monoid over it and each function to its unique extension to the
free monoid. Note how it preserves identities and composition. The adjunction can be seen
diagrammatically as

FA M
f

A UM
f

where each monoid homormorphism from the free monoid, FA→M can be seen as the unique
extension of a function from the set of generators f : A→ UM to a full monoid homomorphism,
f : FA→M .

Note how, while this characterizes the notion of free monoid, it does not provide an explicit
construction. Indeed, given f : A → UM , we can take the free monoid FA to consist on the
words over the elements of A endowed with the concatenation operator; the only way to extend
f to an homomorphism is to define

f(a1a2 . . . an) = f(a1)f(a2) . . . f(an).

Note also that every homomorphism from the free monoid is determined by how it acts on
the generator set. This notion of forgetful and free functors can be generalized to algebraic
structures other than monoids.

3.5.3 Monads

The notion of monads is pervasive in category theory. A monad is a certain type of endofunc-
tor that arises naturally when considering adjoints. They will be useful to model algebraic
notions inside category theory and to model a variety of effects and contextual computations
in functional programming languages. We will only prove here that each adjunction gives rise
to a monad, but it is also true that there are multiple ways to turn a monad into an adjunction.
With this result, we aim to illustrate how adjoints capture another fundamental concept in
functional programming.

A monad is a functor T : X → X with natural transformations

• η : Id⇒ T , called unit ; and
• µ : T 2 ⇒ T , called multiplication;

91

such that the following two diagrams commute.

T 3 T 2

T 2 T

Tµ

µT µ

µ

Id ◦ T T 2 T ◦ Id

T

ηT

∼=
µ

Tη

∼=

The first diagram is encoding some form of associativity of the multiplication, while the second
one is encoding the fact that η creates a neutral element with respect to this multiplication.
These statements will be made precise when we talk about algebraic theories. A comonad is
the dual of a monad.

Proposition 3.45. Given an adjunction F a G, the composition GF is a monad.

Proof. We take the unit of the adjunction as the monad unit. We define the product as
µ = GεF . Associativity follows from

FGFG FG

FG I

FGε

εFG ε

ε

GFGFGF GFGF

GFGF GF

GFGεF

GεFGF GεF

GεF

where the first diagram is commutative by Proposition 3.19 and the second one is obtained by
applying functors G and F . Unit laws follow from the after applying F and G.

3.5.4 Algebras

In category theory, the word algebra denotes certain structures that can be easily described
in terms of endofunctors as universal fixed points for some functors. They model inductive
constructions in terms of category theory.

Let F : C → C be a functor. An F -algebra is an object X with a map µ : FX → X called
structure map. A morphism between two F -algebras µ : FX → X and ν : FY → Y is a map
h : X → Y such that the following diagram commutes.

FX FY

X Y

Fh

µ ν

h

This defines a category AlgF (C). The initial object of this category, is called the initial algebra
for F ; it needs not to exist, but when it does, it is unique up to isomorphism.

F -algebras are closely related to induction principles. The following theorem states that the
initial algebra is a fixed point of the functor, and, by its initiality property, it maps into any
other fixed point.

Theorem 3.46 (Lambek’s theorem). The structure map of an initial algebra is an isomor-
phism. That is, if X is an initial algebra, µ : FX ∼= X (see [Awo10]).

92

Proof. Consider the following commutative diagram, where l : X → FX is given by initiality
of X.

FX FFX FX

X FX X

Fl

µ Fµ

Fµ

µ

l µ

By initiality of X, we have µ◦ l = id, and by commutativity of the left square, l◦µ = F (µ◦ l) =
id.

Example 3.47 (Natural numbers object). Consider the functor F (X) = 1 + X in a category
C with coproducts and a terminal object. Its initial algebra is called a natural numbers
object due to the fact that, in Set, this initial algebra is precisely the set of natural numbers
N with the successor function succ : N → N and the zero element given as a morphism from
the terminal object, 0: 1→ N.

1 + N 1 +X

N X

〈0,succ〉 〈x,f〉
ϕ

Let X be an F -algebra given by x : 1 → X and f : X → X; by induction over the natural
numbers we can show that a morphism of algebras ϕ making that diagram commute must
follow ϕ(0) = x and ϕ(succ(n)) = f(ϕ(n)). Thus, in a certain sense, initiality captures the
principle of induction.

For instance, we can define addition +: N×N→ N, interpreted as a unary operation +: N→
hom(N,N), as the unique morphism ϕ from the initial algebra to the algebra given by hom(N,N)
with id and postcomposition with succ.

1 + N 1 + hom(N,N)

N hom(N,N)

〈0,succ〉 〈id,succ ◦−〉

+

This definition immediately implies the equalities 0 + m = id(m) = m and succ(n) + m =
(succ ◦ (n+ _))(m) = succ(n+m).

Example 3.48 (Free monoids). Fixing a set A and changing the functor slightly to F (X) =
1 +A×X we get the set of lists of elements of A as the initial algebra. This algebra is written
as List(A) with the empty list nil : 1→ List(A) and appending, cons : A× List(A)→ List(A),
as the binary operation.

1 +A× List(A) 1 +A×X

List(A) X

〈nil,cons〉 〈x,•〉

ϕ

Given any other F -algebra X, with x : 1→ X and • : A×X → X, we can show by induction on
the length of the list that the unique morphism ϕ : List(A)→ X making the diagram commute
must be such that ϕ(nil) = x and ϕ(cons(a, l)) = a • ϕ(l).

For instance, fixing A = N, we can define the sum of a list of naturals sum: List(N) → N as
the unique morphism ϕ from the initial algebra to the algebra given by N with zero and the

93

addition.
1 + N× List(N) 1 + N× N

List(N) N

〈nil,cons〉 〈0,+〉

sum

This definition immediately implies the equalities sum(nil) = 0 and sum(cons(m, l)) = m +
sum(l).

94

Chapter 4

Categorical logic

4.1 Presheaves

Presheaves can be thought as sets parameterized by a category or as generalized sets. As we
will study in the following chapters, categories of presheaves share a lot of categorical structure
with the category of Sets and can be used as non-standard models of lambda calculus.

Specifically, a presheaf on the category C is a functor S : Cop → Set from the opposite category
to the category of sets. The category of presheaves on C is the functor category of the form
SetC

op
. In particular, the examples we gave when talking about functor categories (Examples

3.24 and 3.25) are presheaf categories. We see that they all share some structure with the
category of sets; in the following sections, we will prove stronger results based on these.

Proposition 4.1. All limits given by a functor from a small category exist on Set.

Proof. Let J be any small diagram on the category Set, with objects Ai indexed by some i ∈ I
and morphisms fj : Ai → Ai′ between these, indexed by some j ∈ J . We can take limJ to
be the subset of the cartesian product

∏
Ai of elements (ai)i∈I such that fj(ai) = ai′ for each

j ∈ J . Note that any other cone factorizes through this one by taking the componentwise
image of each element.

Proposition 4.2. All limits given by a functor from a small category exist on any presheaf
category.

Proof. Let J be any small diagram on the category SetC
op
, whose objects are functors Pi : Cop →

Set indexed by some i ∈ I and whose morphisms are natural transformations ηj : Pi → Pi′ in-
dexed by some j ∈ J . For each c ∈ C, the objects Pi(c) for i ∈ I with the morphisms
ηj(c) : Pi(c)→ Pi′(c) determine a diagram on the category Set. By proposition 4.1, a limit for
this diagram exists, which we call R(c). By definition of limit, any morphism g : d→ c in the
category C induces a unique R(c)→ R(d) making each component of the transformation given
by {Pi(g)}i∈I commute and making the family of projections from each limit form a natural
transformation. Thus, we have created a functor R : Cop → Set with natural transformations
to each Pi and such that any other functor factorizes through it componentwise.

95

4.2 Cartesian closed categories and lambda calculus

4.2.1 Lawvere theories

The usual notion of algebraic theory is given by a set of k-ary operations for each k ∈ N and
certain axioms between the terms that can be constructed inductively using free variables and
these operations. For instance, the theory of groups is given by a binary operation (·), a unary
operation (−1), and a constant or 0-ary operation e; satisfying the following axioms

x · x−1 = e, x−1 · x = e, (x · y) · z = x · (y · z), x · e = x, e · x = x,

for any free variables x, y, z. The problem with this notion of algebraic theory is that it is not
independent from its representation: there may be multiple formulations for the same theory,
with different but equivalent axioms. For example, [McC91] discusses many single-equation
axiomatizations of groups, such as

x /
(
((x/x)/y)/z) / ((x/x)/x)/z

)
= y

with the binary operation /, related to the usual multiplication as x/y = x · y−1. Our solution
to this problem will be to capture all the algebraic information of a theory – all operations,
constants and axioms – into a category. Differently presented but equivalent axioms will give
rise to the same category.

Definition 4.3 (Lawvere, 1963). An algebraic theory (see [BGL+17] and [Law63]) is a
category A with all finite products whose objects form a sequence A0, A1, A2, . . . such that
Am × An = Am+n for any m,n. From this definition, it follows that A0 must be the terminal
object.

An algebraic theory can be built from its operations and axioms as follows: objects represent
natural numbers, A0, A1, A2, . . ., and morphisms from An to Am are given by a tuple of m
terms t1, . . . , tm depending on n free variables x1, . . . , xn, written as

(x1 . . . xn ` 〈t1, . . . , tk〉) : An → Am.

Composition is defined as componentwise substitution of the terms of the first morphism
into the variables of the second one; that is, given (x1 . . . xk ` 〈t1, . . . , tm〉) : Ak → Am and
(x1 . . . xm ` 〈u1, . . . , un〉) : Am → An, their composition is (x1 . . . xk ` 〈s1, . . . , sn〉), where
si = ui[t1, . . . , tm/x1, . . . , xm]. Two morphisms are considered equal, (x1 . . . xn ` 〈t1, . . . , tk〉) =
(x1 . . . xn ` 〈t′1, . . . , t′k〉) when componentwise equality of terms, ti = t′i, follows from the axioms
of the theory. Note that identity is the morphism (x1 . . . xn ` 〈x1, . . . , xn〉). The kth-projection
from An is the term (x1 . . . xn ` xk), and it is easy to check that these projections make An

the n-fold product of A. We have built a category with the desired properties.

Definition 4.4. A model of an algebraic theory A in a category C is a functor M : A → C
preserving all finite products.

The category of models, ModC(A), is the subcategory of the functor category CA containing
the functors that preserve all finite products, with the usual natural transformations between
them. We say that a category is algebraic if it is equivalent to a category of the form ModC(A).

Example 4.5 (The algebraic theory of groups). Let G be the algebraic theory of groups built
from its axioms; we have all the tuples of terms that can be inductively built with

(x, y ` x · y) : G2 → G, (x ` x−1) : G→ G, (` e) : G,

96

and the projections (x1 . . . xn ` xk) : Gn → G, where the usual group axioms hold. A model of
the theory of groups inside some category C is given by a functor H : G→ C which is in turn
determined by an object of C and some morphisms of the category with the above signature
for which the axioms hold. For instance,

• a model of G in Set is a classical group, a set with multiplication and inverse functions
for which the axioms hold;

• a model of G in Top is a topological group, a topological space with continuous mul-
tiplication and inverse functions;

• a model of G in Mfd, the category of differentiable manifolds with smooth functions
between them, is a Lie group;

• a model of G in Grp is an abelian group, by the Eckmann-Hilton argument;
• a model of G in CRing, the category of commutative rings with homomorphisms, is a
Hopf algebra.

The category of models ModSet(A) is the usual category of groups, Grp; note that natural
transformations on this category are precisely group homomorphisms, as they have to preserve
the unit, product and inverse of the group in order to be natural.

By construction we know that, if an equation can be proved from the axioms, it is valid in
all models (our semantics are sound); but we would like to also prove that, if every model of
the theory satisfies a particular equation, it can actually be proved from the axioms of the
theory (our semantics are complete). In general, we can actually prove a stronger, but maybe
unsatisfying, result.

Theorem 4.6 (Universal model). Given A an algebraic theory, there exists a category A with
a model U ∈ ModA(A) such that, for every terms u, v, the equality u = v is true in U if and
only if A proves u = v. A category with this property is called a universal model.

Proof. Indeed, taking A = A as a model of itself with the identity functor U = Id, the equation
u = v is trivially satisfied under the identity functor if and only if it is satisfied in the original
category.

This proof feels rather disappointing because this trivial model is not even set-theoretic in
general; but we can go further and assert the existence of a universal model in a presheaf
category via the Yoneda embedding (Definition 3.31).

Corollary 4.7 (Completeness on presheaves). The Yoneda embedding Y : A → SetA
op

is a
universal model for A.

Proof. Note that the Yoneda embedding preserves all limits. That is, if a family of mor-
phisms D → Ai in A determines a universal cone, that means that we have a universal cone
hom(X,D) → hom(X,Ai) for each X ∈ A. Then, as we discussed in Definition 3.31, this
gives natural transformations hom(−, D) → hom(−, Ai) creating a new universal cone. In
particular, the Yoneda functor is a model because it preserves all finite products. As it is a
faithful functor, we know that any equation proved in the model is an equation proved by the
theory.

Example 4.8 (Universal group). For instance, a universal model of the group would be the
Yoneda embedding of G in SetG

op
. The group object would be the functor U = homG(−, A1);

which can be thought as a family of sets parameterized over the naturals: for each n we have
Un = homG(An, A1), which is the set of terms on n variables under the axioms of a group.

