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Abstract: This paper reinvestigates the relationship between urbanization and energy 

consumption in case of Pakistan for the period of 1972Q1-2011Q4 by employing the 

STIRPAT (Stochastic Impact by Regression on Population, Affluence and Technology) 

model. We have employed the ARDL bounds testing approach to cointegration in the 

presence of structural breaks stemming in the series to count for these missing elements in 

other studies. Finally, the VECM Granger causality approach has been applied to examine the 

causal relationship between the variables. Our results show that urbanization adds in energy 

consumption. Affluence (economic growth) increases energy demand. Technology has 

positive impact on energy consumption. An increase in transportation is positively linked 

with energy consumption. The causality analysis indicates the unidirectional causality 

running from urbanization to energy consumption.  
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1. Introduction 

Economic theory postulates that urbanization is caused by economic growth and social 

modernization [1, 2]. Poumanyvong and Kaneko [2] argued that urbanization means a shift of 

the rural labor force from agricultural sector to industrial sector which is mostly situated in 

urban areas. This structural transformation of rural areas into urban hubs affects energy 

consumption significantly through various channels. For example, urbanization increases 

energy consumption by raising the demand for housing, food, public utilities, land use, 

transportation in urban areas, use of more electric appliances, the rise in demand of road use, 

globalization,… etc. In recent decades, urbanization has been growing rapidly. The world 

urban population was 1.52 billion in 1974-75 which steadily increased to 3.29 billion in 2006-

07 ([3]) that is projected to double in 2050. This rapid increase in urbanization will generate 

more pressure on existing urban infrastructure e.g. housing, health, education, power, 

transportation, and other public utilities. Urban dwellers consume higher quantities of 

resources and add pressure to the flimsy ecosystem. International Energy Agency [4] reports 

that big city dwellers accounted for 67.77 per cent of world energy use. This implies that the 

continuous increase in urbanization will have significant impact on energy consumption.                     

 

The estimated population of Pakistan was about 62 million in 1971 with a density of 81/km 

and the urban population was 25.1%. Between 1971 and 2004, population increased to 148 

million, which raised urban population to 34.6% while population density was of 187/km. 

Pakistan was listed among the most urbanized nations in the South Asia [5]. The urban 

population rose to 36.38% [6].  In Pakistan, urban population has increased from 25.3185 per 

cent as a share of total population in 1971-72 to 37.2354 per cent as a share of total 

population in 2010-11, which is almost a 47 per cent rise in urban population growth [6]. This 

increase in urbanization affected the contribution of modern sector, i.e. interaction between 

industrial and services sectors. The share of modern sector had increased from PRS 13.75 

million in 1971-72 to PRS 148.42 million in 2010-11 which is almost 979 per cent growth in 

modern sector of Pakistan [6]. The urbanization also raises the demand for personnel as well 

as public transportation. The use of transport was 2.97 per kilometer of road in 1971-72, 

which has increased to 11.89 per kilometer of road in 2010-11, which is 300 per cent increase 

in transportation use in Pakistan [6].  
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We find that rapid urbanization, modern sector growth and rapid transportation growth affect 

energy demand in Pakistan. This motivates the researchers to conduct this piece of research 

for providing guidelines to help policy making authorities in designing appropriate policy for 

using urbanization as economic tool for efficient use of energy to maintain sustainable 

economic development. Therefore, this paper contributes to the existing literature in four 

ways: (i) Pakistan is an emerging economy and transportation sector consumes major chunk 

of energy such s oil consumption. So, we employ augmented STIRPAT model to investigate 

the relationship between urbanization and energy consumption by incorporating affluence, 

technology and transportation as potential determinants of urbanization and energy demand.  

(ii) Over the sample period of time, structural breaks occurred in urbanization, energy, 

industrialization, economic growth etc. due to implementation of economic, urban and energy 

policies by the government. These structural breaks may change the unit root behavior, 

impact (effect) of the variables and even change the causal relationship between the variables. 

In doing so, the structural break unit tests are employed to test the stationarity properties of 

the variables. (iii) The cointegration relationship between the variables is examined by 

applying the ARDL bounds testing accommodating structural breaks in the series. (iv) The 

VECM causality approach is used to check causal relationship between urbanization and 

energy demand by accommodating structural breaks occurring in the series. We find that 

presence of structural breaks in the series could not affect cointegration relationship between 

the variables i.e. cointegration exists. Additionally, urbanization is positively linked with 

energy consumption. Affluence and technological development positively affect energy 

consumption. Transportation has positive effect on energy consumption. The causality 

analysis reveals that energy consumption is cause of urbanization. The feedback effect is 

noted between technological development (transportation) and energy consumption. 

Affluence causes energy consumption and energy consumption causes affluence.     

 

2. Literature Review 

The relationship between urbanization and energy consumption has been widely and 

empirically investigated by various researchers in the existing literature. For example, Jones 

[7] noted that urbanization raises energy demand because urban people are more connected to 

electrical appliances as compared to rural individuals. In urban areas, there is an increase in 

private transportation with an increase in income per capita which also contributes to energy 

demand. Energy demand is also cause of urban density. Dhal and Erdogan [8] examined the 

relationship between urban population and oil consumption. They reported that an increase in 
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urbanization is positively linked to industrialization, which increases oil consumption. Burney 

[9] reported that socioeconomic determinants also affect energy consumption. He found that 

urbanization raises energy demand, but varies across countries by keeping income per capita 

and industrialization constant. Imai [10] found that population and urbanization has positive 

impact on energy consumption but causality results exposed that urbanization is cause of 

population and energy consumption.  

 

Later on, Cole and Nuemayer [11] reported that urbanization is directly linked with energy 

demand due to rise in demand for housing, transportation provides by government and other 

public utilities, urban density and stimulation of economic activity in industrial and services 

sectors. They found U-shaped relationship between urbanization and energy consumption and 

small size households adds more in energy demand. Kalnay and Cal [12] pointed out that 

urbanization raises pressure on agriculture sector to produce more food. This raises the use of 

land as well as energy demand in agriculture sector. Bryant [13] opined that urbanization is 

linked to industrialization, technological advancement, globalization and migration. All these 

factors add in energy demand. Likewise, Shen et al. [14] unveiled that supply of resources i.e. 

Cement, steel, aluminum and coal and the demand of timber, cement and steel, lead the 

process of urbanization which increases industrialization and modernization and, in resulting 

energy demand is increased.  

 

Wang et al. [15] examined the impact factors of population, economic level, technology level, 

urbanization level, industrialization level, service level, energy consumption structure and 

foreign trade degree on the energy-related CO2 emissions in Guangdong Province, China 

from 1980 to 2010 using an extended STIRPAT model. Empirical results indicate that factors 

such as population, urbanization level, GDP per capita, industrialization level and service 

level, can cause an increase in CO2 emissions. However, technology level, energy 

consumption structure and foreign trade degree can lead to a decrease in CO2 emissions. 

