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Abstract. Because sports are stylized combat, sports may follow power laws similar to 

those found for wars, individual clashes, and acts of terrorism. We show this fact for 

football (soccer) by adjusting power laws that show a close relationship between rank 

and points won by the clubs participating in the latest seasons of the top fifteen 

European football leagues. In addition, we use Shannon entropy for gauging league 

competitive balance. As a result, we are able to rank the leagues according to 

competitiveness. 
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1. Introduction 

 

Sports are, arguably, stylized combat because they are contests of aiming, chasing, or 

fighting, complete with victors and the vanquished [1]. But they transcend that. Because 

sports are competition without killing, they fulfill a positive role of assuaging bitterness, 

seeking reconciliation, attempting conciliation, and pursuing courtesy. In this sense, 

sports are a useful substitute for war. They can divert nations from military aggression 

because of the heightened national self-esteem due to sporting success [2]. Whatever the 

deepest meaning of sports, however, their mechanics undeniably mimics that of war. 

What is more, while wars do not conserve the number of participants, sports do. This 

ultimately makes the analogy between wars and sports non trivial in that sports provide 

an ideal laboratory for studying competitions [3]. Unlike wars, the records of sports 

events are accurate, complete, and widely available [4]. 

 Here, we are particularly interested in the mechanics of football (soccer), the 

number one sport. Apart from the United States and a handful of countries, soccer is the 

most popular game on Earth. We take data from the latest seasons of the top fifteen 

European football leagues, show similarities with the formal results already found for 

war in literature, and present novel results. 

 Earlier studies on war [5] found that wars with low death tolls far outnumber 

high fatality conflicts. Though this seems to be highly expected, what is not obvious is 

the finding that the number of wars with a given number of fatalities follows an 

approximate power law statistical distribution as a function of the number of fatalities. 

The link between the severity and frequency of conflicts follows a power law. This 

implies that extreme events such as the world wars cannot be considered as anomalies; 

they are expected to occur occasionally, given the frequency with which conflicts take 

place. Such power law also applies to individual clashes and acts of terrorism [6−8], and 

even to scientists career progress [9]. The possible explanation for the phenomenon is 

the fact that, for a wide range of human activities, the time taken to complete a given 



challenging task decreases with successive repetitions, following an approximate power 

law progress curve [8]. We start our analysis by suggesting that the same fact extends to 

football, given that it is stylized combat. 

 The rest of this article is organized as follows. Section 2 describes the data used, 

Section 3 carries out the analysis, Section 4 discusses the results, and Section 4 

concludes the study. 

 

2. Description of data 

 

We collect data for the top fifteen European football leagues for the clubs participating 

in the latest seasons. The leagues we consider are the English, Italian, Spanish, German, 

Dutch, Portuguese, French, Scottish, Greek, Turkish, Belgian, Austrian, Danish, Polish, 

and Irish. The data source was soccerstats.com. Table 1 shows every league considered, 

the season for which data are available, total number of clubs participating in one 

league, one league’s rounds per season, the number of datapoints per season, and total 

number of datapoints. 

 At the end of each season j of league k, we recover from the data the total points 

won by each team i and denote these by ikjp . Then, we rank them in decreasing order, 

)()2()1( nikikik ppp ≥≥≥ , where n is the number of clubs. For further convenience we 

denote )(rikr pp ≡ , where r is rank. Actually, we first take the fraction of points won. 

Then, using the percentages of wins, draws and upsets we get the total points won 

through linear transformation. The win percentage is arguably a better measure of team 

strength than the points won are, because there are small variations between the 

numbers of matches played by various clubs across the leagues [4]. 

 Figure 1 shows the outcomes of the top fifteen European football leagues for the 

2011/12 season. There is a clear pattern of green squares (meaning matches won) for the 

clubs that ended up on top. And there is still a hidden power law pattern, as we will 

show next. 