97

In other words, the universal model for the theory of groups would be the free group on n
generators, parameterized over n.

4.2.2 Cartesian closed categories

Definition 4.9 (Cartesian closed category). A cartesian closed category is a category C
in which the terminal, diagonal and product functors have right adjoints

! : C → 1, ∆: C × C → C, (−×A) : C → C.

These adjoints are given by terminal, product and exponential objects respectively, written as
follows.

∗ ∗

C 1!

C,C A,B
f,g

C A×B〈f,g〉

C ×A B
f

C BAf̃

In particular, exponentials are characterized by the family of evaluation morphisms ε : BA×
A→ B, which form the counit of the adjunction.

C ×A BA ×A B

f

f̃×id ε

C BA BA

f̃

f̃ id

Proposition 4.10. Presheaf categories are cartesian closed.

Proof. The category Set is cartesian closed, with exponentials given by function sets. That
is, the exponential set BA is the set of functions A → B, and evaluation is given by function
application. In general, any presheaf category SetC

op
from a small C is cartesian closed. First

note that products and terminal objects exist in any presheaf category (Proposition 4.2), we
only have to show that exponentials exist.

Given any two presheaves Q,P : Cop → Set, the image of the exponential presheaf QP : Cop →
Set over any given A ∈ C is determined by the Yoneda Lemma (Lemma 3.30) and by the
definition of exponential. The composition of both isomorphisms on the functor category
allows us to write this exponential in terms of P and Q.

QPA ∼= Nat(hom(−, A), QP) ∼= Nat(hom(−, A)× P,Q)

When C is small, this is in fact a set of natural transformations. We will show that this choice
in fact creates an adjunction by proving the existence of a family of universal evaluations
and then applying Proposition 3.40, that characterizes adjunctions in terms of their universal
counit morphisms. A family of evaluation functions εA : Nat(hom(−, A)× P,Q)× PA→ QA
can be defined as εA(η, p) = η(idA, p), where p ∈ PA and η : hom(−, A)×P ⇒ Q is a natural
transformation that can be particularized into a morphism ηA : hom(A,A)× PA → QA. We

98

now show that each one of these is a universal arrow: given any other presheaf R : Cop → Set
endowed with a morphism n : R × P ⇒ Q, we will prove that there exists a unique φ : R ⇒
Nat(hom(−, A)× P,Q) making the following diagram commute.

R× P

Nat(hom(−, A)× P,Q)× P Q

φ×Id n

ε

In fact, we know that φr(id, p) = εA(φr, p) = n(r, p) holds by commutativity; therefore, the
following diagram commutes for any f : B → A by naturality.

RA Nat(hom(−, A)× P,Q)

RB Nat(hom(−, B)× P,Q)

φA

Rf −◦((f◦−)×id)

φB

Thus, the complete natural transformation φ is completely determined for any given r ∈ RA
and p ∈ PA as φ(r)(f, p) = φ(Rf(r))(id, p) = n(Rfr, p).

In general, cartesian-closed categories with functors preserving products and exponentials form
a category called Ccc that we show equivalent to a category containing lambda theories in
Theorem 4.16.

4.2.3 Simply-typed λ-theories

If we read Γ ` a : A as a morphism from the context Γ to the output type A, the rules of
simply-typed lambda calculus with product and unit types match the adjoints that determine
a cartesian closed category.

Γ ` ∗ : 1
Γ ` a : A Γ ` b : B

Γ ` 〈a, b〉 : A×B
Γ, a : A ` b : B

Γ ` (λa.b) : A→ B

Note that categorical projections from the product object correspond to the pair projections
we called fst and snd, and the evaluation morphism is simply function application in lambda
calculus. This motivates the idea that simply typed λ-calculus is a manifestation of cartesian
closed categories in some sense yet to be made explicit.

A λ-theory T is the analog of a Lawvere algebraic theory (Definition 4.3) for cartesian closed
categories. It is given by a set of basic types and constants over the simply-typed lambda
calculus and a set of equality axioms, determining a definitional equality ≡, an equivalence
relation preserving the structure of the simply-typed lambda calculus; that is

t ≡ ∗, for each t : 1;
〈a, b〉 ≡ 〈a′, b′〉, for each a ≡ a′, b ≡ b′
fst〈a, b〉 ≡ a, snd〈a, b〉 ≡ b, for each a : A, b : B;
fst m ≡ fst m′, snd m ≡ snd m′, for each m ≡ m′;
m ≡ 〈fst m, snd m〉, for each m : A×B;
f x ≡ f ′ x′, for each f ≡ f ′, x ≡ x′;
(λx.f x) ≡ f, for each f : A→ B;
(λx.m) ≡ (λx.m′), for each m ≡ m′;
(λx.m) n ≡ m[n/x] for each m : B,n : A.

99

Two types are isomorphic, A ∼= A′ if there exist terms f : A → A′ and g : A′ → A such that
f (g a) ≡ a for each a:A, and g (f a′) ≡ a′ for each a′:A′.

Example 4.11. Gödel’s System T [GTL89] is defined as a λ-theory with the basic types nat
and bool; the constants 0 : nat, S : nat→ nat, true : bool, false : bool, ifelse : bool→ C →
C → C and rec : C → (nat→ C → C)→ nat→ C where C is any type; and the axioms

ifelse true a b ≡ a, rec c0 cs 0 ≡ c0,
ifelse false a b ≡ b, rec c0 cs (Sn) ≡ cs n (rec c0 cs n).

Example 4.12 (Untyped lambda calculus). Untyped λ calculus can be recovered as a λ theory
with a single basic type D and a type isomorphism D ∼= D → D given by two constants
r : D → (D → D) and s : (D → D) → D such that r (s f) ≡ f for each f : D → D and
s (r x) ≡ x for each x : D. We assume that each term of the untyped calculus is of type D and
apply r, s as needed to construct well-typed terms.

Definition 4.13. The reasonable notion of homomorphism between lambda theories is called a
translation between λ-theories. Given two lambda theories T and U, a translation τ : T→ U
is given by a function both on types and terms that

1. preserves type constructors

τ1 = 1, τ(A×B) = τA× τB, τ(A→ B) = τA→ τB;

2. preserves the term structure

τ(fst m) ≡ fst (τm), τ(snd m) ≡ snd (τm), τ〈a, b〉 ≡ 〈τa, τb〉,
τ(f x) ≡ (τf) (τx), τ(λx.m) ≡ λx.(τm);

3. and preserves all equations, meaning that t ≡ u implies τt ≡ τu.

We consider the category λThr of λ-theories with translations as morphisms. Note that the
identity is a translation and that the composition of two translations is again a translation.
Our goal is to prove that this category is equivalent to that of cartesian closed categories with
functors preserving products and exponentials.

Apart from the natural definition of isomorphism, we consider the weaker notion of equivalence
of theories. Two theories with translations τ : T→ U and σ : U→ T are equivalent T ' U if
there exist two families of type isomorphisms τσA ∼= A and στB ∼= B parametrized over the
types A and B.

4.2.4 Syntactic categories and internal languages

Proposition 4.14. Given a λ-theory T, its syntactic category S(T), has an object for each
type of the theory and a morphism A → B for each term a : A ` b : B. The composition of
two morphisms a : A ` b : B and b′ : B ` c : C is given by a : A ` c[b/b′] : C; and any two
morphisms Γ ` b : B and Γ ` b′ : A are equal if b ≡ b′.

The syntactic category is cartesian closed and this induces a functor S : λThr→ Ccc.

Proof. The type 1 is terminal because every morphism Γ ` t : 1 is t ≡ ∗. The type A × B
is the product of A and B; projections from a pair morphism are given by fst 〈a, b〉 ≡ a
and snd 〈a, b〉 ≡ b. Any other morphism under the same conditions must be again the pair
morphism because d ≡ 〈fst d, snd d〉 ≡ 〈a, b〉.

100

Finally, given two types A,B, its exponential is A→ B with the evaluation morphism

m : (A→ B)×A ` (fst m) (snd m) : B.

It is universal: for any p : C×A ` q : B, there exists a morphism z : C ` λx.q[〈z, x〉/p] : A→ B
such that

(λx.q[〈fst p, x〉/p])(snd p) ≡ q[〈fst p, snd p〉/p] ≡ q[p/p] ≡ q;

and if any other morphism z : C ` d : A→ B satisfies (d[fst p/z](snd p)) ≡ q then

λx.q[〈z, x〉/p] ≡ λx.(d[fst p/z] (snd p))[〈z, x〉/p] ≡ λx.(d[z/z] x) ≡ d.

Given a translation τ : T → U, we define a functor S(τ) : S(T) → S(U) mapping the object
A ∈ S(T) to τA ∈ S(U) and any morphism ` b : B to ` τb : τB. The complete structure of
the functor is then determined because it must preserve products and exponentials.

Proposition 4.15 (Internal language). Given a cartesian closed category C, its internal
language L(C) is a λ-theory with a type pAq for each object A ∈ C, a constant pfq : pAq →
pBq for each morphism f : A→ B, axioms

pidq x ≡ x, pg ◦ fq x ≡ pgq (pfq x),

and three families of constants

T : 1→ p1q, PAB : pAq× pBq→ pA×Bq, EAB : (pAq→ pBq)→ pBAq,

that act as type isomorphisms, which means that they create the following pairs of two-side
inverses relating the categorical and type-theoretical structures

t ≡ T ∗ for each u : p1q,
m ≡ P 〈pπ1q m, pπ2q m〉 for each z : pA×Bq,
n ≡ 〈pπ0q (P n), pπ1q (P n)〉 for each n : pAq× pBq,
f ≡ E (λx.peq (P 〈f, x〉)) for each f : pBAq,
g ≡ λx.peq (P 〈E g, x〉) for each g : pAq→ pBq.

This extends to a functor L : Ccc→ λThr.

Proof. Given any functor preserving products and exponentials F : C → D, we define a transla-
tion L(F) : L(C)→ L(D) taking each basic type pAq to pFAq and each constant pfq to pFfq;
equations are preserved because F is a functor and types are preserved up to isomorphism
because F preserves products and exponentials.

Theorem 4.16 (Equivalence between cartesian closed categories and lambda calculus). There
exists a equivalence of categories C ' S(L(C)) for any C ∈ Ccc and an equivalence of theories
T ' L(S(T)) for any T ∈ λThr.

Proof. On the one hand, we define η : C → S(L(C)) as ηA = pAq in objects and ηf = (a :
pAq ` f a : pBq) for any morphism f : A → B. It is a functor because pidq a ≡ a and
pg ◦ fq a ≡ g (f a). We define θ : S(L(C))→ C on types inductively as θ(1) = 1, θ(pAq) = A,
θ(B × C) = θ(A) × θ(C) and θ(B → C) = θ(C)θ(B). Now, there is a natural isomorphism
ηθ ⇒ Id, using the isomorphisms induced by the constants T, P, E,

101

η(θpAq) = ηA = pAq,
η(θ1) = η1 = p1q ∼= 1,
η(θ(A×B)) = pθ(A)× θ(B)q ∼= pθAq× pθBq = ηθA× ηθB ∼= A×B.
η(θ(A→ B)) = pθ(A)→ θ(B)q = pθBqpθAq = (ηθB)(ηθA) = BA;

and a natural isomorphism Id⇒ θη which is in fact an identity, A = θpAq = θη(A).

On the other hand, we define a translation τ : T → L(S(T)) as τA = pAq in types and
τ(a) = p(` a : τA)q in constants. We define σ : L(S(T))→ T as σpAq = A in types and as

σ(pa : A ` b : Bq) = λa.b, σT = λx.x, σP = λx.x, σE = λx.x,

in the constants of the internal language. We have σ(τ(A)) = A, so we will check that
τ(σ(A)) ∼= A by structural induction on the constructors of the type:

• if A = pBq is a basic type, we apply structural induction over the type B to get
– if B is a basic type, τσ(pBq) = pBq;
– if B = 1, then τσ(p1q) = 1 and p1q ∼= 1 thanks to the constant T;
– if B = C ×D, then τσ(pC ×Dq) = pCq× pDq and pC ×Dq ∼= pCq× pDq thanks

to the constant P;
– if B = DC , then τσ(pDCq) = pCq→ pDq and pDCq ∼= pCq→ pDq thanks to the

constant E.
• if A = 1, then τσ1 = 1;
• if A = C ×D, then τσ(C ×D) = τσ(C)× τσ(D) ∼= C ×D by induction hypothesis;
• if A = C → D, then τσ(C → D) = τσ(C)→ τσ(D) ∼= C → D by induction hypothesis.

Thus, we can say that the simply-typed lambda calculus is the internal language of cartesian
closed categories; each lambda theory represents a cartesian closed category.

4.3 Working in cartesian closed categories

4.3.1 Diagonal arguments

We can now talk internally about cartesian closed categories using lambda calculus. Note each
closed λ term ` a : A can also be seen as a morphism from the terminal object 1 → A. We
use this language to provide a simple proof to a known theorem for cartesian closed categories
by W. Lawvere (see [Law16] for details). The theorem will imply many known corollaries as
particular cases when interpreted in different contexts.

Theorem 4.17 (Lawvere, 1969). We say that a morphism g : A → B in a cartesian closed
category is point-surjective if, for every element b : B, there exists an element a : A such
that g a ≡ b. In any cartesian closed category, if there exists a point-surjective morphism
d : A→ BA, then each morphism f : B → B has a fixed point b : B, such that f b ≡ b.

Proof. As d is point-surjective, there exists x : A such that d x ≡ λa.f (d a a), but then,
d x x ≡ (λa.f (d a a)) x ≡ f (d x x) is a fixed point.