Mishra et al. [16] investigated the affiliation between urbanization and energy consumption 

by incorporating economic growth in the energy demand function in Pacific Island nations. 

They noted that urbanization involves structural changes throughout the economy and has 

important implications for energy consumption. Urbanization leads to substantial 

concentration of population in generating economic activities; and thus increases demand for 

energy.  Lui [17] assessed the relationship between population growth, urbanization and 

energy consumption by applying the ARDL bounds testing approach and factor 
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decomposition model in case of Chinese economy. He found that the cointegration for the 

long run rapport is present among the variables. The causality analysis revealed that 

population and economic growth have neutral impact on energy consumption, but total 

energy consumption is cause of urbanization. Zhao-hui [18] reinvestigated the relationship 

between different stages of urbanization (tortuous development, early stage and mid-stage) 

and energy consumption. The results showed cointegration between the variables and energy 

demand Granger causes both industrial development and urbanization.  

 

Similarly, Poumanyvong and Kaneko [2] looked into the relationship between urbanization 

and energy consumption by incorporating other potential variables such as economic growth, 

industrial development and population growth in the energy demand function. Their empirical 

evidence found that urbanization, economic growth, population and industrialization add in 

energy demand but technical efficiency lowers it. Furthermore, they reported that in 

developing economies, urbanization reduces energy demand due to switch off from 

traditional and inefficient energy fuels to modern and efficient energy fuels. The positive 

effect of urbanization on energy consumption is greater in high income countries compared to 

middle income economies. Madlener and Sunk [19] examined the impact of urbanization and 

urban structure on energy consumption using data of 100 developed and developing 

economies. They found that urbanization affects energy demand via changes in urban 

structure. Their results confirmed that urbanization is cause of economic development and 

increase in income levels changes the consumer necessities which in turn affect energy 

consumption. Shahbaz and Lean [20] analyzed the relationship between urbanization and 

energy consumption by incorporating financial development and industrialization in energy 

demand function. Their empirical evidence showed that financial development, 

industrialization and urbanization have positive impact on energy consumption in Tunisia. 

Likewise, urbanization and financial development lead industrialization, which Granger 

causes energy demand. Similarly, Islam et al. [21] also found that population is positively 

linked with energy demand, but the bidirectional causal relationship is found between 

population and energy consumption in case of Malaysia.  

 

Ma and Du [22] reinvestigated the relationship between urbanization, industrialization, 

energy prices and energy consumption using data of Chinese economy. They found that 

industrialization leads urbanization and urbanization has positive impact on energy demand 

due to an increase in urban density. Additionally, impact of tertiary industrial value added is 
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negative on energy use due to use of advance technology and Chinese energy policy as well 

as environmental regulations. Apart from that, Mickieka and Fletcher [23] tested the impact 

of urbanization on coal consumption using the vector autoregressive framework and Toda and 

Yamamoto [24] Granger causality approach over the period of 1971-2009. They incorporated 

real GDP and electricity production as potential determinants in coal demand function. Their 

empirical evidence exposed that coal consumption is cause of economic growth and the 

unidirectional causality is found running from urbanization to electricity consumption as well 

as coal consumption. Coal consumption does not seem to affect real GDP. Zhang and Lin 

[25] analyzed the impact of urbanization on energy consumption using national, provincial 

and regional data by applying the STIRPAT model. Their empirical evidence opined that 

urbanization has positive impact on energy consumption but varies across regions. 

Urbanization also lowers energy demand in West, Central and Eastern regions of China due 

to use of energy efficient technology.  

 

Poumanyvong et al. [26] reinvestigated the impact of urbanization on national transport and 

road energy use using the data of developing, middle and high income countries. Their results 

showed that urbanization raises more demand for transportation and hence energy in high 

income countries comparatively in low income countries. Surprisingly, the impact of 

urbanization on national transport and hence on energy consumption is positive but less in 

middle income countries as compared to low income countries. Sadorsky [27] collected the 

data of 75 developing countries, including Pakistan to examine the impact of urbanization and 

industrialization on energy intensity by applying the mean group estimator (MGE). He found 

that income effect has negative impact on energy intensity i.e. -0.45%-0.35%. This suggests 

that rise in income leads to employ advance and energy efficient technology for enhancing 

domestic production which reduces energy consumption. Furthermore, industrialization 

increases, i.e. 0.07%-0.12% energy intensity and impact of urbanization on energy intensity 

varies in various regions. Solarin and Shahbaz [28] applied the trivariate model to assess the 

causality between energy consumption (electricity consumption) using annual frequency data 

for Angola economy. They investigated the long run relationship by applying the ARDL 

bounds testing and the VECM Granger causality is applied for causality between the 

variables. Their empirical exercise exposed that electricity consumption and urbanization 

promote economic growth. The causality results revealed that the relationship between 

electricity consumption and urbanization is bidirectional.  
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In a comparative study, Pachauri and Jiang [29] noted that rural individuals consume more 

energy due to the heavy dependence on inefficient energy fuels and these energy fuels meet 

85% of rural energy demand in China and India. In particular, O'Neill et al. [30] applied 

iPETS (integrated-Population-Economy-Technology-Science) model to reassess the impact of 

urbanization on energy use in India and China. Their study noted that urbanization has impact 

on energy use but less than proportional in both countries due to the fast rate of urbanization 

which provides labor supply to enhance domestic production. Moreover, rural-urban disparity 

between China and India also affects the household energy consumption. The non-linear 

relationship between urbanization and energy consumption (energy demand) is also 

investigated. For example, Duan et al. [31] used the data of 45 countries to assess the impact 

of urbanization on energy consumption by applying the ECUGA (Energy Consumption Unit 

Geometric Average) method. They found inverted U-shaped relationship between 

urbanization and energy consumption. Likewise, they noted that energy intensity increases if 

urbanization reaches to 40% to 50% and it starts to decline by 50% to 80% urbanization. 