 

Table 1. Description of data sets for the top fifteen European football leagues 

League Season Total clubs Rounds per season Datapoints per season Total datapoints 

Austrian 2009/10, 2010/11, 2011/12 10 36 180 540 

Belgian 2011/12 16 20 160 160 

Danish 2009/10, 2010/11, 2011/12 12 33 198 594 

Dutch 2009/10, 2010/11, 2011/12 18 34 306 918 

English 2008/09, 2009/10, 2010/11, 2011/12 20 38 380 1520 

French 2008/09, 2009/10, 2010/11, 2011/12 20 38 380 1520 

German 2008/09, 2009/10, 2010/11, 2011/12 18 34 306 1224 

Greek 2009/10, 2010/11, 2011/12 16 30 240 720 

Irish 2011/12 11 36 198 198 

Italian 2008/09, 2009/10, 2010/11, 2011/12 20 38 380 1520 

Polish 2010/11, 2011/12 16 30 240 480 

Portuguese 2008/09, 2009/10, 2010/11, 2011/12 16 30 240 960 

Scottish 2011/12 12 33 198 198 

Spanish 2008/09, 2009/10, 2010/11, 2011/12 20 38 380 1520 

Turkish 2009/10, 2010/11, 2011/12 18 34 306 918 

Source: soccerstats.com 

 

3. Analysis 

 

In a league format of competition, every club plays every other club. In particular, each 

club hosts every other club exactly once during a season. Of course, the outcome of a 

match is subject to location, weather, injuries, red cards in the previous match, and a 

multitude of other factors. These make the outcome of a single game unpredictable to 



some degree; and, thus, this is so for the championship outcome. Thus, randomness is 

inherent to such a form of competition [4]. 

 For this reason, we first take the normalized distributions of the points won *

rp  

by the clubs participating in the leagues: 
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so that equation (1) represents a probability distribution. 

 Second, we conjecture that there is a law describing a close relationship between 

rank r  and the normalized points won *
rp  as a power law of the form 

 
b

r rap ⋅=* ,                                                                                                            (3) 

 

where *
rp  changes as if it were a power of r . The problem is then to verify the 

conjecture and determine a  and b . Coefficient a  is the normalizing constant, and 

considering (3) and (2), we have 
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Rather than taking logs on both sides of (3), in order to satisfy (2) and (4) we directly 

carry out a fit of (3) using nonlinear regression. 

 Figure 2 displays the empirical values of *
rp  along with the fitted power laws for 

the leagues. Coefficients a and b were found by running nonlinear regressions on (3) for 

each league (Table 2). As *
rp  represents a probability distribution we can calculate its 

Shannon entropy H, defined as 
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The usefulness of H is related to the fact that it gives the degree of uncertainty and then 

can be interpreted as referring to the degree of competitiveness of one league given in 

bits. 

 The insight for the use of entropy comes from classical mechanics, in particular 

from a would-be analogy between particle allocations, energy levels, and rankings. In 

statistical mechanics, the analogy refers to a system of K particles which are distributed 

in R energy levels. In such a situation, the entropy is the log of the number of possible 

configurations. Here, K means the total points and R is ranking. The total points are 



distributed between the R teams according to a distribution rule given by a power law. 

We find a similar analogy in literature with the rank-citation profile of scientists [9]. 

  The hypothetical maximum entropy occurs when the distribution of normalized 

points won is uniform, in which case 2logmaxH N= . In the model given by equation 

(3), maxH  occurs if b = 0. By contrast, if −∞→b , then 0→H . Thus, one league’s 

competitiveness is greater as H approaches maxH  or, equivalently, as b approaches zero. 

Table 2 sorts the leagues for every season according to the value of their Shannon 

entropy. The entropies were found empirically from the normalized data empH  and also 

from the power law equation (3), IH . From the gauge provided by H, we then found the 

top five as follows: French Ligue 1 for the 2010/11 season, English Premier League 

for the 2010/11 season, Spanish La Liga for the 2008/09 season, French Ligue 1 for the 

2011/12 season, and Italian Serie A for the 2009/10 season. The full rankings of 

competitive balance can be seen on the first column in Table 2. 

 Next, we found an interesting parallel, linear relationship between empH , IH , 

and 2logmaxH N=  (Figure 3), following the configuration 

 

 2logH N δ• •= − ,                                                                                                (6) 

 

where •  stands for either the empirical data or the power law (3). The dashed line in 

Figure 3 represents 2logemp empH N δ= − , the dotted line is 2logI IH N δ= − , and the 

solid line is the reference 2logmaxH N= . Strikingly, such linearity suggests that the 

distributions of normalized points won for the distinct leagues across different seasons 

can be represented by a sole model. However, there is minor discrepancy between the 

lines empH  and IH , which amounts | | 0.07emp Iδ δ− =  bits. 