102

Corollary 4.18 (Cantor, 1878). Let A be a set. The set of all subsets of A has a strictly
greater cardinality than A.

Proof. Every subset of A is uniquely determined by a function to the set of two elements A→ 2.
As there exists nontrivial permutation of the two-element set, a point-surjective A→ 2A cannot
exist by virtue of Theorem 4.17.

Corollary 4.19 (Russell, 1901). In a naive formulation of set theory, every collection is a set.
This leads to inconsistency.

Proof. We could consider Sets, the class of all sets, and the membership relation ∈ : Sets →
2Sets. This relation would be point-surjective if we assume that for any property on the class
of sets, given as a morphism P : Sets→ 2, there exists a comprehension set {y ∈ Sets | P (y)}.
In that case, again, any permutation of the two-element set would have a fixed point, which is
false.

Corollary 4.20. Every term in untyped λ-calculus has a fixed point.

Proof. We consider untyped λ-calculus as a theory (Example 4.12) where terms can be regarded
as morphisms D → D. There exists a type isomorphism D → (D → D), which is in particular
a point-surjection. Thus, by Theorem 4.17, there exists a fixed point for any term D → D.
Note that the term thus constructed is precisely the fixed point we defined in Section 2.5.7.

Corollary 4.21 (Gödel, Tarski, 1936). A consistent theory cannot express its own truth.
In particular, no consistent formal system of arithmetic can encode the truth of arithmetic
statements.

Proof. Let our category be a theory (in the sense of Definition 4.3) with objects A0, A1, A2, . . .
and a supplementary object 2. We say that the theory is consistent if there exists a morphism
not : 2 → 2 such that not ◦ ϕ 6= ϕ for every ϕ : A → 2. We say that truth is definable if
there exists a map truth : A × A → 2 such that for every predicate ϕ : A → 2, there exists
a Gödel number c : A such that truth(c, a) = ϕ(a). By Theorem 4.17 we know that if truth
is definable in a theory then it must be inconsistent (in [Yan03], many other examples of this
proof technique are shown).

We want to note here how abstracting a seemingly banal theorem has resulted in a myriad of
deep results. Moreover, Lawvere’s original theorem can be replicated without exponentials in
any category with all products, taking adjoints in d : A × A → B. The condition of d being
point-surjective can also be weakened; we only need, for every g : A→ B, the existence of some
x : A such that d x a ≡ g a for all a : A.

4.3.2 Bicartesian closed categories

Definition 4.22. A bicartesian closed category is a cartesian closed category in which
the terminal and diagonal functors have left adjoints. These adjoints are given by initial and
coproduct objects, written as inference rules as follows.

103

∗ ∗

0 C!

A,B C,C
f,g

A+B C
f+g

The rules of union and void types in simply-typed lambda calculus can be rewritten to match
the structure of these adjoints.

Γ, z : 0 ` abort : C

Γ, a : A ` c : C Γ, b : B ` c′ : C
Γ, u : A+B ` case u of c; c′ : C

In a similar way to how our previous fragment of simply-typed lambda calculus was the internal
language of cartesian closed categories, the extended version of lambda calculus defined in
Section 1.3.1 is the internal language of bicartesian closed categories.

4.3.3 Inductive types

The existence of an initial algebra in a cartesian closed category is equivalent to the exis-
tence a type with an elimination rule representing an induction principle. Types generated by
an inductive rule are called inductive types and are common constructs in functional pro-
gramming languages. Inductive types and their properties can be encoded as initial algebras
satisfying a certain universal property. In particular, we will see examples of inductive types
and how all of them can be modeled as initial algebras over a certain class of functors.

Example 4.23 (Binary tree data structure). Let T be a type generated by the constructors
nil : T and node : N → T → T → T . It can be seen as the data structure of a binary tree
of naturals, where "nil" is an empty leaf and "node" builds a data structure with a natural
number on top and two pointers to binary trees.

5

3 4

1 2 6

For instance, the above diagram represents the term

node 5 (node 3 (node 1 nil nil) (node 2 nil nil)) (node 4 nil (node 6 nil nil)).

Example 4.24 (Semantics of System T). System T was described in Example 4.11 as an ex-
tension of the simply typed lambda calculus with natural numbers and booleans. A cartesian
closed category with a natural numbers object given as an initial algebra (Example 3.47) has
an internal language with a type N and an elimination principle ind given by the universal
property of the algebra, as in the following diagram.

1 + N 1 + C

N C

〈0,succ〉 〈x,f〉
ind x f

ind : C → (C → C)→ (N→ C)

ind x f 0 ≡ x
ind x f (S n) ≡ f (ind x f n)

104

It could seem that this induction principle is weaker than the recursion principle System T
offered, rec : D → (N → D → D) → N → D. However, the full recursion principle can
be recovered using the cartesian closed structure and taking C = N × D when applying the
induction principle to define

rec c0 cs n ≡ π1 (ind 〈c0, 0〉 (λm. 〈cs m d, succ m〉) n).

It can be checked that rec is such that rec c0 cs 0 ≡ c0, and rec c0 cs (S n) ≡ cs n (rec c0 cs n).

Finally, note that ind can be directly recovered from rec, and the booleans of System T cor-
respond to the coproduct 1 + 1. System T is thus equivalent to the internal language of a
cartesian closed category with a natural numbers object and a coproduct 1+1; and it can take
models in any category with this structure.

Example 4.25 (Polynomial endofunctors). Following [Awo10] and [MP00], we can generalize
these examples to initial algebras over polynomial endofunctors of the form

P (X) = C0 + C1 ×X + C2 ×X2 + · · ·+ Cn ×Xn

for some fixed objects C0, . . . , Cn. Where the initial algebra can be seen to correspond to an
inductive branching type with n-ary nodes of type Cn and leafs of type C0. Natural numbers
(1 + X) and lists (1 + A × X) for a fixed type A, are particular examples of initial algebras
of polynomial endofunctors (as seen in Examples 3.47 and 3.48). Binary trees, as described in
Example 4.23, are the initial algebra for the functor T 7→ (1 + N× T × T).

4.4 Locally cartesian closed categories and dependent types

4.4.1 Quantifiers and subsets

The motivation for this section is the interpretation of logical formulas as subsets. Every
predicate P on a set A can be seen as a subset {a ∈ A | P (a)} ↪→ A determined by the inclusion
monomorphism. Under this interpretation, logical implication between two propositions, P →
Q, can be seen as a morphism that commutes with the two inclusions; that is,

{a ∈ A | P (a)} {a ∈ A | Q(a)}

A

P implies Q if and only if each a ∈ A such that P (a) is also in the subset of elements such
that Q(a). Note how we are working in a subcategory of the slice category Set/A.

Given a function f : A→ B, any property in B induces a property on A via substitution in
the relevant logical formula. This substitution can be encoded categorically as a pullback: the
pullback of a proposition along a function is the proposition induced by substitution.

{a ∈ A | P (f(a))} {b ∈ B | P (b)}

A B
f

105

A particular case of a substitution is logical weakening: a proposition on the set A can be
seen as a proposition on A×B where we simply discard the B component of a pair.

{(a, b) ∈ A×B | P (π(a, b))} {a ∈ A | P (a)}

A×B Aπ

Although it seems like an uninteresting particular case, once we formalize this operation as a
functor, existential and universal quantifiers can be obtained as adjoints to weakening.

Definition 4.26 (The pullback functor). Given a function f : A→ B in any category C with
all pullbacks, the pullback functor f∗ : C/B → C/A is defined for any object y : Y → B as
the object f∗y : (f∗Y)→ A such that

(f∗Y) Y

A B

f∗y y

f

is a pullback square. The functor is defined on any morphism α : y → y′ between any two
objects given by y : Y → B and y′ : Y ′ → B as the only morphism making the following
diagram commute.

f∗Y Y

f∗Y ′ Y ′

A B

∃!f∗α

f∗y

α

yf∗y′ y′

f

Note that the pullback functor is only defined up to isomorphism in objects and well-defined
on morphisms by virtue of the universal property of pullbacks.

In Set, we can find two adjoints to the particular case of the weakening functor π∗ : C/A →
C/(A×B). These two adjoints are ∃ a π∗ a ∀ because

• proving the implication P (π(a, b)) → Q(a, b) for each pair (a, b) amounts to prove that
P (a)→ (∀b ∈ B,Q(a, b)) for each a;

A×B

{(a, b) | P (a)} {(a, b) | Q(a, b)}

{a | P (a)} {a | ∀b ∈ B,Q(a, b)}

A

• and proving that (∃b ∈ B,P (a, b)) → Q(a) for each a is the same as proving that
P (a, b)→ Q(π(a, b)) for each pair (a, b).

A×B

{(a, b) | P (a, b)} {(a, b) | Q(a)}

{a | ∃b ∈ B,P (a, b)} {a | Q(a)}

A

106

Note how, in this case, we are considering adjunction diagrams in the slice category. A gener-
alization of this idea to other categories will extend our categorical logic with quantifiers.

4.4.2 Locally cartesian closed categories

Proposition 4.27 (Left adjoint of the pullback functor). Given any category C with all fi-
nite limits and a morphism f : A → B between two objects A,B ∈ C, the pullback functor
f∗ : C/B → C/A has a left adjoint Σf : C/A → C/B defined as Σfx = f ◦ x for any object
x ∈ C/A and acting trivially on morphisms.

Proof. We must find a natural bijection hom(f ◦ x, y) ∼= hom(x, f∗y); but, precisely by the
universal property of the pullback, we have a natural bijection between arrows k : X → f∗Y
such that x = f∗y ◦ k and arrows k̃ : X → Y such that f ◦ x = y ◦ k̃.

X

f∗Y Y

A B

x
f∗y y

f

We define a locally cartesian closed category as a category with a terminal object and
pullbacks C such that the pullback functor also has a right adjoint Πf : C/A → C/B. The
rationale for this name becomes apparent in the following characterization.

Theorem 4.28 (Characterization). A category C with terminal object is locally cartesian closed
if and only if C/A is cartesian closed for any object A (see [New17]).

Proof. (⇒) Suppose C be locally cartesian closed. The terminal object of C/A is trivially
idA : A → A, and the product of x : X → A and y : Y → A is given by universal property of
the pullback as in the following diagram.

Z

X ×A Y X

Y A

∃!

x×y x

y

We can notice that multiplying by −× y is the same as composing Σy ◦ y∗ : C/A→ C/A; and,
as we have Σy a y∗ a Πy, for any a, b : Z → A, as we can compute using adjoints,

Σy(y
∗a) b

y∗a y∗b

a Πy(y
∗b)

107

the product has a right adjoint and the exponential is given by ay = Πyy
∗a.

(⇐) Suppose C such that C/A is always cartesian closed. In particular the slice on the terminal
object is cartesian closed and so is C ∼= C/1; we only need to prove the existence of pullbacks
in C and a right adjoint for each pullback functor f∗.

Again, if f : X → A and g : Y → A are objects in the slice category C/A, their product creates
a morphism X ×A Y → A in C and the universal property of the product in the slice category
is exactly the universal property of the pullback in C.

Now, given f : A → B, we will define Πf . As C/B is cartesian closed, there is a functor (−)f

that we can apply to any x : X → A when seen as the triangle x : (f ◦ x) → x in the slice
category. Moreover, the identity idf : f → f has a transpose h : idB → ff ; so we can compute
the following pullback on C/B that defines Πfx as h∗(xf).

ΠfX Xf

B Af

B

Πfx xf
(f◦x)f

h

idB

ff

Note that Πf is defined in objects as the composition of two functors, thus, it can be directly
extended to morphisms. We only have to prove that there is a natural bijection hom(f∗y, x) ∼=
hom(y,Πfx).

By the universal property of the pullback, each k : y → Πfx determines two pullback projec-
tions k1 : y → (f ◦ x)f and k2 : y → id such that xf ◦ k1 = h ◦ k2. Applying the adjunction, in
both sides of the equation we see that they are determined by morphisms j : f∗Y → X such
that f∗y = x ◦ j.

y id ff
k2 h

f × y f f
f∗y id

y (f ◦ x)f ff
k1 xf

f × y f ◦ x f
j x

But those morphisms are precisely morphisms f∗y → x in C/A, and we have established the
natural bijection.

f∗Y X

A A

B

k

f∗y x
f◦x

id

f

f

We proved earlier that generalized sets, or presheaves, were cartesian closed (Proposition 4.10);
we will now prove that they are actually locally cartesian closed.

Theorem 4.29 (Presheaf categories are locally cartesian closed). Any presheaf category SetC
op

from a small category C is locally cartesian closed (see [Awo10]).

108

Proof. We will prove that given any A ∈ SetC
op
, there exists a small category D such that

there is an equivalence of categories SetD
op ' SetC

op
/A. Thus, every slice is cartesian closed

as shown in Proposition 4.10 and by the characterization of Theorem 4.28, the whole category
is locally cartesian closed.

We take D as a particular case of a comma category where objects are arrows f : Y C → A
in SetC

op
from the Yoneda embedding (Definition 3.31) of an object C ∈ C to the fixed object

A. Morphisms between two objects f : Y C → A and f ′ : Y C ′ → A are commutative triangles
determined by arrows ϕ : Y C → Y C ′ such that f ′ ◦ ϕ = f .