Jiang and Lin [32] asserted that China is shifting from low-income group to middle income-

group with faster economic growth which is supported by rapid industrialization and 

urbanization. They documented that the relationship between urbanization and energy 

intensity is inverted-U shaped. The theory of inverted U-shaped relationship reveals that 

during the process of development, industrialization follows urbanization, energy demand is 

inflexible and grows quickly due to rapid industrialization. This implies that energy 

consumption (intensity) reaches to its peak during the stage of development and starts to 

decline, once urbanization and industrialization are completed. Zhang and Qin (2013) 

criticized the findings reported by Jiang and Lin [32] and noted that the empirical model used 

by Zhang and Qin [33] has variable specification problems. Xia and Hu [34] exposed that 

urbanization tends to increase the migration of labor from rural areas to urban sector due to 

industrialization in China. This transformation of population has significant impact on energy 

consumption. Apergis and Tang [35] used the multivariate model to test the causal 

relationship between energy consumption and urbanization by including income and labor 

force in the energy demand function. They applied the Toda-Yamamoto-Dolado-Luutkepohl 

(TYDL) causality approach developed by Toda and Yamamoto [24] and, Dolado and 

Luutkepohl [36] using the data of 85 high, middle and low income countries. Overall, their 

empirical evidence revealed that energy consumption and urbanization are independent i.e. 

neutral effect while energy consumption Granger causes economic growth. Brant [13] probed 

the nexus between energy consumption, economic growth and urbanization using 
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heterogeneous panel data of high, middle and low income countries. The results of Pedroni 

[37] reported the existence of cointegration between the variables. Urbanization leads energy 

demand. The link between urbanization and energy consumption shows the phenomenon of 

ladder effect. Liu and Xie [38] applied the threshold vector error correction model (TVECM) 

to examine the relationship between urbanization and energy intensity in the case of China. 

They noted that urbanization leads energy consumption quickly before the threshold point, 

i.e. inverted U-shaped relationship between urbanization and energy consumption. The 

causality analysis exposed that urbanization causes energy consumption.  

 

Recently, Wang [39] examined the impact urbanization on residential energy consumption 

and energy production in case of China. The results indicated that urbanization leads 

residential energy demand. Urbanization stimulates industrialization, which enhances 

economic growth and resulting energy demand is increased. Liddle and Lung [40] used data 

of 105 countries to examine the direction of causality between urbanization and electricity 

consumption by applying the panel Granger causality test. They found that unidirectional 

causality is found running electricity consumption to urbanization. Shahbaz et al. [41] found 

that Malaysian energy consumption is positively affected by Malaysian urbanization.  

 

In case of Pakistan, Alam et al. [42] examined the impact of population growth and 

urbanization on energy consumption and economic growth by applying simultaneous 

equation method. They reported that long run relationship between economic growth, 

population growth, urbanization and energy consumption exists. Moreover, population 

growth and urbanization has positive impact on energy consumption. Zaman et al. [43] 

investigated energy (measuring by electricity) demand function over the period of 1975-2010. 

Their results indicated that population leads urbanization that is positively linked with energy 

demand. The causality analysis showed that urbanization Granger causes energy 

consumption. Ali and Nitivattananon [44] explored the interrelationship between land use and 

energy consumption in case of Lahore applying an integrated and multi-disciplinary 

approach. They unveiled that industrial and residential sectors are major drivers to raise 

energy demand in Lahore city. 

 

3. Theoretical Background and Model Construction 

Economic growth leads to urbanization and social modernization is a well established fact [1, 

2]. Urbanization is also called the renovation of rural population into urban population i.e. 
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conversion of rural areas into urban areas [2]. Urbanization leads to industrialization, which 

affects energy consumption [6, 7]. Urbanization affects energy demand by raising demand for 

housing, transportation and other public utilities supply by government, urban density [11]. 

Urbanization increases the road use due to industrial activities [45], pressurizes agriculture 

sector to produce more food both for rural as well as urban population [12], increases 

commercialization [46], changes urban structure [19], stimulates financial development which 

leads to promotion of investment activities and industrialization [20], raises the demand for 

production material [47], increases migration of labor from rural areas to the urban sector [34] 

and boosts economic activity [27]. These factors are also cause of urbanization and affect 

energy demand. But, transportation variable has been discussed theoretically in existing 

literature but never empirically included in IPAT (Integrated Population, Affluence and 

Technology) model. We have included transportation variable to capture the impact of 

transportation on energy demand in Pakistan as we know that transportation sector is a 

significant contributor to energy demand.  

 

The above presentation leads us to apply IPAT (Integrated Population, Affluence and 

Technology) model which is considered very useful framework to investigate the impact of 

urbanization on energy consumption but it has some limitations.  After making modifications 

in IPAT model, this model is termed as STIRPAT (Stochastic Impact by Regression on 

Population, Affluence and Technology). We have extended the STIRPAT model by 

incorporating some other potential determinant of urbanization and energy consumption such 

as transportation. The general form of STIRPAT model is given as follows: 

 

t

d

t

c

t

b

tt TAaPI          (1) 

 

where, tI
 
is energy intensity, tP

 
is population, tA

 
is affluence, tT

 
is technology and t  

is 

error term. We have transformed all the series into logarithmic form. The estimable version of 

STIRPAT model is modeled as following:  
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Where t
ECln  is natural log of energy consumption per capita (kg of oil equivalent), t

Uln  is 

natural log of urban population per capita, Aln  is natural log of affluence (wealth or 

prosperity) proxies by real GDP per capita, 
tTECln  is natural log of technology (proxies by 

interaction term of industry and services sectors value-added) per capita, t
TPln

 
is natural log 

of use of transportation (proxies by number of cars and buses) per capita per km of road and 

t  is error term.  

 

The data on urbanization, real income, industrial value added and services value added has 

been obtained from world development indicators [48]. Furthermore, world development 

indicators [48] is combed to collect the data on number of cars and buses) per km of road. 

The variable of population is used to convert all the series into per capita. We have used 

quadratic match-sum method to convert series from annual into quarter frequency. It has been 

confirmed that the results of the Denton method are indifferent from those of the quadratic 

match-sum method [49, 50].  

 

4. Methods 

4.1 Unit Root Test 

This inefficiency of LM test is removed by Narayan and Popp [51] by introducing a new 

structural break unit root test. The Narayan and Popp (NP afterwards)[51] unit root test is 

superior to other unit root tests such as: (i) there is no need to have information about the 

possible timing of structural break stemming in the series because NP test determines the 

break dates endogenously within model. (ii) The NP test performs well if break dates are 

known or unknown. The reason is that critical values of unknown break points seem to 

converge with increasing sample size to critical values of known break points. This implies 

that the NP test is applicable if beak points are known or unknown. (iii) The NP test has the 

high explanatory power to detect break point in small sample data and it does not change the 

break magnitude. The NP test employs two models to test the unit root properties of the 

variables. The model M1 contains structural break in intercept but model M2 allows 

structural break in intercept as well as in the trend of the series. The functional form of both 

equations is modeled as following: 

 

The model M1: 
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
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The model M2: 
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  (4) 

 

where )(1, iti TBtDU  and ......,2,1),()(1,  iTBtTBtDU iiti  show dummy variables 

capturing structural break points in intercept and slope stemming at time 
1

TB  and 
2

TB  

respectively in the series. The process of potential structural break points in the series is 

explained in NP [51]. Anyway, to examine the null hypothesis of unit root problem against 

the alternate hypothesis of stationary, we use t-statistic of 1ty . 