 This fact prompted us to try out a second power law model of the form 

 
cr
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where there is dampened exponential decay of the normalized points won *
rp . Parameter 

a is still the normalizing constant, (0,1]b∈  is the decay rate, and c is the dampening 

rate. We assume 0 1
c

b ≡ . As a result, the linearization takes place with double log 

transform. Now, b = 1 refers to maximum uncertainty. There is near uniformity if c = 0, 

where **
2

*
1 ... Nppp ==> . If c = 1, the power law decays geometrically. And if +∞→c , 

then 0... **
3

*
2

*
1 ===>> Npppp . 

 Figure 4 shows estimates of the power law in equation (7) for every league 

across different seasons, whereas Table 3 displays the coefficients adjusted by nonlinear 

regression. Table 3 also shows the entropy measures IIH  calculated on the basis of 

equation (7). Again, we found a parallel, linear relationship between empH , IIH , and 

2logmaxH N= . But there is further good news. The lines empH  and IIH  almost overlap 

one another, meaning that the discrepancy is reduced seven fold, that is, it drops to 

| | 0.01emp Iδ δ− =  bits. We thus conclude that the power laws described by equation (7) 

(Figure 4) describe the data better than the ones in equation (3) (Figure 2). 



 Finally, the discrepancy between one empirical distribution *
rq  and that of one 

model *

rp •  can be formally assessed by reckoning the Kullback-Leibler divergence [10], 

defined as 
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The results in Table 4 do confirm that the fittings using the power laws in the model 

described by equation (7) beat the ones from the model in equation (3). 

 

4. Discussion 

 

In the literature of war and terrorist attacks which have inspired this work, the existence 

of power laws means that conflicts can be understood without considering local factors 

such as geography and politics. The data in Johnson et al. [8], for example, refer to the 

timing of attacks and number of casualties from more than 54,000 events across nine 

insurgent wars, including those of Iraq between 2003 and 2008 and of Sierra Leone 

between 1994 and 2003. By plotting the distribution of the frequency and size of events, 

the power law for insurgent wars was that the frequency of attacks decreases with 

increasing attack size to the power of 2.5. For any insurgent war, an attack with 10 

casualties is 316 times more likely to occur than one with 100 casualties, because 316 is 

10 to the power of 2.6. This law is surprising in light of the fact that wars are all fought 

in different terrains and under different circumstances. The explanation provided was 

that insurgent groups form and fragment when they sense danger, and strike in well-

timed burst to maximize their media exposure. The authors also claim that the relative 

persistence of these power law distributions over time allows one to estimate the 

severity of future wars or clashes within an ongoing war [6, 7]. Similar arithmetic can 

be amassed for the 30 power laws in Figures 2 and 4. We are also optimistic about the 

relative persistence of such power laws over time after having considered the football 

leagues for distinct seasons. 

 The power laws describing a close relationship between rank and points won for 

the leagues studied can be accommodated by the general insight that the time taken to 

complete a given challenging task decreases with successive repetitions, following a 

progress curve, as observed. People adapt to circumstances, learn how to do things 

better, and productivity improves as a result. The twist in football matches is that two 

antagonistic sides are doing the adapting. Like predators and prey in constant 

competition, there emerges stasis, as each adaptation by one in countered by an 

adaptation by the other. The co-evolution between the antagonistic sides eventually 

reaches equilibrium and a fairly regular power law takes place. 

 Take the English Premier League for the 2011/12 season, for instance. As the 

league rounds progressed, the clubs involved learned better and better how to outsmart 

rivals, and this at an increasing rate. Champions Manchester City gained momentum as 

time passed and the same could be said of the other participants. Like an arms race 

evolving over time the clubs on bottom struggling to escape the relegation zone also 

learned better and better how to prevent that to occur. But because perfect counter-

adaptation is unfeasible, and also because there are favorites and underdogs, some clubs 

inevitably ended up within the relegation zone. 