Y C Y C ′

A

ϕ

f f ′

As the Yoneda functor provides a full and faithful embedding, an arrow ϕ on these conditions
must be of the form ϕ = Y h for a unique h : C → C ′. Note how this category D can be fully
and faithfully embedded inside SetC

op
/A by simply reinterpreting its objects as objects of the

slice category, this embedding defines a functor I : D → SetC
op
/A.

A functor Φ : SetC
op
/A→ SetD

op
can be now defined on objects as Φ(q) = homSetC

op
/A(I(−), q),

which is a composition of functors. It can be seen that this functor determines an equivalence.

4.4.3 Dependent types

In the same way that cartesian closed categories model the types of the simply typed lambda
calculus, locally cartesian closed categories model dependent types that can depend on
elements of another type. Each dependent type B depending on values of type A can be also
seen as a family of types parameterized over the other type {B(a)}a:A. This extension of type
theory forces us to revisit the notion of typing context.

Typing contexts for dependent type theory are given as a list of variables

Γ = (a1 : A1, a2 : A2, . . . , an : An)

where each type Ai can depend on the variables a1, . . . , ai−1. The core syntax of dependent
type theory can be expressed in terms of substitutions between contexts. A substitution
from a context ∆ to Γ is written as σ : ∆→ Γ, and is given by a list of terms (t1, . . . , tn) such
that

∆ ` t1 : A1, ∆ ` t2 : A2[t1/a1], . . . , ∆ ` tn : An[t1, . . . , tn−1/a1, . . . , an−1],

that is, a context can be substituted into another if the list of terms of the second one can
be built from the first one. The interpretation of a dependent type theory as a category
takes contexts Γ as objects JΓK and substitutions as morphisms. Note how there exists an
identity substitution σid : Γ→ Γ that simply lists the variables of the context and how any two
substitutions τ : Γ→ Φ and σ : ∆→ Γ can be composed into τ ◦ σ : ∆→ Φ, which creates the
terms of Γ from ∆ following τ and uses again these terms to create the terms of Φ.

A particular kind of substitutions will be display maps. If a term can be constructed on a
given context, Γ ` a : A, the context can be extended with that term to Γ, a : A. Display

109

maps are substitutions of the form πA : JΓ, a : AK→ JΓK that simply list the variables of Γ and
discard a : A.

This way, each type A in a context Γ is represented by the object πA : JΓ, a : AK→ JΓK of the
slice category C/JΓK; and each term of the type, Γ ` a : A is represented by a morphism from
id : JΓK→ JΓK, which is the terminal object of Γ/A, as in the following diagram.

JΓK JΓ, a : AK

JΓK

a

πA

4.4.4 Dependent pairs

The locally cartesian closed structure of a category induces new type constructors in the type
theory: dependent pairs and dependent functions. Their meaning under the Curry-Howard
interpretation is that of the existential and universal quantifiers, respectively.

Dependent pair types, or Σ-types, can be seen as a generalized version of product types.
Given a family of types parameterized by another type, {B(a)}a:A, the elements of

∑
a:AB(a)

are pairs 〈a, b〉 with a first element a : A and a second element b : B(a); that is, the type of the
second component depends on the first component. This type is often written as Σ(a : A), B(a)
and it corresponds to the intuitionistic existential quantifier under the propositions as types
interpretation. That is, the proof of ∃(a : A), B(a) must be seen as a pair given by an element
a and a proof of B(a).

In a locally closed cartesian category, a type B depending on Γ, a : A, can be written as
πB : JΓ, a : A, b : BK→ JΓ, a : AK; then, the type

∑
a:AB is given by the object

ΣπAπB : JΓ, a : A, b : BK→ JΓK.

That is, the sigma type over a type is left adjoint to the weakening that determines that type;
this left adjoint, as we proved in Proposition 4.27, is given by postcomposition with πA. Thus,
categorically, the type

∑
a:AB(a) is given in the empty context by the composition of the

projections that give rise to the type A and to the type B in the context of A.

Jx : A, y : BK Jx : AK 1
πB πA

Thus, elements of this type can be built categorically with an element of a : A, using a pullback
to create the context JB(a)K and then providing an element b : B(a).

JΓK JΓ, y : B(a)K JΓ, x : A, y : BK

JΓK JΓ, x : AK

JΓK

b

〈a,b〉

πB

πΣ

a

πA

This can be rewritten as the following introduction rule.

110

Γ ` a : A Γ ` b : B[a/x]

Γ ` 〈a, b〉 :
∑

x:AB

The adjunction in the slice category can be then particularized in the following two cases,
taking δ : JΓ, AK→ JΓ, A,AK to be the substitution that simply duplicates the A.

JΓ, AK

JΓ, A,BK JΓ, A,AKδ◦πB

JΓ,
∑

a:ABK JΓ, AK

JΓK

fst

JΓ, AK

JΓ, A,BK JΓ, A,BKid

JΓ,
∑

a:ABK JΓ, A,BK

JΓK

snd

These two equalities represent two elimination rules.

Γ ` m :
∑

x:AC

Γ ` fst(m) : A

Γ ` m :
∑

x:AC

Γ ` snd(m) : C[fst(m)/a]

We have two beta rules fst〈a, b〉 ≡ a and snd〈a, b〉 ≡ b, and a uniqueness rulem ≡ 〈fst(m), snd(m)〉.

4.4.5 Dependent functions

Dependent function types, or Π-types, can be seen as a generalized version of function
types. Given a family of types parameterized by another type, {B(a)}a:A, the elements of∏
x:AB(x) are functions with the type A as domain and a changing codomain B(x), depend-

ing on the specific element x to which the function is applied. This type is often written also
as Π(x : A), B(x) to resemble the universal quantifier; under the propositions as types inter-
pretation, it would correspond to the proof that a proposition B holds for any x : A, that is,
∀(x : A), B(x).

In a locally closed cartesian category, given a type A in a context Γ, as πA : JΓ, a : AK→ JΓK;
and B a type depending the context Γ, a : A, as πB : JΓ, a : A, b : BK → JΓ, a : AK, the type∏
a:AB is given by the object

ΠπAπB : JΓ, a : A, b : BK→ JΓK.

That is, the dependent function type over a type is right adjoint to the weakening that deter-
mines that type.

Thus, categorically, the type
∏
a:AB(a) is given in the empty context as the adjoint π∗A a ΠπA

of the morphism representing the type B. Elements of this type can be built applying the
adjunction on the diagram of any term of type B that assumes a : A in the context.

JΓ, a : AK JΓ, a : A, b : BK JΓK JΓ, z :
∏
a:ABK

JΓ, a : AK JΓK

b

πB

(λa.b)

π∏

That is, we have the following adjunction and counit in the slice category

111

JΓ, AK

JΓ, AK JΓ, A,BKb

JΓK JΓ,
∏
a:ABK

JΓK

(λa.b)

JΓ, AK

JΓ, A,
∏
a:ABK JΓ, A,BKapp

JΓ,
∏
a:ABK JΓ,

∏
a:ABK

JΓK

id

which can be rewritten as introduction and elimination rules.

Γ, a : A ` b : B

Γ ` (λa.b) :
∏
a:AB

Γ ` a : A Γ ` f :
∏
a:AB

Γ ` f a : B(a)

We have the equalities (λa.b) a′ ≡ b[a′/a] and (λa.f a) ≡ f as beta and eta rules.

4.5 Working in locally cartesian closed categories

4.5.1 Examples of dependent types

Example 4.30 (Vectors). A common example of dependent types are vectors of elements of a
fixed type A varying in length. They can be described as a family of types Vect(n) depending
on a parameter n ∈ N. For example, given a0, a1, a2 : A, we can construct the element
(a0, a1, a2) : Vect(3). We will study what it means to give an element of the types∑

n:N
Vect(n) and

∏
n:N

Vect(n).

In the first case, we can build an element of
∑

n:N Vect(n) following the characterization of the
adjunction.

J∗K Jv : Vect(m)K Jn : N, v : Vect(n)K

J∗K Jn : NK

J∗K

w

〈m,w〉

πB

πΣ

m

πA

That is, we have to provide a morphism from the empty context to the natural numbers
m : J∗K → Jn : NK, or, in other words, an element of N. Computing the pullback of the
dependent type of vector over this element gives us the context Jv : Vect(m)K of vectors of
length m. Now, we only have to provide a morphism w : J∗K → Jv : Vect(m)K, or, in other
words, a vector of m elements.

In conclusion, elements of
∑

n:N Vect(n) are of the form 〈m,w〉, where m : N and w : Vect(m).
An example would be 〈2, (a0, a1)〉 :

∑
n:N Vect(n).

112

In the second case, we can build an element of
∏
n:N Vect(n) following the adjunction.

Jn : NK Jn : N, v : Vect(n)K J∗K Jv :
∏
n:N Vect(m)K

Jn : NK J∗K

t

πVect

(λn.t)

π∏

That is, we have to provide a morphism Jn : NK→ Jn : N, v : Vect(n)K making the first diagram
commute. This is to build a term t : Vect(n) assuming a given n : N in the context; in other
words, a function sending each n to a vector of n elements. Once it is built, the adjunction
gives us a term (λn.t) :

∏
n:N Vect(n) in the empty context.

In conclusion, elements of
∏
n:N Vect(n) are functions sending each natural to a vector of that

length. An example would be a function (λm.(a0, m. . ., a0)) sending each m to a vector of
repeated a0’s.

Example 4.31 (The theorem of choice). A proposition P could be given as a family of types
parameterized over another type A, where P (a) is inhabited if and only if the proposition holds
for a : A.

A proof of the existential quantifier
∑

a:A P (a) would be given by a pair 〈a, p〉, where a : A
would be a fixed element and p : P (a) would be the proof that the proposition holds for a. A
proof of the universal quantifier

∏
a:A P (a) would be a function sending each a : A to a proof

p : P (a).

As an example, suppose a relation R, a family of types parameterized over two types A,B.
We will prove the following theorem∏

(a:A)

∑
(b:B)

R(a, b)

→
 ∑

(g:A→B)

∏
(a:A)

R(a, g(a))

 .

Proof. In order to prove the implication, we assume that we have a term f :
∏
a:A

∑
b:B R(a, b),

and construct a term of type
∑

g:A→B
∏
a:AR(a, g(a)). The first step is to provide a function

of type A → B, and g :≡ λa.fst(f(a)) is exactly of this type. The second step is to provide
a term of type

∏
a:AR(a, fst(f(a))), but now the function λa.snd(f(a)) is exactly of this

type.

Surprisingly, the theorem we have just proved reads classically as

"If for all a : A there exists a b : B such that R(a, b), then there exists a function
g : A→ B such that for each a : A, R(a, g(a))."

and this is a form of the axiom of choice. Have we just proved the axiom of choice? The key
insight here is that Σ must not be read as the classical "there exists", but as a constructivist
existential quantifier that demands not only to merely prove that something exists but to
explicitly construct it. A more accurate read would be

"If for all a : A we have a rule to explicitly construct a b : B such that R(a, b),
then we can use that rule to define a function g : A→ B such that for each a : A,
R(a, g(a))."

113

and this trivial-sounding theorem is known as the theorem of choice. The moral of this
example is that, when we work in type theory, we are working inside constructivist mathematics
and the existential quantifier has a fundamentally different meaning. Later, we will see a
technique that will allow us to recreate the classical existential quantifier.

4.5.2 Equality types

Equality in our theory comes from an adjunction, as was first proposed in [Law70]. The
equality type between elements of type A will be represented by the diagonal morphism M : A→
A× A as an object of C/(A× A). It is thus a type parameterized over two elements x, y : A,
written as (x = y). An element of an equality type, p : x = y must be read as a proof that x
and y are equal.

In general we have that, for any two objects in a slice category, f : B → A and g : C → A,
morphisms f → g correspond naturally to sections of the pullback f∗(g) : f∗C → B; as in the
following diagram.

f∗C C

B A

g

f

k̃

B C

A
f

k

g

Given any k in the diagram above, we can construct k̃ using the universal property of the
pullback; conversely, the fact that k̃ is a section gives us a k by composition with f∗C → C.

In particular, let πC : C → A×A or be a family of types C(x, y) parameterized by two elements
x, y : A. We have that any morphism from the equality type to C corresponds to a section to
M∗C, which is, by substitution, the family of types C(x, x).

M∗C C

A A×A

π

M

k̃

A C

A×A
M

k

π

A section k̃ of this form is precisely a term x : A ` c : C(x, x), while a map k is a term
x : A, y : A, p : x = y ` c : C(x, y). Thus, we have the following elimination rule for equality
types, called J-eliminator in type theory literature. See [Shu17] for details.

Γ ` a : A
Γ, x : A ` c : C(x, x)

Γ ` b : A
Γ ` p : a = b

Γ ` JC(c, p) : C(a, b)

The rule informally says that, if we want to prove some property C(a, b) for each a, b : A, and
we have a = b, we only need to prove C(x, x) for each x : A. Moreover, if we consider the unit
of the adjunction, as shown in the following diagram,

M∗A A

A A×A

M

M

refl

A C

A×A
M

id

M

we have a section refl : A→M∗A that expresses reflexivity, x = x for each x : A, and corresponds
to the following introduction rule.

114

Γ ` a : A
Γ ` refla : a = a

Introduction and elimination rules are related by JC(c, refla) ≡ c[x/a]; that is, the J-eliminator
can return c in the reflexivity case.

We can still generalize the rule to allow C to be a family of types also parameterized over p,
of the form C(x, y, p).

Γ ` a : A
Γ, x : A ` c : C(x, x, reflx)

Γ ` b : A
Γ ` p : a = b

Γ ` JC(c, p) : C(a, b, p)

The corresponding computation rule would be JC(c, refl) ≡ c[a/x].