 

4.2 The ARDL Bounds Testing Approach 

Once, we have unique order of integration of the variables then we can apply Johansen and 

Juselius [52] maximum likelihood cointegration approach to examine cointegration between 

the variables. This is single-equation based cointegration technique which provides long run 

relationship between the variables by showing the number of cointegrating vectors in the 

model. The empirical exercise to investigate cointegration between the variables via Johansen 

and Juselius [52] becomes invalid if any variable is integrated at I(0) in the VAR system or 

mixed order of integration of the variables. To overcome these issues, Pesaran et al. [53] 

developed the ARDL bounds testing approach to cointegration which is also known as 

autoregressive distributed lag model (ARDL). The ARDL bounds testing approach is 

pertinent once we have variables stationary at I(0) or I(1) or I(0)/I(1). This shows that if none 

of the variables is stationary beyond these bounds i.e. I (2) then F-test computation becomes 

worthless. The ARDL bounds testing approach to cointegration performs better than all 

conventional cointegration approaches for small sample data while investigating the 

cointegration between the variables. The critical values are easily available for small data to 

compare with our calculated F-statistics. The ARDL bounds testing approach provides long 

run as well as short run separately. Furthermore, the general to specific modeling framework 

is used to generate suitable lag order for the data generating process by the ARDL bounds 

testing approach to cointegration [54]. 
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We follow the regression based on the generalized Dickey-Fuller test to compute F-statistics. 

Following the ARDL bounds testing approach, unrestricted error correction model (UECM) 

is used to investigate the cointegration relationship between the variables. The functional 

form of unrestricted error correction model ( 1 2, , ,....... kp q q q ) is modeled as following:  

'

1

( , ) ( , ) ,


        
k

t i i it t t
i

L p Y L q X W 1,.........,t n     (5) 

where 

 
1

1

2
1 2

2
1 2

( , ) 1 ........ ,

( , ) .......

      

      

pi
i i pi

q
i i i i i iq

L p L L L

L q L L L
,       1,2..., .i k  

 

where, tX indicate the independent variables to be used in the model and α is constant term. 

L is lag operator i.e. 1 t tX X . tW
 
is 1s which is vector of vector of deterministic 

variables. These variables are constant term, time trend or independent variables having fixed 

lags. This shows that we can estimate the long run relationship using the following equation:      

^

^

0 1

1 2

.....
(1, )

,

(1, ) 1 .....

  
 

   

     


  
      

i i
i qii

i

p

q

p

       (6) 

1,2,..., .i k  

where, ˆip  and iq̂ , i = 1, 2… k shows the coefficient of estimates (see equation-5). The 

equation-3.3.2.2 is used to estimate the coefficients of long run relationship as formula is 

given as follows: 

 
^

1 2

1 2

( , , ,..., )
.

1 ...

    

  


 
     

k

p

p q q q
        (7) 

The ordinary least squares (OLS) estimates are reported by )ˆ....,ˆ,ˆ,ˆ(ˆ
21 kqqqp  which are 

the coefficients of λ of an unrestricted error correction model of the ARDL version (see 

equation-6). The F-statistics can be calculated in three steps using the ARDL approach to 

cointegration developed by Pesaran et al. [53]. The appropriate lag order selection is a 

necessary condition to calculate the F-statistics. The F-statistic varies with different lag 

orders. We follow AIC (Akaike Information Criteria) which performs better in small sample 
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data as compared to SBC (Schwartz Bayesian Criteria). The performance of SBC is sensitive 

with sample size. Secondly, F-statistic is calculated by using the unrestricted error correction 

model (UECM) for cointegration between the series. The formulation of the autoregressive 

distributive lag model is based on ( 1) kp . We see that number of variables to be used in 

the model is shown by k and p reports the appropriate lag order of the variables. Lastly, we 

calculate F-statistic to examine whether cointegration exists or not between the variables [55]. 

We apply the unrestricted equilibrium error correction model (UECM) version of the ARDL 

bounds testing approach to cointegration. The UECM contains unrestricted intercept and 

unrestricted time trend to F-statistic for cointegration. The equation of UECM is given as 

follows: 

iD

q

i

it

p

i

titXYXtYYTt
DcXwZXYTccY   











1

0

1

1

11.11   (8) 

The intercept term and time trend are represented by 
1

c  and 
T

c . The D
c is coefficient of 

dummy variable which is based on Clemente et al. [56] single unknown structural break unit 

root test. We use F-test or Wald test to compute F-statistic in taking decision whether 

cointegration exists or not between the variables. We follow null hypothesis as 

: 0  YYH , .: 0  YX XH  while alternate hypothesis is 0:,0: . 
XYXaYYa

HH  . 

The calculated F-value is compared with critical bounds generated by Pesaran et al. [53] to 

make decision about the cointegration between the variables. We use lower critical bounds 

(LCB) once all the variables are integrated and if all series are integrated at I(1) then upper 

critical bounds (UCB) should be used. There is no cointegration between the variables if 

lower critical bound (LCB) exceeds our calculated F-statistic. We conclude about the 

cointegration if calculated F-statistic is more than upper critical bound (UCB). We cannot 

take decision about the cointegration between the variables once calculated F-statistic falls 

between lower and upper critical bounds. Then we rely on the estimate of the lagged error 

correction term to examine cointegration between the variables.    

    

Once, we find the long run relationship between the variables then we apply error correction 

method (ECM) to examine the short run impacts of independent variables on the dependent 

variable. The functional form of the short run model is given as follows:  
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X       (9) 

The matrix of independent variables is tx  and no multi-colinearity exists between the 

variables. The t  is error term which is supposed to be normally distributed i.e. mean of the 

variance is zero while variance is constant. The significance of the estimate of the lagged 

error term corroborates our established cointegration between the variables. The short run 

convergence rate towards the equilibrium long run path is also indicated by the estimate of 

the lagged error correction term [57]. Furthermore, we apply diagnostic tests such as 

normality of the error term, serial correlation, ARCH test, White heteroskedasticity and 

functional form of the short run model. We use CUSUM and CUSUMsq tests to observe the 

goodness of fit of the ARDL model.  