4.5.3 Subobject classifier and propositions

A subobject classifier is an object Ω with a monomorphism true : 1→ Ω such that, for every
monomorphism m : S → X, there exists a unique χ such that

S 1

X Ω

m true

χ

is a pullback square.

Now, if we have a type given by a monomorphism, JΓ, x : P K→ JΓK, by the defining property
of the subobject classifier, we have a unique characteristic morphism P : JΓK → JΩK, which
can be read as Γ ` P : Ω, meaning that Ω is a type whose elements are themselves types (see
[Shu17]).

JΓ, x : P K 1

JΓK JΩK

true

χP

A type P determined by a monomorphism, by definition, must have any two of its elements
are equal. Thus, the elements of Ω are the types with at most one element; these types are
usually called propositions in type theory. This can be expressed by the following rule.

Γ ` P : Ω Γ ` a : P Γ ` b : P
Γ ` isPropP (a, b) : a = b

Any two proofs of a proposition (in the sense of type theory) must be equal, and thus, propo-
sitions allow us to reintroduce the notion of proof irrelevance.

4.5.4 Propositional truncation

Propositions are types, but not all types are propositions; a type A may have multiple distinct
elements, witnessing different proofs of the same fact. We could, however, truncate a type
into a proposition ‖A‖ by postulating that any two of its proofs p, q : ‖A‖ should be equal,
p = q. In this case, to provide an element of A would mean to explicitly construct a proof of A;

115

whereas to provide an element of ‖A‖ would mean to witness that A can be proved, without
constructing any proof.

For instance, there are four distinct elements of∑
(n,m):N×N

(n+m = 3),

each one of them providing an ordered pair of natural numbers that add up to 3. In contrast,
there is a unique element of ∥∥∥∥∥∥

∑
(n,m):N×N

(n+m = 3)

∥∥∥∥∥∥ ,
that simply witnesses the existence of some pair of naturals that add up to 3, without explicitly
pointing to it. In this sense, the truncated version resembles more the existential quantifier of
classical logic; while the untruncated version demands the explicit construction of an example.

Example 4.32. As a second example, we can reformulate a nontrivial version of the axiom of
choice we discussed previously in Example 4.31. Note that∏

(a:A)

∥∥∥∥∥∥
∑
(b:B)

R(a, b)

∥∥∥∥∥∥
→

∥∥∥∥∥∥
∑

(g:A→B)

∏
(a:A)

R(a, g(a))

∥∥∥∥∥∥ ,
now represents the fact that we want to obtain evidence of the existence of a function only
knowing that for each a there exists an element b related to it, but (crucially) without knowing
which b is related to a. This new version of the Axiom of Choice is indeed independent of our
theory (see Chapter 3 of [Uni13]).

How should we represent truncations inside our theory? It can be proved (see [AB04]) that
propositional truncation is the left adjoint to the inclusion of propositions into general types;
and, if we assume the existence of this adjoint into the category we are working into, we can
use propositional truncations. That is, if P is a proposition and A is an arbitrary type, we
have the following adjunction

A P

‖A‖ P

which in practical terms means that, if we want to prove ‖A‖ → P , where P is a proposition, it
suffices to prove A→ P , that is, to assume a particular proof for A. Note that this corresponds
to usual mathematical practice, where having a proof of existence can be used to assume that
we have explicitly constructed the element and to prove a different proposition using it, with
the condition that we cannot refer later to the explicit element we used during the proof.

4.6 Topoi

4.6.1 Motivation

Topoi (singular topos) are category-theoretic models of constructive mathematics; we can
reason in its internal logic and rebuild large parts of mathematics inside their structure. Each

116

topos is thus an universe of mathematics with different axioms and interpretations [Bau17];
for example,

• inside the Hayland’s realizability topos, every function is computable and we can study
Kleene’s realizability theory (see [VO08]);

• the Dubuc topos provides a non paradoxical formalization of notion of "infinitesimal"
used by Newton and Leibniz, and we can study synthetic differential geometry inside it
(see [Dub89]);

• inside the Johnstone’s topological topos, we can reason with topological spaces and
continuous functions between them (see [Joh79]), and under certain hypothesis, we can
assume that all functions we can build are automatically continuous (see [HEX15]).

Topoi are defined as locally cartesian closed categories with a subobject classifier in which
every finite limit exists. Usually, we will be interested in W-topoi, or topoi with a natural
numbers object (in the sense of Example 3.47) [Lei10].

The study of any of these theories is beyond the scope of this text. However, as we have been
relating type theory to the internal language of locally closed cartesian categories with enough
structure; we know that type theory (depending on what constructions we assume) will have
models in categories like these. We only describe a particular case developed by W. Lawvere
while trying to provide an axiomatization of the category of sets.

4.6.2 An Elementary Theory of the Category of Sets

Lawvere’s Elementary Theory of the Category of Sets [Law64] provides a foundation for math-
ematics based on category theory. It describes the category Set in an abstract setting using
eight axioms; and the atomic, undefined notions of the theory are not memberships and sets,
but morphisms and composition. In the original article some examples on how to do set theory
inside the category are shown.

Using the notation we have developed so far, Lawvere’s axioms can be reduced to the following
definition. A model of the Elementary Theory of the Category of Sets is

• a topos, that is, a locally closed cartesian category with all finite limits and a subobject
classifier,

• which is well-pointed , meaning that any two morphisms f, g : A → B are equal if and
only if f ◦ a = g ◦ a for each a : 1 → A; morphisms from the terminal object are called
global elements, and this property can be thought as function extensionality;

• which has a natural numbers object, in the sense of Example 3.47;
• which satisfies the Axiom of Choice, meaning that point-surjective morphisms have a

section; in terms of our previous Example 4.32, we could translate this internally as∏
(a:A)

∥∥∥∥∥∥
∑
(b:B)

f(b) = a

∥∥∥∥∥∥
→

∥∥∥∥∥∥
∑

(g:A→B)

∏
(a:A)

f(g(a)) = a

∥∥∥∥∥∥ ,
for any f : B → A.

Note that the category Set, under the usual axioms, is a model of this theory. This can be seen,
then, as an abstraction of set theory. As we will see later, the Axiom of Choice implies the
Law of Excluded Middle, so we have finally recovered a classical foundation of mathematics
from category theory.

117

Chapter 5

Type theory

5.1 Martin-Löf type theory

In this chapter, we will exclusively work internally in dependent type theory and use it as a
constructive foundation of mathematics. This will have the added benefit that every formal
proof in the system will be a closed lambda term and checking that a proof is correct will
amount to typechecking the term. Explicitly, the type theory we have been describing in
the previous sections corresponds to Martin-Löf type theory [NPS90]. Two libraries of
formalized mathematics, corresponding to two different foundational theories, have been built,
containing a verified version of all the theorems on this chapter. See Section 5.3 for links to
the formalized proofs.

5.1.1 Programming in Martin-Löf type theory

Martin-Löf type theory and the internal language we have been describing so far can also
be regarded as a programming language in which is possible to formally specify and prove
theorems about the code itself. Formal proofs in this theory can be written in any language
with a powerful enough type system; examples of these include

• Agda, a programming language that implements a variant of Martin-Löf type theory;
• Coq [04] was developed in 1984 in INRIA; it implements Calculus of Constructions and

was used, for example, to check a proof of the Four Color Theorem;
• Idris, a programming language implementing dependent types and using a slightly mod-

ified version of intensional equality types;
• NuPRL [CAB+86], a proof assistant implementing Martin-Löf extensional Type Theory,

which is different from the intensional theory in how it defines equality types;
• Cubical [CCHM16] and RedPRL [SGR+16] provide experimental implementations of

Cubical Type Theory, a different variant of type theory.

In this text, we will use Agda to write mathematics, taking ideas from [McB17]. We will check
proofs in Martin-Löf type theory using its type system.

118

5.1.2 Translation between categories and types

We can translate the categorical structure inside Agda as follows. Dependent products exist
naturally as dependent functions of the language.

Γ, a : A ` b : B

Γ ` (λa.b) :
∏
a:AB

f : (a : A) → B a
f = ń a → b

Dependent sums must be explicitly specified in the form of records: data structures in which
the type of every element can depend on the previous ones.

Γ ` a : A Γ ` b : B[a/x]

Γ ` 〈a, b〉 :
∑

x:AB
record Σ (S : Set) (T : S → Set) : Set
where
constructor _,_
field
fst : S
snd : T fst

Naturals, and initial algebras in general, can be defined as inductive types with the data
keyword. Functions over these types can be constructed using their universal property, as we
did in Example 3.47.

1 + N 1 + hom(N,N)

N hom(N,N)

〈0,succ〉 〈id,succ ◦−〉

+

data N : Set where
zero : N
succ : (n : N) → N

+ : N → (N → N)
zero + m = m
succ n + m = succ (n + m)

Equality types are a particular case of an inductive family of types. The induction principle
over equalities is the J-eliminator we described in Section 4.5.2.

Γ ` a : A
Γ ` refla : a = a

data _≡_ {A : Set} : A → A → Set where
refl : {a : A} → a ≡ a

Using all this machinery, we can prove facts about equality by induction and prove facts
about the natural numbers, as in the following example, where we prove that a = b implies
f(a) = f(b) and then use this fact to prove that n+ 0 = n for any n : N by induction.

ap : {A B : Set} (f : A → B) {a b : A} → a ≡ b → f a ≡ f b
ap f refl = refl

+rzero : (n : N) → n + 0 ≡ n
+rzero 0 = refl
+rzero (succ n) = ap succ (+rzero n)

119

Finally, we can define propositions as those types where any two elements are equal and postu-
late that truncations are propositions. The induction principle for truncated types represents
the adjunction we described in Section 4.5.4.

Γ ` P : Ω Γ ` a : P Γ ` b : P
Γ ` isPropP (a, b) : a = b

isProp : Set → Set
isProp A = ((x y : A) → x ≡ y)
postulate trunc : {A : Set} → isProp ‖ A ‖

A P

‖A‖ P

trunc-rec : {A : Set} {P : Set} → isProp P
→ (A → P)
→ ‖ A ‖ → P

trunc-rec _ f x = f x

5.1.3 Excluded middle and constructivism

Using categories, we have strengthen the propositional logic we described in Section 1.3.2 to
a fully-fledged higher order logic in which we can construct mathematical proofs. However,
during all this process, we have not accepted the Law of Excluded Middle; we do not assume
that P ∨¬P for an arbitrary proposition P . Note, however, that we do not negate it, neither:
that would cause a contradiction, as we actually proved ¬¬(P ∨¬P) in general in Section 2.6.3.
We are agnostic regarding it. This was the subject of a philosophical dispute between Hilbert
and Brouwer on whether nonconstructive methods were justified in foundations of mathematics
[ML08].

This has deep effects on the mathematics we are working with. We are working at a great
level of generality, where many results are just independent of our theory. Independence of
statements like the following may be shocking to a classical mathematician: we cannot prove
that the subset of a finite set is finite; we cannot prove that every real is equal or distinct from
zero; we cannot prove that every ideal is contained in a maximal ideal; we cannot prove that
every vector space has a basis (see [Bau17] for more examples).

Why are we not simply accepting the excluded middle, as is common practice? The Law
of Excluded middle would affect the computational properties of the theory. For instance,
whenever we create a natural number in our theory, we expect it to be a numeral of the form
succ(succ(. . . zero . . .)) for some number of succ applications. Inductive definitions can only
compute with natural numbers when they are on this form. However, if we were to postulate
the Law of Excluded Middle, LEM : P ∨ ¬P , we should accept the existence of numbers such
as

if LEM(RiemmanHypothesis) then 0 else 1,

but we would not be able to compute them into a numeral. We say that a type system has the
canonicity property if every inhabitant of the N type is a numeral.

In any case, classical mathematics are a particular case of constructive mathematics. We can
choose to work inside classical mathematics, although we would lose the computational content.
When we choose not to, we are working in constructive mathematics with a programming
language as it was first proposed by Errett Bishop [Bis67b].

120

5.1.4 Extensionality and Diaconescu’s theorem

If we want to recover classical mathematics, we should try to model the axioms of the Ele-
mentary Theory of Sets into our locally closed cartesian categories. We already have natural
numbers in Martin-Löf type theory, and well-pointedness, for instance, is called function ex-
tensionality in type theory literature.

Axiom 5.1. Function extensionality states that, if any two functions f, g : A → B have
the same images under the same arguments, they are, in fact, equal. That is,∏

x:A

(f(x) = g(x))→ (f = g).

We postulate this in Agda as follows.

postulate
wellPointed : {A B : Set} → {f g : A → B}
→ ((x : A) → f x ≡ g x)
→ f ≡ g

The last ingredient is the Axiom of Choice. This, like in the case of the Law of Excluded
Middle, will make us lose the computational content of the theory. In fact, we can prove that,
in general, the Axiom of Choice implies the Law of Excluded Middle. This is the statement of
Diaconescu’s theorem, for which we provide both a natural proof and a computer-verified
proof.

Theorem 5.2 (R. Diaconescu, 1975). The Axiom of Choice implies the Law of Excluded
Middle.

Proof. The proof we present is based in [Alt] and [Bau17]. Given any proposition P , we define
U = {x ∈ {0, 1} | (x = 0) ∨ P} and V = {x ∈ {0, 1} | (x = 1) ∨ P}, and we know that each
one is inhabited. By the axiom of choice, there exists a function f : {U, V } → U ∪V such that
f(U) ∈ U and f(V) ∈ V . We decide if f(U) and f(V) are equal to 0 or not by the induction
principle. If f(U) = 1 or f(V) = 0, we would have that P must be true; and if f(U) = 0
and f(V) = 1, we would have ¬P , for if P were true, then U would be equal to V and thus,
0 = f(U) = f(V) = 1.

This proof has been implemented as follows. Note that we have only assumed the Axiom of
Choice (and therefore, the Law of Excluded Middle) during this particular section of the text.
In the next section, we return to constructive mathematics, working with the real numbers
and extracting algorithms from proofs.

postulate
AxiomOfChoice : {A : Set} {B : Set} {R : A → B → Set}
→ ((a : A) → (∃ b ∈ B , (R a b)))
--
→ (∃ f ∈ (A → B), ((a : A) → R a (f a)))

121

LawOfExcludedMiddle : {P : Set} → P ∨ ¬ P
LawOfExcludedMiddle {P} = Ex-elim
(AxiomOfChoice ń { (Q , q) → Ex-elim q Ex-isProp ń { (u , v) → u ,, v }})
∨-isProp ń { (f , α) → byCases f α }
where
A : Set
A = Σ (Bool → Set) (ń Q → Ex Bool (ń b → Q b))

R : A → Bool → Set
R (P , _) b = P b

U : Bool → Set
U b = (b ≡ true) ∨ P
V : Bool → Set
V b = (b ≡ false) ∨ P
Ua : A
Ua = U , (true ,, rinl refl)
Va : A
Va = V , (false ,, rinl refl)

module lemma (f : A → Bool) where
eqf : (p : P) → f Ua ≡ f Va
eqf p = ap f (Σ-eq Ua Va (
wellPointed ń
{ false → propext ∨-isProp ∨-isProp (ń _ → rinr p) (ń _ → rinr p)
; true → propext ∨-isProp ∨-isProp (ń _ → rinr p) (ń _ → rinr p)
}) (Ex-isProp _ _))

refute : true ≡ false → P ∨ ¬ P
refute ()
byCases : (α : (x : A) → R x (f x)) → P ∨ ¬ P
byCases α with f Ua ?? | f Va ??
byCases α | inl x | inr y = rinr ń p → true6≡false (inv x · (eqf p · y))
byCases α | inl x | inl y = ∨-elim (α Va) ∨-isProp

ń { (inl q) → refute (inv y · q) ; (inr p) → rinl p }
byCases α | inr x | inl y = ∨-elim (α Ua) ∨-isProp

ń { (inl q) → refute (inv q · x) ; (inr p) → rinl p }
byCases α | inr x | inr y = ∨-elim (α Ua) ∨-isProp

ń { (inl q) → refute (inv q · x) ; (inr p) → rinl p }
open lemma public

5.1.5 Dedekind reals

In Reals.agda, we provide a formalized construction of the Dedekind positive reals in inten-
sional Martin-Löf type theory, implemented in Agda. This implementation constructs reals as
Dedekind cuts over the positive dyadic rationals D; that is, over the rationals of the form
a/2b for some a, b : N. We also provide a library with all the necessary lemmas proving that
our constructions are well-defined.

Natural numbers are constructed as initial algebras (as described in Example 3.47). Dyadic
rationals are constructed as pairs of naturals endowed with a normalization property: a fraction

122

a/2b is normalized if a is an odd number or if b is exactly zero.

D =
∑

(a,b):N×N

‖odd(a) + isZero(b)‖

This technique ensures that each dyadic rational will be uniquely represented by a term of
type D. Finally, a real number r : R+ is constructed as the sum of the following data.

• A Dedekind cut, cutr : D → Ω, representing a proposition parameterized over the
positive dyadic rationals. Given q : D, the proposition cutr(q) is true if and only if r < q.

• A proof ‖
∑

q:D cutr(q)‖ witnessing that the Dedekind cut is inhabited, that is, there
exists some q such that r < q, providing an upper bound on the real number.

• Two functions that witness that the cut is round. That is, a dyadic q : D is in the cut
if and only if there is a smaller p : D also in the cut. Symbolically,∏

q:D

cutr(q)→

∥∥∥∥∥∥
∑
p:D

(p < q)× cutr(p)

∥∥∥∥∥∥
×

∏
q:D

∥∥∥∥∥∥
∑
p:D

(p < q)× cutr(p)

∥∥∥∥∥∥→ cutr(q)

 .

The following code shows the core definition of the Agda implementation.

record R+ : Set where
constructor real
field
cut : F → Set
isprop : (q : F) → isProp (cut q)

bound : ∃ q ∈ F , cut q
round1 : (q : F) → cut q → ∃ p ∈ F , ((p < q ≡ true) × cut p)
round2 : (q : F) → (∃ p ∈ F , ((p < q ≡ true) × cut p)) → cut q

open R+ {{...}} public

Note that, under the intuitionistic interpretation, it is not the case in general that
∏
q:D cutr(q)+

¬ cutr(q) for an arbitrary r : R+; in fact, numbers that are neither equal nor distinct from
zero could exist! as we mentioned earlier, a formalization of infinitesimals is possible using
this property, see [Bau13]. However, even if we cannot prove it in general, we can prove
cutr(q) +¬ cutr(q) for some particular real numbers. We call these numbers located, and, for
these numbers, the computational nature of the proof provides an algorithm that produces an
infinite stream with the digits of the number.

As a proof of concept, we define square roots,
√
− : R+ → R+, as

cut√r(q) =

∥∥∥∥∥∥
∑
p:D

(cutr(p))×
(
p < q2

)∥∥∥∥∥∥ .
We prove they are well-defined using several lemmas about the dyadic numbers and we prove
that

√
2 is located. The Agda compiler is then able to produce the first binary digits of√

2 = 1.01101010000 Note that this construction is thus being formalized in any locally
cartesian closed category with enough structure. Explicitly, we use the following Agda code;
it calls to already defined lemmas on the natural numbers when necessary and it shows how

123

existential elimination is written inside the language to prove the necessary properties of the
Dedekind cut.

sqrt : R+ → R+

sqrt a = record
{ cut = ń f → ∃ g ∈ F , (cut {{a}} g × (g < f * f ≡ true))
; isprop = ń f → Ex-isProp
; bound = Ex-elim (bound {{a}}) Ex-isProp ń { (g , α) → one + g ,, (g ,, (α , F-lemma3 g)) }
; round1 = ń f x →

Ex-elim x Ex-isProp ń { (g , (α , β)) →
Σ-elim (<sqbetween g (f * f) β) ń { (r , (γ , δ)) →
r ,, (<sqless r f δ , (g ,, (α , γ)))
}}

; round2 = ń f x →
Ex-elim x Ex-isProp ń { (r , (α , h)) →
Ex-elim h Ex-isProp ń { (u , (β , p)) →
u ,, (β , F-lemma4 u f r p α)
}}

}

Dedekind cuts are not the only path we can take in order to define the real numbers in type
theory. Reals can be also defined in terms of Cauchy sequences, but the resulting construction
is not in general equivalent to ours. Only when we assume excluded middle, both Dedekind
and Cauchy reals become equivalent and the classical notion of real number is recovered. A
detailed discussion can be found in the last chapters of [Uni13].

5.2 Homotopy type theory

And it soon became clear that the only long-term solution was somehow to make
it possible for me to use computers to verify my abstract, logical, and mathemat-
ical constructions. When I first started to explore the possibility, computer proof
verification was almost a forbidden subject among mathematicians. The primary
challenge that needed to be addressed was that the foundations of mathematics were
unprepared for the requirements of the task.

– Vladimir Voevodsky, [voe].

5.2.1 Homotopy type theory I: Equality

We have already discussed how, given any x, y : A, we can interpret the equality type (x = y),
whose terms are witnesses of the equality. For each x : A, there is a reflexivity element,
refl : x = x; and the J-eliminator is interpreted as the following induction principle over the
type. ∏

(C:
∏

(x,y:A)(x=y)→U)

(∏
a:A

C(a, a, refl)

)
→

∏
(x,y:A)

∏
(p:x=y)

C(x, y, p)

 .

124

This induction principle allows us to prove symmetry, transitivity and other properties of
equality (we explicitly do so in Base.agda and Equality.agda). However, it is not possible to
prove by path induction that every path is equal to the reflexivity path, that is,∏

(x:A)

∏
(p:x=x)

(p = refl),

is not derivable from the induction principle. This is equivalent to the principle of uniqueness
of identity proofs, it is also equivalent to Streicher’s Axiom K [Str93] and it is independent
from Martin-Löf type theory.

Axiom 5.3 (Uniqueness of identity proofs). Given any type A, two elements of the type
x, y : A and two proofs of equality between them p, q : (x = y), the two proofs must be equal,
p = q. In other words, there exists an element of type∏

x,y:A

∏
p,q:(x=y)

p = q.

If we do not assume this axiom, we open the possibility to the existence of multiple different
proofs of the same equality. The structure of these proofs, endowed with symmetry and
transitivity, could be modeled into a groupoid; and this idea allows us to construct models of
type theory where the principle of uniqueness of identity proofs does not hold (see [HS98]). If we
also consider equalities between proofs of equality, and equalities between proofs of equalities
between equalities, and so on, we would get a weak ω-groupoid structure [VDBG11]. Following
the Grothendieck’s Homotopy Hypothesis, groupoids can be regarded as an homotopical
spaces, where equalities are paths and equalities between equalities are homotopies between
paths (some work on this hypothesis can be read in [Tam96]).

In any case, as the existence of this non-trivial structure is independent of the theory, we
need to introduce new axioms or new types with nontrivial equalities if we want to profit from
this interpretation. The introduction of Voevodsky’s Univalence Axiom leads to Homotopy
Type theory, an extension of Martin-Löf type theory where we can work with this groupoid
structure. Under the identification of higher groupoids and homotopical types, the new axiom
allows us to reason in some sort of synthetic homotopy theory, where paths and homotopies
are primitive notions. For instance, we can define the fundamental group (fundamental
groupoid, if we also want to consider higher structure) of a type A in a point a : A as the type
of loops π1(A, a) :≡ a = a, endowed with reflexivity and transitivity. The circle can be defined
as the freely generated type with a single element p : S1 and a nontrivial equality loop : p = p.
Because it is freely generated, we can apply symmetry to get a different proof of p = p which
we will call loop−1; moreover, we can apply transitivity n times to loop for an arbitrary n to
get a new proof of p = p which we will call loopn; these are the elements of its fundamental
group π1(S1, p).

In this setting, results such as the Van Kampen theorem or the construction of Eilenberg-
MacLane spaces have been formalized (see [Uni13]).

125

5.2.2 Homotopy type theory II: Univalence

We say that there is an equivalence between two types A and B and we write it as (A ' B) if
there is a biinvertible map between them. Explicitly,

(A ' B) =
∑

f :A→B

 ∑
g:B→A

∏
a:A

g(f(a)) = a

×
 ∑

g:B→A

∏
b:B

f(g(b)) = b

 .

It can be shown that, for any pair of types A and B, there exists a function of type idtoeqv :
(A =U B)→ (A ' B) that uses identity functions to construct an equivalence from an equality.
The Univalence axiom states that this function is itself an equivalence.

Axiom 5.4 (Univalence). For any pair of types A,B : U , idtoeqv : (A = B)→ (A ' B) is an
equivalence. In particular, (A = B) ' (A ' B).

In practical terms, this implies that isomorphic structures can be identified. For example, we
could consider the type of the integers Z with the successor and predecessor functions and
create an equivalence Z ' Z which can be turned into a nontrivial equality Z = Z via the
Univalence axiom, representing that integers, as a type, are equivalent to themselves after
shifting them by the successor function. In the file FundGroupCircle.agda, we use this fact
to prove, inside type theory, that Z = π1(S1), (following [Uni13] and [LS13]). This result is a
proof, inside this synthetic homotopical setting, of the fact that the fundamental group of the
circle is Z.

-- Winds a loop n times on the circle.
loops : Z → Ω S¹ base
loops n = z-act (Ω-st S¹ base) n loop

-- Uses univalence to unwind a path over the integers.
code : S¹ → Type0
code = S¹-ind Type0 Z (UnivalenceAxiom zequiv-succ)

-- Creates an equivalence between paths and encodings.
equiv-family : (x : S¹) → (base == x) ' code x
equiv-family x = qinv-' (encode x) (decode x , (encode-decode x , decode-encode x))

-- The fundamental group of the circle is the integers. In this
-- proof, univalence is crucial. The next lemma will prove that the
-- equivalence in fact preserves the group structure.
fundamental-group-of-the-circle : Ω S¹ base ' Z
fundamental-group-of-the-circle = equiv-family base

preserves-composition : ∀ n m → loops (n + m) == loops n · loops m
preserves-composition n m = z-act+ (Ω-st S¹ base) n m loop

5.3 Verified formal proofs

All definitions and theorems from Sections 5.1 and 5.2 have been formalized into two Agda
libraries whose complete code is presented in navigable HTML format at the following links.

126

Note that each function name is a link to its definition.

• https://mroman42.github.io/ctlc/agda-mltt/Total.html
• https://mroman42.github.io/ctlc/agda-hott/Total.html

On the Agda-mltt library, we define the basic types for Martin-Löf type theory. We have
chosen to add propositions and propositional truncations, as described in 4.5.3, because of their
expressive power, even if they are not part of the usual presentations of Martin-Löf type theory.
In particular, they allow us to build the type of Dedekind positive reals (see Section 5.1.5).
We also prove Diaconescu’s theorem and show how a classical setting could be recovered (see
Section 5.1.4). More than a hundred propositions about the natural numbers and the dyadic
rationals have been formalized in order to construct the real numbers, each one being a function
in dependently typed lambda calculus.