 

4.3 The VECM Granger Causality Approach 

The next step is to determine the direction of causal relationship after the validation of 

cointegration between the variables. It is exposed by Granger [58] that there must be causality 

(in Granger sense) relation at least running from one side if variables are cointegrated and 

order of integration of the variables is I(1). Granger [58] argued that the presence of 

cointegration between the series leads us to determine the short run as well as the long run 

causal relationship. The concept of Granger causality reveals that Granger causality from X to 

Y if and only, the changes in Y are predicted by the past values of X and similarly, Y Granger 

causes X if and only, the past of values of Y predict the deviation in X. Granger [58] 

suggested to apply the Vector Error Correction Model (VECM) if the variables are integrated 

at I(1). The empirical equation of the VECM Granger causality is modeled as following:   
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  (10) 

 

The difference operator is shown by L1 . The lagged error term i.e. 1tECM  is generated 

using the long run OLS regression. The t1  and t2  are error terms which are assumed to 

have normal distributions with zero mean and constant variance. The presence of long run 

causality is validated by the statistically significance of t-statistic of lagged error term i.e. 
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1tECM . The statistical significance of the first differences of the series confirms the nature 

of the short run causal relationship. Y Granger causes X if ii  012  and Y is Granger cause 

of X if ii
 011 . 

 

5. Results and Discussion 

Table 1 deals with the explanation of descriptive statistics and pair-wise correlation. The 

Jarque-Bera test shows that all the series such as energy consumption, urbanization, affluence 

(economic growth), technology and transportation are normally distributed. Our results 

indicate that all the variables have a normal distribution. This supports us for further analysis 

to investigate the relation between urbanization and energy consumption. The pair-wise 

correlation analysis shows that urbanization is positively correlated with energy consumption. 

Affluence (economic growth) and energy consumption are positively interrelated. 

Technology and energy consumption are positively correlated. A positive correlation exists 

between transportation and energy consumption. The correlation between affluence 

(economic growth) and urbanization is positive. Technology and urbanization are positively 

correlated. Transportation and urbanization are associated positively. The correlation of 

technology (transportation) with affluence is positive. Technology and transportation are 

positively correlated. 

 [Insert Table 1 here] 

The next step is to examine whether variables are I(0) or I(1) or I(0) / I(1). It is necessary to 

test the unit root properties of all the series to apply any standard technique of cointegration. 

We utilize the ARDL bounds testing to examine cointegration between the variables. This test 

of cointegration also requires that the integrating order of the variables should be less 2
nd

 

difference. The ARDL bounds testing becomes invalid if any variable is integrated at I(2). It 

is necessary to ensure that all the series are I(0) or I(1) or I(0) / I(1). We apply ADF and PP 

unit root tests and their results are reported in Table 2. We find that energy consumption, 

urbanization, affluence (economic growth), technology and transportation have unit root 

problem at level with intercept and trend. The variables are integrated at I(1) confirmed by 

ADF and PP unit root tests.       

[Insert Table 2 here] 

 

The disadvantage of ADF and PP of unit root tests is that such tests are inefficient when we 

have small size data [59, 60]. The ADF and PP unit root tests reject the null hypothesis when 
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it is false and vice versa due to their low power and mislead the unit root results. 

Additionally, the ADF and PP tests avoid the information of structural break stemming in the 

variable which may also be cause of unit root problem in the variables. We have applied 

Clemente-Montanes-Reyes [56] detrended unit root test with single and two unknown 

structural breaks arising in the variables. The results reported in Table 3 reveal that all the 

variables show unit root problem in the presence of structural breaks. The 1984Q1, 2000Q2, 

2003Q2 and 1976Q1 are structural breaks found in the series of energy consumption, 

urbanization, affluence (economic growth), technology and transportation. The structural 

break in energy series is linked with the significant shift of economy towards private sector in 

6
th 

five year plan i.e.1983-1988 which affected domestic production and target economic 

growth rate was 6.5% in Pakistan over the period of 1983-84. Furthermore, the government 

could not meet the electrification target of 48,974 census villages during 6th five year plan. 

This had affected energy demand in 1984Q1 and onwards. The structural break date in series 

of urbanization is linked with the implementation of government policy in 1999 to improve 

the urban infrastructure for achieving sustainable economic development which also affected 

urbanization in 2000Q2. The change in occupational structure and education opportunities as 

well as industrial policy in 2002 not only affected economic growth but also technological 

development in 2003Q2. The structural break date in transportation series is linked with 

conversion of nature vehicles from petroleum to compressed gas consumption due to rise in 

petroleum prices. The variables are integrated at I(1) and same findings are reported by 

Clemente-Montanes-Reyes [56] de-trended unit root test with two unknown structural breaks. 

This implies that our variables of interest are I(1). The findings reported by NP [51] unit root 

test also reveal that all the variables are non-stationary at level with intercept and trend. This 

concludes that the series are integrated at I(1) (see lower segment of Table-3). After knowing 

that all the variables have unique order of integration, the next step is to investigate the 

existence of cointegration by applying the ARDL bounds testing approach. The ARDL 

bounds testing approach is a two step procedure. Firstly, we choose a suitable lag length of 

the variables using unrestricted VAR. The F-statistic varies with various levels of lag length. 

We follow Akiake Information Criteria (AIC) to select an appropriate lag span due its high 

explanatory power.  

[Insert Table 3 here] 

[Insert Table-4 here] 
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Our results are reported in Table 4 and we found that lag length 6 is appropriate following 

AIC. The next step is to apply the ARDL bounds testing to compute F-statistic to decide 

whether long run relationship subsists. We find from the results reported in Table-5 that our 

computed F-statistics exceed upper critical bounds at 1% and 5% levels, respectively once we 

used energy consumption, economic growth, technology and transportation as dependent 

variables. Our empirical evidence shows four cointegrating vectors which confirm the 

presence of long run relationship among energy consumption, urbanization, economic 

growth, technology and transportation in Pakistan. 

   

[Insert Table 5 here] 

The long run impact of urbanization, affluence, technology and transportation on energy 

consumption are presented in Table 6. We find that linear and non-linear terms of 

urbanization impact energy consumption positively and significantly at 1 per cent level. This 

shows that a 1 per cent increase in linear and non-linear terms of urbanization will increase 

energy demand by 4.9388 per cent and 0.9833 per cent respectively by keeping other things 

constant. Our findings are contradictory with Alam et al. [42], who noted that urbanization is 

positively linked to energy consumption via economic growth. Zaman et al. [43] also reported 

that urbanization increases electricity consumption in Pakistan, but Jiang and Lin [32] found 

inverted U-shaped relationship between urbanization and energy consumption using Chinese 

data. The studies conducted by Poumanyvong and Heneko [2], Hossain [61]) and 

Poumanyvong et al. [26] supported our findings using the data of cross-country, newly-

industrialized countries and, low, middle and high income countries respectively.      