This first library assumes uniqueness of identity proofs (Axiom 5.3), which eases some proofs
but which is incompatible with Univalence (Axiom 5.4). This is why we will need a second
library in order to work with the Univalence axiom; this second library will not assume unique-
ness of identity proofs. We also assume well-pointedness in the form of function extensionality
(Axiom 5.1) and, only when working with Diaconescu’s theorem (Theorem 5.2), we assume
the Axiom of Choice.

On the Agda-hott library, we define again basic types for Martin-Löf type theory, we again
assume function extensionality (Axiom 5.1), but this time we also assume Univalence Axiom.
A more detailed study of the notion of equality and equivalence follows, defining multiple equiv-
alent notions of equivalence. We again define truncations and relations, the natural numbers,
the integers and some algebraic structures. All this machinery is used while constructing the
higher-inductive type of the circle to prove that its fundamental group is Z.

These two libraries are original developments. They both follow ideas mainly from the Homo-
topy Theory book [Uni13], but also from the Univalent Foundations library written with the
Coq proof assistant [VAG+10] and the Coq homotopy theory library [BGL+17]. The definition
of the type of propositions follows [HE]. Our second library compares to the highly more com-
plete and more technical [BHC+] by presenting only the small subset of type theory necessary
to compute the fundamental group of the circle and thus simplifying the whole structure of
the library.

127

https://mroman42.github.io/ctlc/agda-mltt/Total.html
https://mroman42.github.io/ctlc/agda-hott/Total.html

Chapter 6

Conclusions and further work

Categories are an exceptionally powerful and natural language to talk about mathematics. I feel
that the knowledge about logic and foundations of mathematics I have gained while writing
this text has been amplified by the fact that categories have always provided a confortable
framework to work with logic while avoiding delving excessively in more philosophically-related
concerns. In addition, and perhaps surprisingly, categories create very reasonable programming
languages! While this may be a bit oversimplifying, this is the practical lesson we can learn
from both Mikrokosmos and Agda. When I started to write this text, I was aware of some
form of unspecified connection between logic, programming and categories, and I wanted to
make precise these statements on my mind. In any case, I was not expecting to find such a
fruitful and deeply interesting topic of study right at the intersection between mathematics
and computation.

Categories must be taken seriously [L+86]. Many examples of this text refer to basic notions
of mathematics seen from the perspective of category theory. Rather than seeing them as
trivial identifications, it is sometimes illuminating to take this perspective. Induction, natural
numbers and more complex initial algebras are an example of an idea that gets considerably
clear when we speak in the internal language of a category.

Mikrokosmos was born as a didactic project to teach lambda calculus. While functional pro-
gramming languages are based on lambda calculus, its essence gets blurred between the many
constructions that are needed for a modern programming language to be of any utility, even
when they have not a strong theoretical basis. Many lambda calculus interpreters only aim
to provide useful languages that show that programming in lambda calculus can be done, but
they also sometimes blend together many different aspects and it can be difficult for the user
to determine if a particular construction can be actually translated back to categories. We
could say that we have succeeded in the task of providing a clear interpreter teaching how to
translate between lambda calculus and logic. I have had the opportunity to conduct successful
seminars on the lambda calculus using Mikrokosmos as a tool and the interpreter (only in its
command-line version) has been downloaded more than a thousand times from the Hackage
platform, exceeding my initial expectations and confirming there was a need for this kind of
purely didactic experiment.

While proving on the order of a hundred lemmas about the natural numbers only with the
help of the Agda type checker, the need for automation tools quickly arises. They are available
in the form of tactic languages in more specialized proof assistants (see for instance, LTac

128

in Coq, [Del00]); but it would be cleaner to use the same language both to prove and to
automate. Reflection is an example of a technique that would help to leverage the power of
Agda as a programming language to automate Agda as a proof checker ; an example of its usage
is described in [VDWS12]. Maybe, using these techniques, proving theorems on real analysis
encoding more complex theories such as synthetic differential geometry ([Koc06]) would be
possible in Agda.

In this text, we have discussed how intuitionistic logic provides a useful generalization of
classical logic with semantics in cartesian closed categories and a computational interpretation
on simply-typed lambda calculus. It seems plausible that a similar discussion on monoidal
categories and linear logic could have been made. Linear logic can be interpreted as a logic of
resources where we can make a distinction between, for example, two types of conjunctions:
A⊗B means to have both A and B, while A&B means to have one or the other at our choice
(see [GLR95]). Monoidal categories provide semantics for this logic (see [Mel09]), we have
many monoidal graphical languages that would be worth exploring (see [Sel10]), constructive
mathematics can be done with linear logic and it has an interpretation on quantum computing
(see [Sch14] or [LF12]). A different path would be to follow the study of ∞−categories and
∞−groupoids as more expressive models of type theory (see [RS17]).

It is conceivable that, in the future, mathematicians will be able to write and check their proofs
directly into a computer as part of their routine. Reaching that stage will require a massive
effort into the study of foundations and implementation of languages, coupled with the creation
of tools and software easing the task for the working mathematician.

129

Chapter 7

Appendices

Code

The complete code that generates this text, along with the code here presented can be found
at https://github.com/mroman42/ctlc.

The Mikrokosmos lambda interpreter has its documented code published under a GNU
General Public License v3.0 at https://github.com/mroman42/mikrokosmos. Code for a pre-
vious stable version on the Hackage platform can be found at https://hackage.haskell.
org/package/mikrokosmos. An HTML version of the documented code can be accessed at
https://mroman42.github.io/mikrokosmos/haddock/.

Mikrokosmos has been released along with the following references.

• A User’s guide for the command line interpreter. It details the installation procedure and
the core functionality. It can be found at https://mroman42.github.io/mikrokosmos/
userguide.html.

• The online version of the interpreter, which can be accessed at https://mroman42.
github.io/mikrokosmos/.

• An interactive Tutorial on the lambda calculus, following Sections 2.5 and 2.6 from a more
didactic perspective. It can be found at https://mroman42.github.io/mikrokosmos/
tutorial.html.

• The Javascript interface and instructions on how to use it at https://github.com/
mroman42/mikrokosmos-js.

• The IPython/Jupyter Mikrokosmos kernel, whose code can be found at https://github.
com/mroman42/jupyter-mikrokosmos. Tutorials in Jupyter notebook format can be found
at https://github.com/mroman42/mikrokosmos-tutorials.

• The standard libraries, which are also part of the interpreter from version 0.5.0. The
code can be found at https://github.com/mroman42/mikrokosmos-lib.

The code for the Agda-mltt and Agda-hott libraries can be downloaded from the main repos-
itory. The easily-navigable HTML versions can be found at

• https://mroman42.github.io/ctlc/agda-mltt/Total.html,
• https://mroman42.github.io/ctlc/agda-hott/Total.html.

130

https://github.com/mroman42/ctlc
https://github.com/mroman42/mikrokosmos
https://hackage.haskell.org/package/mikrokosmos
https://hackage.haskell.org/package/mikrokosmos
https://mroman42.github.io/mikrokosmos/haddock/
https://mroman42.github.io/mikrokosmos/userguide.html
https://mroman42.github.io/mikrokosmos/userguide.html
https://mroman42.github.io/mikrokosmos/
https://mroman42.github.io/mikrokosmos/
https://mroman42.github.io/mikrokosmos/tutorial.html
https://mroman42.github.io/mikrokosmos/tutorial.html
https://github.com/mroman42/mikrokosmos-js
https://github.com/mroman42/mikrokosmos-js
https://github.com/mroman42/jupyter-mikrokosmos
https://github.com/mroman42/jupyter-mikrokosmos
https://github.com/mroman42/mikrokosmos-tutorials
https://github.com/mroman42/mikrokosmos-lib
https://mroman42.github.io/ctlc/agda-mltt/Total.html
https://mroman42.github.io/ctlc/agda-hott/Total.html

Acknowledgments

The opportunity of devoting my bachelor’s thesis to this fascinating subject has been made possible
by Professor Pedro García-Sánchez and Professor Manuel Bullejos. They have provided me with cor-
rections and useful guidelines for the text and they have gone beyond their obligation in their efforts
to instruct me on how to expose these ideas clearly. Any deviation from this goal must be attributed
to my own inexperience.

I would like to thank the LibreIM community in general and Ignacio Cordón, David Charte, Marta
Andrés, José Carlos Entrena, Pablo Baeyens, Antonio Checa, Daniel Pozo, and Sofía Almeida in
particular, for testing the interpreter and providing useful discussion and questions on the topics of
this text. Professor Luis Merino, Professor Juan Julián Merelo and Braulio Valdivielso have made
possible and participated on the organization of meetings and workshops on these ideas.

Finally, I would like to express my gratitude to Benedikt Ahrens and the organizers of the School and
Workshop on Univalent Mathematics at the University of Birmingham, whose effort has given me the
opportunity to learn the rudiments of type theory and the Univalent Foundations program.

This document has been written with Emacs26 and org-mode 9, using the org file format and LATEX
as intermediate format. The document takes some configurations from the classicthesis template by
André Miede and modifications by Adrián Ranea, Alejandro García and David Charte. The minted

package has been used for code listings and the tikzcd package has been used for commutative diagrams.
The document is released under a Creative Commons BY-SA 3.0 license, while the source code can be
redistributed under the terms of the GNU General Public License.

131

http://www.latextemplates.com/templates/theses/2/thesis_2.pdf

Bibliography

[AB04] Steve Awodey and Andrej Bauer. Propositions as [types]. Journal of logic and
computation, 14(4):447–471, 2004.

[Alt] Thorsten Altenkirch. Introduction to homotopy type theory. Lecture notes for a
course at EWSCS 2017.

[Awo10] Steve Awodey. Category theory. Oxford University Press, 2010.

[Bar84] H.P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic
and the foundations of mathematics. North-Holland, 1984.

[Bar92] H. P. Barendregt. Handbook of logic in computer science (vol. 2). chapter Lambda
Calculi with Types, pages 117–309. Oxford University Press, Inc., New York, NY,
USA, 1992.

[Bar94] Henk Barendregt Erik Barendsen. Introduction to lambda calculus, 1994.

[Bau13] Andrej Bauer. Intuitionistic mathematics and realizability in the physical world.
In A Computable Universe: Understanding and Exploring Nature as Computation,
pages 143–157. World Scientific, 2013.

[Bau17] Andrej Bauer. Five stages of accepting constructive mathematics. Bulletin of the
American Mathematical Society, 54(3):481–498, 2017.

[BELS17] Auke Bart Booij, Martín Hötzel Escardó, Peter LeFanu Lumsdaine, and Michael
Shulman. Parametricity, automorphisms of the universe, and excluded middle.
arXiv preprint arXiv:1701.05617, 2017.

[BGL+17] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu
Sozeau, and Bas Spitters. The hott library: A formalization of homotopy type
theory in coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, pages 164–172. ACM, 2017.

[BHC+] Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Eric Finster, Jesper
Cockx, Christian Sattler, Chris Jeris, Michael Shulman, et al. Homotopy type
theory in Agda.

[Bis67a] Errett Bishop. Foundations of constructive analysis. Ishi Press International, 1967.

[Bis67b] Errett Bishop. A general language, 1967.

[Bro07] Luitzen Egbertus Jan Brouwer. Over de Grondslagen der Wiskunde. 1907.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki,

132

and S. F. Smith. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[CCHM16] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubi-
cal type theory: a constructive interpretation of the univalence axiom. CoRR,
abs/1611.02108, 2016.

[CF58] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, 1958.
Second printing 1968.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and computation, 76(2-3):95–120, 1988.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2):345–363, 1936.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2):56–68, June 1940.

[Cro75] J. N. Crossley. Reminiscences of logicians, pages 1–62. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1975.

[Cur34] H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences of the United States of America, 20(11):584–590, 1934.

[Cur46] Haskell B. Curry. The paradox of Kleene and Rosser. Journal of Symbolic Logic,
11(4):136–137, 1946.

[dB72] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972.

[Del00] David Delahaye. A tactic language for the system coq. In International Confer-
ence on Logic for Programming Artificial Intelligence and Reasoning, pages 85–95.
Springer, 2000.

[DLM08] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable
machine. Theoretical Computer Science, 398(1-3):32–50, 2008.

[Dub89] Eduardo J Dubuc. Integración de campos vectoriales y geometría diferencial sin-
tética. Revista de la Unión Matemática Argentina, 35:151–162, 1989.

[EM42] Samuel Eilenberg and Saunders MacLane. Group extensions and homology. Annals
of Mathematics, 43(4):757–831, 1942.

[EM45] Samuel Eilenberg and Saunders MacLane. General theory of natural equivalences.
Transactions of the American Mathematical Society, 58:231–294, 1945.

[Geu93] Jan Herman Geuvers. Logics and type systems. Universiteitsdrukkerij Nijmegen,
1993.

[GLR95] Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Advances in linear logic,
volume 222. Cambridge University Press, 1995.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, New York, NY, USA, 1989.

133

[HE] Martín Hötzel Escardó. Some mathematical and computational developments
in haskell and agda. http://www.cs.bham.ac.uk/~mhe/papers/index.html#ref:
functional. Accessed: 2018-04-17.