[Insert Table 6 here] 

The effect of affluence on energy consumption is positive and significant at 5 per cent. If all 

other things remain constant then a 1 per cent add in wealth is associated with 0.3414 per cent 

increase in energy demand. This empirical evidence is supported by Alam and Butt [62] who 

measured affluence by real GNP per capita and found that affluence leads energy 

consumption. The relationship between technology (interaction between industry and services 

sectors) and energy demand is positive and significant at 5 per cent level. A 1 per cent 

increase in technology adoption to increase domestic output is related to energy demand by 

0.0633 per cent, all else is same. This exposes that Rebound Effect does not work in case of 

Pakistan. The Rebound effect discloses that “technological improvement will increase energy 

efficiency and lower demand of energy resources” [63]. This indicates that Pakistan is using 

energy intensive technology, which highlights the importance of enhancing research and 
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development expenditures to introduce energy efficient technology. These results are 

contradictory with Linn [64], he found that adoption of advanced technology saves energy via 

lowering energy intensity and the same is noted by Popp [65] in the case of the USA.  

 

The short run findings are shown in Table 7. The linear and non-linear terms of urbanization 

impact energy demand positively and significantly at 1 per cent level. The relationship 

between affluence (economic growth) and energy consumption is positive and significant at 

10 per cent significance level. The impact of technology adoption is positive but statistically 

insignificant. Transportation and energy consumption are positively linked at 1 per cent level 

of significance. The negative sign with statistically significance of lagged error term i.e. 

1tECM  confirms our determined long run relation between the variables. 

 

[Insert Table 7 here] 

We find the estimate of 1tECM  i.e. -0.1078 with negative sign which is statistically 

significant at 1 per cent significance level. Our empirical results indicate that the short run 

deviations stem in energy demand function is corrected by 10.78 per cent in each quarter and 

will take 2 years and 5 months to achieve stable long run equilibrium path. The short run 

model seems to fulfill all assumptions of the classical linear regression model (CLRM). Our 

empirical results reported in Table 7. The normal distribution of error term is confirmed by 

Jarque-Bera normality test. There is no presence of serial correlation as well as autoregressive 

conditional heteroskedisticity in the short run model. The short run model confirms the 

existence of homoskedisticity rather than white heteroskedistiity. The Ramsey reset test 

provides the evidence of well formulation of the short run model.  

 

We have applied stability tests such as CUSUM and CUSUMsq to examine the reliability of 

long and short run estimates. Pesaran and Shin [66] also suggested to apply CUSUM and 

CUSUMsq. We may reject the null hypothesis of CUSUM and CUSUMsq if the plots of both 

tests exceed the critical bounds. We may accept null hypothesis which reveal that the model 

is well specified if critical bounds remain between critical bounds. 

[Insert Figure 1 and 2 here] 
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Both graphs of CUSUM and CUSUMsq are lying between upper and lower limits (see Figure 

1 and 2). This leads us to conclude that long and short run estimates are consistent and 

reliable. Furthermore, estimates of the ARDL bounds testing are also efficient. 

    

We applied the VECM Granger causality test to detect the causal relationship between 

urbanization, affluence, technology, transportation and energy consumption. Our results 

reported in Table-8 show that energy consumption is Granger cause of urbanization in the 

long run. The feedback effect exists between affluence and energy consumption. It implies 

that affluence and energy consumption are complementary and the findings are consistent 

with Alam and Butt [62] in the case of Pakistan. It may suggest for the exploration of new 

sources of energy supply to sustain long run economic growth.  

[Insert Table 8 here] 

The causality affiliation between technology and energy demand is bidirectional. This implies 

that research and development expenditures must be increased for innovating energy efficient 

technologies which in resulting, not only lowers energy intensity but also enhances domestic 

production. This empirical evidence is consistent with Tang and Tan [67] who reported the 

feedback relationship between technological innovations and energy (electricity) demand in 

the case of Malaysia. Transportation Granger causes energy consumption and in resulting, 

energy consumption Granger causes transportation. This shows that transportation and energy 

consumption are complementary and we can use energy consumption as a tool in forecasting 

transportation in Pakistan. 

  

Additionally, urbanization Granger causes affluence (economic growth), technology and 

transportation. The feedback hypothesis exists between economic growth and technology. 

Economic growth Granger causes transportation and in the resulting, transportation Granger 

causes economic growth. The causality relationship between technology and transportation is 

also bidirectional. In the short run causality analysis, we find the feedback effect between 

urbanization and technology. The feedback hypothesis is validated between affluence and 

technology. The unidirectional causality is found running from urbanization to transportation 

i.e. urbanization leads transportation.  

 

6. Conclusion and Policy Recommendations 

This study deals with impact of urbanization on energy consumption, by incorporating 

economic growth, technology and transportation in energy demand function, in Pakistan. 
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Traditional unit root tests such as ADF and PP as well as unit root tests accommodating 

structural break stemming in the variables such as Clemente-Montanes-Reyes [56] detrended 

unit root test along with NP [51] structural break unit root test were applied in the case of 

Pakistan for the period of 1972Q1-2011QQ4. Furthermore, The ARDL bounds testing 

approach to cointegration in the presence of structural breaks has been applied to examine 

cointegration. The direction of causal relationship between the variables has been investigated 

by applying the VECM Granger causality approach.  

 

The empirical results show the presence of cointegration between the variables. Further, 

urbanization leads energy consumption (confirmed by both linear and non-linear terms of 

urbanization). Affluence (economic growth) raises energy demand. The relationship between 

technology and energy consumption is positive. An increase in transportation enhances 

energy consumption. The causality analysis shows that energy consumption is Granger cause 

of urbanization. Urbanization Granger causes affluence (economic growth), technology and 

transportation. The feedback effect exists between energy consumption and affluence. 

Technology and transportation are bidirectional Granger caused. The relationship between 

technology and affluence is bidirectional and same is true for affluence and transportation. 

The bidirectional causality is also found between technology and energy consumption and 

same inference is drawn for transportation and energy consumption.    

 

The positive impact of urbanization on energy consumption calls for an important need for 

attention of policy makers to meet the challenge of rising energy demand due to rise in urban 

population. In such situation, the question is how Pakistan can achieve sustained economic 

growth by cutting down energy demand given the bidirectional causality that exists between 

economic growth and energy consumption. So, energy demand increases day-by-day due to 

increase in per capita income as well as urbanization. Reducing urbanization seems to be a 

possible way to control energy demand. However, reduction in urbanization and energy 

consumption has detrimental impact on economic growth as urbanization Granger causes 

economic growth and feedback effect exists between economic growth and energy 

consumption. To support urbanization and hence economic growth as well as 

industrialization, there is a need of urban policies to improve urban infrastructure and to bring 

into use additional economically feasible sources of energy. In this regard, the investment 

opportunities in renewable energy sources should be explored and policies be developed to 

encourage such opportunities. The government should build energy efficient urban 
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infrastructure and implement energy saving-projects to decline energy intensity not only at 

urban level particularly but also at national level generally. Additionally, energy efficient 

policy must be implemented in urban areas to accelerate the switch from high energy 

intensive household durables to low energy intensive items.        