[HEX15] Martín Hötzel Escardó and Chuangjie Xu. The inconsistency of a Brouwerian con-
tinuity principle with the Curry–Howard interpretation. In LIPIcs-Leibniz Inter-
national Proceedings in Informatics, volume 38. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[HHJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history
of haskell: Being lazy with class. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages, page 1. Microsoft Research, April
2007.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM (JACM), 40(1):143–184, 1993.

[HM96] Graham Hutton and Erik Meijer. Monadic parser combinators, 1996.

[HM98] Graham Hutton and Erik Meijer. Monadic parsing in haskell. Journal of Functional
Programming, 8(4):437–444, July 1998.

[HS98] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type the-
ory. Twenty-five years of constructive type theory (Venice, 1995), 36:83–111, 1998.

[HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, New York, NY, USA, 2 edition, 2008.

[Hug89] J. Hughes. Why functional programming matters. Comput. J., 32(2):98–107, April
1989.

[Joh79] Peter T Johnstone. On a topological topos. Proceedings of the London mathematical
society, 3(2):237–271, 1979.

[Jup] Jupyter Development Team. Jupyter Notebooks. A publishing format for repro-
ducible computational workflows. pages 87–90.

[Kam01] Fairouz Kamareddine. Reviewing the classical and the de bruijn notation for
lambda-calculus and pure type systems. Logic and Computation, 11:11–3, 2001.

[Kas00] Ryo Kashima. A proof of the standardization theorem in lambda-calculus. Tokyo
Institute of Technology, 2000.

[KECA16] Nicolai Kraus, Martín Escardó, Thierry Coquand, and Thorsten Altenkirch.
Notions of anonymous existence in martin-l\" of type theory. arXiv preprint
arXiv:1610.03346, 2016.

[Koc06] Anders Kock. Synthetic differential geometry, volume 333. Cambridge University
Press, 2006.

[KR35] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals
of Mathematics, 36(3):630–636, 1935.

[Kun11] K. Kunen. Set Theory. Studies in logic. College Publications, 2011.

[L+86] F. William Lawvere et al. Taking categories seriously. Revista Colombiana de
Matemáticas, XX, pages 147–178, 1986.

134

http://www.cs.bham.ac.uk/~mhe/papers/index.html#ref:functional
http://www.cs.bham.ac.uk/~mhe/papers/index.html#ref:functional

[Lan78] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts
in Mathematics. Springer New York, 1978.

[Law] F. William Lawvere. Use of Logical Operators in mathematics. Lecture notes in
Linear Algebra, 309.

[Law63] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings of the
National Academy of Sciences, 50(5):869–872, 1963.

[Law64] F. William Lawvere. An elementary theory of the category of sets. Proceedings of
the national academy of sciences, 52(6):1506–1511, 1964.

[Law69] F William Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281–296, 1969.

[Law70] F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an
adjoint functor. Applications of Categorical Algebra, 17:1–14, 1970.

[Law16] F. William Lawvere. Diagonal arguments and Cartesian Closed Categories.
Reprints in Theory and Applications of Categories, pages 1–13, 2016.

[Lei01] Daan Leijen. Parsec, a fast combinator parser. Technical Report 35, Department
of Computer Science, University of Utrecht (RUU), October 2001.

[Lei10] Tom Leinster. An informal introduction to topos theory. arXiv preprint
arXiv:1012.5647, 2010.

[LF12] Ugo Dal Lago and Claudia Faggian. On multiplicative linear logic, modality and
quantum circuits. arXiv preprint arXiv:1210.0613, 2012.

[LS09] F. William Lawvere and Stephen H. Schanuel. Conceptual Mathematics: A First
Introduction to Categories. Cambridge University Press, New York, NY, USA, 2nd
edition, 2009.

[LS13] Daniel R Licata and Michael Shulman. Calculating the fundamental group of the
circle in homotopy type theory. In Logic in Computer Science (LICS), 2013 28th
Annual IEEE/ACM Symposium on, pages 223–232. IEEE, 2013.

[04] The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

[McB17] Conor McBride. Cs410 advanced functional programming. https://github.com/
pigworker/CS410-17, 2017.

[McC91] William W. McCune. Single axioms for groups and abelian groups with various
operations. In Preprint MCS-P270-1091, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, Argonne, IL, 1991.

[Mel09] Paul-André Mellies. Categorical semantics of linear logic. Panoramas et syntheses,
27:15–215, 2009.

[ML75] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Studies
in Logic and the Foundations of Mathematics, volume 80, pages 73–118. Elsevier,
1975.

[ML08] Per Martin-Löf. The hilbert-brouwer controversy resolved? In One hundred years
of intuitionism (1907–2007), pages 243–256. Springer, 2008.

135

https://github.com/pigworker/CS410-17
https://github.com/pigworker/CS410-17

[MP00] Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals of Pure
and Applied Logic, 104(1-3):189–218, 2000.

[New17] Clive Newstead. Locally cartesian closed categories. 2017.

[nLa18] nLab authors. HomePage. http://ncatlab.org/nlab/show/HomePage, May 2018.
Revision 262.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in Martin-
Löf’s type theory, volume 200. Oxford University Press Oxford, 1990.

[O’S16] Bryan O’Sullivan. The attoparsec package. http://hackage.haskell.org/
package/attoparsec, 2007–2016.

[P+03] Simon Peyton-Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0–255, Jan 2003. http://www.
haskell.org/definition/.

[Pol95] Robert Pollack. Polishing up the Tait-Martin-Löf proof of the Church-Rosser the-
orem. Proc. De Wintermöte, Chalmers University, 1995.

[RA11] Florian Rabe and Steve Awodey. Kripke semantics for martin-löf’s extensional type
theory. Logical Methods in Computer Science, 7, 2011.

[RS17] Emily Riehl and Michael Shulman. A type theory for synthetic∞-categories. arXiv
preprint arXiv:1705.07442, 2017.

[Sch14] Urs Schreiber. Quantization via linear homotopy types. arXiv preprint
arXiv:1402.7041, 2014.

[See84] Robert AG Seely. Locally cartesian closed categories and type theory. In Mathe-
matical proceedings of the Cambridge philosophical society, volume 95, pages 33–48.
Cambridge University Press, 1984.

[Sel10] Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010.

[Sel13] Peter Selinger. Lecture notes on the lambda calculus. Expository course notes,
120 pages. Available from 0804.3434, 2013.

[SGR+16] Jonathan Sterling, Danny Gratzer, Vincent Rahli, Darin Morrison, Eugene Aken-
tyev, and Ayberk Tosun. Redprl–the people’s refinement logic, 2016.

[Shu17] Michael Shulman. Homotopy type theory: the logic of space. arXiv preprint
arXiv:1703.03007, 2017.

[Str93] Thomas Streicher. Investigations into intensional type theory. Habilitiation Thesis,
Ludwig Maximilian Universität, 1993.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type i. The Journal
of Symbolic Logic, 32(2):198–212, 1967.

[Tam96] Z. Tamsamani. Equivalence de la théorie homotopique des n-groupoïdes et celle
des espaces topologiques n-tronqués. In eprint arXiv:alg-geom/9607010, July 1996.

[Tur37] A. M. Turing. Computability and ń-definability. The Journal of Symbolic Logic,
2(4):153–163, 1937.

136

http://ncatlab.org/nlab/show/HomePage
http://ncatlab.org/nlab/revision/HomePage/262
http://hackage.haskell.org/package/attoparsec
http://hackage.haskell.org/package/attoparsec
http://www.haskell.org/definition/
http://www.haskell.org/definition/

[TVD14] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in mathematics, vol-
ume 2. Elsevier, 2014.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

[VAG+10] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. Unimath: Univalent
mathematics. URL: https://github.com/UniMat, 2010.

[VDBG11] Benno Van Den Berg and Richard Garner. Types are weak ω-groupoids. Proceed-
ings of the London Mathematical Society, 102(2):370–394, 2011.

[VDWS12] Paul Van Der Walt and Wouter Swierstra. Engineering proof by reflection in agda.
In Symposium on Implementation and Application of Functional Languages, pages
157–173. Springer, 2012.

[VO08] Jaap Van Oosten. Realizability: an introduction to its categorical side, volume 152.
Elsevier, 2008.

[voe] The origins and motivations of Univalent Foundations. https://www.ias.edu/
ideas/2014/voevodsky-origins. Accessed: 2018-04-17.

[Wad85] Philip Wadler. How to replace failure by a list of successes. In Proc. Of a Conference
on Functional Programming Languages and Computer Architecture, pages 113–128,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[Wad90] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Confer-
ence on LISP and Functional Programming, LFP ’90, pages 61–78, New York, NY,
USA, 1990. ACM.

[Wad15] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, November
2015.

[Yan03] Noson S. Yanofsky. A universal approach to Self-Referential Paradoxes, Incom-
pleteness and Fixed points. pages 15–17, 2003.

137

https://homotopytypetheory.org/book
https://www.ias.edu/ideas/2014/voevodsky-origins
https://www.ias.edu/ideas/2014/voevodsky-origins

	1 Lambda calculus
	1.1 Untyped -calculus
	1.1.1 Untyped -calculus
	1.1.2 Free and bound variables, substitution
	1.1.3 Alpha equivalence
	1.1.4 Beta reduction
	1.1.5 Eta reduction
	1.1.6 Confluence
	1.1.7 The Church-Rosser theorem
	1.1.8 Normalization
	1.1.9 Standardization and evaluation strategies
	1.1.10 SKI combinators
	1.1.11 Turing completeness

	1.2 Simply typed -calculus
	1.2.1 Simple types
	1.2.2 Typing rules for simply typed -calculus
	1.2.3 Curry-style types
	1.2.4 Unification and type inference
	1.2.5 Subject reduction and normalization

	1.3 The Curry-Howard correspondence
	1.3.1 Extending the simply typed -calculus
	1.3.2 Natural deduction
	1.3.3 Propositions as types

	1.4 Other type systems
	1.4.1 -cube

	2 Mikrokosmos
	2.1 Implementation of -expressions
	2.1.1 The Haskell programming language
	2.1.2 De Bruijn indexes
	2.1.3 Substitution
	2.1.4 De Bruijn-terms and -terms
	2.1.5 Evaluation
	2.1.6 Principal type inference

	2.2 User interaction
	2.2.1 Monadic parser combinators
	2.2.2 Verbose mode
	2.2.3 SKI mode

	2.3 Usage
	2.3.1 Installation
	2.3.2 Mikrokosmos interpreter
	2.3.3 Jupyter kernel
	2.3.4 CodeMirror lexer
	2.3.5 JupyterHub
	2.3.6 Calling Mikrokosmos from Javascript

	2.4 Programming environment
	2.4.1 Cabal, Stack and Haddock
	2.4.2 Testing
	2.4.3 Version control and continuous integration

	2.5 Programming in untyped -calculus
	2.5.1 Basic syntax
	2.5.2 A technique on inductive data encoding
	2.5.3 Booleans
	2.5.4 Natural numbers
	2.5.5 The predecessor function and predicates on numbers
	2.5.6 Lists and trees
	2.5.7 Fixed points

	2.6 Programming in the simply typed -calculus
	2.6.1 Function types and typeable terms
	2.6.2 Product, union, unit and void types
	2.6.3 A proof in intuitionistic logic

	3 Category theory
	3.1 Categories
	3.1.1 Definition of category
	3.1.2 Morphisms
	3.1.3 Products and sums
	3.1.4 Examples of categories

	3.2 Functors and natural transformations
	3.2.1 Functors
	3.2.2 Natural transformations
	3.2.3 Composition of natural transformations

	3.3 Constructions on categories
	3.3.1 Product categories
	3.3.2 Opposite categories and contravariant functors
	3.3.3 Functor categories

	3.4 Universality and limits
	3.4.1 Universal arrows
	3.4.2 Representability
	3.4.3 Yoneda Lemma
	3.4.4 Limits
	3.4.5 Examples of limits
	3.4.6 Colimits
	3.4.7 Examples of colimits

	3.5 Adjoints, monads and algebras
	3.5.1 Adjunctions
	3.5.2 Examples of adjoints
	3.5.3 Monads
	3.5.4 Algebras

	4 Categorical logic
	4.1 Presheaves
	4.2 Cartesian closed categories and lambda calculus
	4.2.1 Lawvere theories
	4.2.2 Cartesian closed categories
	4.2.3 Simply-typed -theories
	4.2.4 Syntactic categories and internal languages

	4.3 Working in cartesian closed categories
	4.3.1 Diagonal arguments
	4.3.2 Bicartesian closed categories
	4.3.3 Inductive types

	4.4 Locally cartesian closed categories and dependent types
	4.4.1 Quantifiers and subsets
	4.4.2 Locally cartesian closed categories
	4.4.3 Dependent types
	4.4.4 Dependent pairs
	4.4.5 Dependent functions

	4.5 Working in locally cartesian closed categories
	4.5.1 Examples of dependent types
	4.5.2 Equality types
	4.5.3 Subobject classifier and propositions
	4.5.4 Propositional truncation

	4.6 Topoi
	4.6.1 Motivation
	4.6.2 An Elementary Theory of the Category of Sets

	5 Type theory
	5.1 Martin-Löf type theory
	5.1.1 Programming in Martin-Löf type theory
	5.1.2 Translation between categories and types
	5.1.3 Excluded middle and constructivism
	5.1.4 Extensionality and Diaconescu's theorem
	5.1.5 Dedekind reals

	5.2 Homotopy type theory
	5.2.1 Homotopy type theory I: Equality
	5.2.2 Homotopy type theory II: Univalence

	5.3 Verified formal proofs

	6 Conclusions and further work
	7 Appendices