 

We find that affluence (economic growth) and technology are positively linked with energy 

demand. The government must invest in existing power stations as well as build new power 

stations to meet energy demand-supply gap and to dig-out load-shedding. We find that 

Pakistan’s industrial and services sector use technology which is energy intensive as 

technology is positively related with energy consumption. This implies that government 

should pay more attention to allocate more funds for research and development activities to 

invent energy efficient technology for industrial and services sectors. This will not only save 

energy but also enhance domestic output and hence economic development.   

 

Finally, the relationship between transportation and energy consumption was found positive 

as expected. In Pakistan, vehicles (per kilometer of road) were 7 in 2007 but increased to 9 in 

2011. The growth of motor vehicles on road is 28.57%. The major share of overall vehicles in 

the form of cars and minibus is owned by private sector. The government should implement 

rapid bus transit system in all urban areas of the country and banning the use of CNG for car 

is not a proper and permanent solution. In this regard, rapid bus transit system should be 

implemented in urban areas to meet the rising demand for transportation due to rapid increase 

in urban population. The Metrobus system in Lahore is a good example of public transport 

facility. Additionally, rapid train transit system should be implemented within cities but also 

to connect urban areas of the country following United Kingdom and other European 

countries. The trolleybus electric rapid bus system should also be encouraged in urban areas 

to reduce fuel consumption and hydropower sources of energy can be used for it. The 

hydropower electricity generation is useful for two reasons: (i) hydropower electricity can be 

produced at cheaper rate by reducing tariff rates and, (ii), hydropower plants produce clean 

energy. The trolleybus electric rapid bus system is cheaper than motorbuses. The non-

motorized modes of transportation such as rapid train transit system and trolleybus electric 

rapid bus system are less energy intensive while same is true for Metrobus transit system. The 

quality of services must be maintained to attract the people for public transport facility 

otherwise allocation of public funds without knowing the source of problem is not good 

strategy. So, this would be a possible way to save energy and we can utilize saved energy to 
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meet the rising demand of agriculture, industry and services sectors for sustainable economic 

development and better living standard. 
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   Figure 1: Plot of Cumulative Sum of Recursive Residuals 
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Figure 2: Plot of Cumulative Sum of Squares of Recursive Residuals 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1980 1985 1990 1995 2000 2005 2010

CUSUM of Squares 5% Significance  

The straight lines represent critical bounds at 5% significance level 



27 

 

Table 1: Descriptive Statistics and Correlation Matrix  

Variables  tECln  tUln  tYln  tTECln  tTPln  

 Mean  4.5701 -1.1740  10.0384  4.2488  1.9334 

 Median  4.5977 -1.1716  10.0960  4.3635  2.0047 

 Maximum  4.8846 -0.9879  10.4573  5.3350  2.4756 

 Minimum  4.2376 -1.3736  9.5749  2.9566  1.0885 

 Std. Dev.  0.1967  0.1091  0.2629  0.6904  0.3988 

 Skewness -0.1045 -0.0494 -0.1815 -0.1555 -0.4907 

 Kurtosis  1.7101  2.0072  1.9808  2.0196  2.1333 

 Jarque-Bera  2.9236  1.6589  1.9507  1.7630  2.8572 

 Probability  0.2318  0.4362  0.3770  0.4141  0.2396 

Observation  160  160  160  160  160 

t
ECln   1.0000     

tUln  0.1546  1.0000    

t
Yln   0.4356  0.0108  1.0000   

t
TECln   0.4518  0.1772  0.7035  1.0000  

tTPln   0.0164  0.3045  0.1074  0.2452  1.0000 

 
 

 
 

Tsable 2: Unit Root Tests without Structural Break 

Variables  Augmented Dickey-Fuller Test Philips-Perron Test 

T-statistics Prob. Values T-statistics Prob. Values 

tECln  -2.6542(9) 0.2573 -2.3110 [3] 0.3252 

t
Uln  -2.1212 (9) 0.5593 -2.7789 [3] 0.2073 

tYln  -2.1353 (9) 0.5216 -1.7322 [6] 0.7324 

t
TECln  -2.1496 (4) 0.3134 -2.1255 [6] 0.5256 

tTPln  -3.0510 (6) 0.1221 -26.9119 [15]*  0.0000 

t
ECln  -3.7551 (8)** 0.0216 -6.7525 [6]* 0.0000 

tUln  -4.8647 (7)* 0.0006 -6.7551 [6]* 0.0000 

tYln  -3.7990 (4)** 0.0191 -6.0931 [6]* 0.0000 

tTECln  -3.5907 (4)** 0.0339 -5.3757 [6]* 0.0001 

tTPln  -5.5168 (9) * 0.0000 -5.2394 [6]* 0.0001 

Note: * and ** show significance at 1 per cent and 5 per cent respectively. () and [] 
indicate lag order and bandwidth based on AIC for ADF and PP unit root tests 

respectively. 
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Table 3: Unit Root Tests with Structural Break 

Clemente-Montanes-Reyes Detrended Structural Break Unit Root Test 

Variable Innovative Outliers Additive Outlier 

T-statistic TB1 TB2 T-statistic TB1 TB2 

t
ECln  

-2.013 (6) 1984Q1 …. -5.059 (3)* 1985Q1 …. 

-3.800(6) 1985Q1 2001Q2 -5.373 (5)** 1986Q1 2001Q1 

tUln  

 

-2.808 (3) 2000Q2 …. -4.713 (6)** 2006Q1 …. 

-3.525 (6) 1996Q2 2006Q2 -5.672 (6)* 1979Q1 2006Q1 

tYln  

 

-1.885 (6) 2003Q2 …. -6.896 (3)* 1980Q2 …. 

-4.867 (2) 1979Q1 2003Q1 -8.611 (3)* 1992Q1 2001Q1 

t
TECln  

-2.285 (6) 2003Q2 …. -6.619 (3)* 2007Q1 …. 

-4.468 (3) 1977Q1 2003Q1 -7.641 (3)* 2003Q1 2007Q1 

t
TPln  

-3.313 (4) 1999Q1 …. -7.715 (6)* 2006Q2 …. 

-4.194 (5) 1976Q1 1996Q1 -7.735 (5)* 1999Q1 1999Q3 

Narayan and Popp Structural Break Unit Root Test 

Variables Model M1 Model M2 

t
ECln  -2.0597 (4) 1987Q1 2004Q1 -2.2927 (5) 1987Q1 2004Q1 

tUln
 

-1.549 (5) 1995Q4 2001Q2 -2.252 (5) 1995Q4 2001Q2 

t
Yln  -2.673 (5) 1999Q1 2005Q4 -3.190 (4) 1994Q4 2004Q2 

tTECln
 

-1.679 (5) 1978Q1 1987Q4 -3.341 (4) 1988Q4 2001Q3 

t
TPln  -3.208 (4) 1983Q4 1990Q2 -4.319 (5) 1983Q4 1998Q3 

Note: * and ** significant at 1 per cent and 5 per cent levels respectively. () indicates lag length 

to be used. The critical values of NP unit root test are (-5.259, -5.949) and (-4.154, -5.181) for 

Model M1 and Model M2 at 1 per cent and 5 per cent levels respectively. 

 

Table 4: VAR Lag Order Selection Criteria 

VAR Lag Order Selection Criteria 

 Lag LogL LR FPE AIC SC HQ 

1  3497.793  4074.022  1.05e-26 -45.6288 -45.0320 -45.3864 

2  3677.301  333.0358  1.38e-27 -47.6618 -46.5676 -47.2173 

3  3691.350  25.1387  1.59e-27 -47.5177 -45.9262 -46.8712 

4  3697.798  11.1156  2.05e-27 -47.2736 -45.1848 -46.4250 

5  3836.501  229.9551  4.62e-28 -48.7697 -46.1835 -47.7191 

6  3984.881   236.2364*   9.22e-29*  -50.393*  -47.3096*  -49.1405* 

7  3994.246  14.2930  1.15e-28 -50.1874 -46.6065 -48.7327 

8  3998.132  5.67561  1.56e-28 -49.9096 -45.8313 -48.2529 

* indicates lag order selected by the criterion 

LR: sequential modified LR test statistic (each test at 5% level) 

FPE: Final prediction error 

AIC: Akaike information criterion 

SC: Schwarz information criterion 

HQ: Hannan-Quinn information criterion 

 

 

 

 

 



29 

 

Table 5: The Results of Cointegration Tests 

Bounds Testing to Cointegration Diagnostic tests 

Estimated Models F-statistics Structural Break
 

NORMAL2  SERIAL2  REMSAY2  

),,,/( TPTECYUECFEC  5.607* 1984Q1 0.1506 [1]: 0.1026 [1]: 0.0595 

),,,/( TPTECYECUFU  1.822 2000Q2 0.5958 [2]: 3.7538 [2]: 0.0014  

),,,/( TPTECUECYFY  5.634* 2003Q2 0.3824 [2]: 0.5547 [1]: 0.2631 

),,,/( TPYUECTECFTEC  5.292* 2003Q2 0.8945 [3]: 0.4104 [1]: 0.1349 

),,,/( TECYUECTRF
TP

 3.992*** 1998Q1 0.2419 [5]: 1.6577 [3]: 0.1842 

Significant level 
Critical values (T = 160)    

Lower bounds I(0) Upper bounds I(1)   

1 per cent level 3.60 4.90   

5 per cent level 2.87 4.00   

10 per cent level 2.53  3.59   

Note: ** and *** significant at 5 per cent and 10 per cent levels respectively. The optimal lag is 

determined by AIC. Upper and lower critical bounds are obtained from Pesaran et al. [53].  

 

 

 

Table 6: Long Run Results 

Dependent Variable = tECln  

Variable Coefficient Std. Error t-Statistic Prob. values 

Constant 7.5247* 2.5672 2.9310 0.0039 

tUln  4.9388* 1.7057 2.8954 0.0043 
2ln tU
 0.9833* 0.3687 2.6669 0.0085 

tYln  0.3414** 0.1678 2.0345 0.0436 

t
TECln  0.0633** 0.0314 2.0175 0.0454 

tTPln  0.1764* 0.0673 2.6188 0.0097 

t
DUM

 -0.0322* 0.0058 -5.4767 0.0000 

R-squared 0.8965   

Adj. R-squared 0.8766   

F-statistic 57.2055*   

Durbin-Watson Test 1.9495   

Note: * and ** shows significance at 1 per cent and 5 per cent levels of 

significance respectively. 
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Table 7: Short Run Results 

Dependent Variable = tECln  

Variable Coefficient Std. Error t-Statistic Prob. Values 

Constant 0.0084* 0.0026 3.2537 0.0014 

1ln  tEC  0.5038* 0.0676 7.4485 0.0000 

t
Uln  3.2518* 0.9469 3.4341 0.0008 

2ln
t

U
 0.0650* 0.0188 3.4451 0.0007 

t
Yln  0.1328*** 0.0719 1.8479 0.0666 

tTECln  0.0293 0.0309 0.9467 0.3453 

t
TPln  0.0101* 0.0032 3.1632 0.0019 

tDUM
 -0.0013 0.0016 -0.8075 0.4206 

1tECM  -0.1078* 0.0270 -3.9786 0.0001 

R-squared 0.4179   

Adj. R-squared 0.3907   

F-statistic 15.3858*   

Durbin-Watson Test 2.0097   

Diagnostic Tests F-statistic Prob. Value  

NORMAL2  0.1781 0.9523  

SERIAL2  0.0165 0.8979  

ARCH2  0.094 0.8428  

WHITE2  1.4087 0.1230  

REMSAY2  0.0205 0.8801  

Note: *, ** and *** shows significance at 1, 5 and 10 per cent levels respectively. 

Normality of error term, serial correlation, autoregressive conditional 

heteroskedasticity, white heteroskedasticity and functional of short run model is 

indicated by NORMAL2 , SERIAL2 , ARCH2 , WHITE2  and REMSAY2  respectively.  

 

 

Table 8: Long-and-Short Run Causality  

Dependent  

Variable 

Direction of Causality 

Short Run Long Run 

1ln 
t

EC  1ln 
t

U  1ln 
t

Y  1ln 
t

TEC  1ln 
t

TP  1tECM
 

tECln  
…. 

0.2287 

[0.7958] 

0.8273 

[0.4390] 

0.9201 

[0.4001] 

0.1091 

[0.8967] 

-0.1087* 

[-3.6675] 

tUln  0.8505 

[0.4292] 

….
 

1.4677 

[0.2338] 

4.0729** 

[0.0190] 

1.6392 

[0.1976] 

….
 

tYln  1.3742 

[0.2563] 

2.2284 

[0.1113] …. 

3.8947** 

[0.0203] 

0.5661 

[0.5690] 

-0.1217* 

[-4.6041] 

tTECln  0.9676 

[0.3824] 

5.0789* 

[0.0074] 

3.9097** 

[0.0306] …. 

0.5319 

[0.5886] 

-0.1032* 

[-4.4495] 

tTPln  0.0656 

[0.9365] 

2.3360*** 

[0.1003] 

0.3788 

[0.6653] 

0.7143 

[0.4912] …. 

-0.0098* 

[-14.1663] 

Note: *, ** and *** show significance at 1 per cent, 5 per cent and 10 per cent levels 

respectively.  

 