 Our finding of a parallel, linear relationship between the entropies 
empH , IH , 

and maxH  suggests a unique model for the distributions of normalized points won for 

the distinct leagues across different seasons, as observed. This fact can perhaps justify a 

unifying model readily applicable to a variety of competition formats, such as the one 

put forward by Ben-Naim et al [4]. 

 Their model is based on a single (but fixed) parameter, the upset probability that 

a weaker team upsets a stronger team. The lower bound of the upset probability (zero) 

corresponds to predictable games where the stronger team always wins. The upper 

bound ( 1
2

) corresponds to random games. Interestingly, this exactly matches our 

entropy measure of competitive balance, where maximum entropy (say, their upset 

probability = 1
2

) corresponds to maximum competitiveness, where the underdog is more 

likely to upset the favorite. After all, the more random the outcome of an individual 

match is, the higher the degree of parity between the clubs in a league [4]. 

 One interesting result is that their model predicts an optimal upset frequency 

≈0.4. And this is not at odds with data from a variety of sport competitions. They also 

find that single-elimination tournaments can crown a champion faster than leagues do, 

although the champion in tournaments is less guaranteed to be the best team. They then 

search for an optimal competition format and find it as a hybrid schedule consisting of a 

preliminary round (tournament) and a championship round [4]. Intriguingly enough, we 

observe that this stands as the opposite design of both the current UEFA Champions 

League format and that of the Soccer World Cup, where (roughly) the championship 

round actually precedes the tournament round. 

 Another interesting development [9] that is worth mentioning is the use of a 

discrete generalized beta distribution to model rank profiles that exhibit the progress 

curve scaling behavior, such as the one shown in this study. 

 

5. Conclusion 
 

Like wars, individual clashes, acts of terrorism and scientists’ productivity, sports may 

follow power law progress curves. This occurs because the time taken to complete a 

given challenging task decreases with successive repetitions. Progress curves are a 

consequence of people adapting to circumstances and learning how to do things better. 

Warfare and, as we claim, sports, are just as capable of productivity improvements as 

any other activity. 

 We then adjusted power laws suggesting a close relationship between rank and 

points won by the clubs participating in the latest seasons of the top fifteen European 

football leagues. One insight that proved to be useful was to calculate the Shannon 

entropies, which track the degree of uncertainty and thus can be interpreted as the 

competitive balance of one league in a given season. We then were able to rank the 

leagues according to competitive balance. 

 The full significance of the existence of hidden power law patterns in the 

football leagues can be appreciated as one takes one practical implication into account. 

As long as the power laws are stable over time, one club manager can get a rough 

estimate of his club’s rank at the end of the season based only on targeted points to be 

won, and the information conveyed in previous seasons can possibly be useful. 
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Figure 1. Top fifteen European football leagues outcomes for the 2011/12 season. From top to bottom 

(left to right) the tables cover the clubs participating in the English, Italian, Spanish, German, Dutch, 

Portuguese, French, Scottish, Greek, Turkish, Belgian, Austrian, Danish, Polish, and Irish leagues. Green 

squares mean matches won, yellow squares represent draws, and red squares stand for matches lost. The 

expected pattern is the presence of more green squares for the clubs that ended up on top. But there is still 

a hidden power law pattern, as this study demonstrates. The data are from soccerstats.com. 
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Figure 2. Empirical values of 
*
rp  (2008/09 season = dots, 2009/10 = circles, 2010/11 = crosses, 2011/12 

= stars) and the fitted power laws 
b

r rap ⋅=*
 for the top European football leagues (2008/09 = solid 

lines, 2009/10 = long dashed lines, 2010/11 = short dashed lines, 2011/12 = dotted lines). The patterns do 

not change significantly across the seasons. The coefficients a and b (Table 2) were estimated by 

nonlinear regressions on (3). 



 

en
tr

o
p
ie

s

3.2

3.4

3.6

3.8

4.0

4.2

4.4

log N

3.2 3.4 3.6 3.8 4.0 4.2 4.4

 
Figure 3. Interesting parallel, linear relationship between the empirical entropy empH  versus N2log  

(dashed line), the power law (equation (3))-based entropy IH  versus N2log (dotted line), and the 

reference (solid) line 2logmaxH N= . The three lines are parallel in the form 2logq qH N δ= − . This 

finding suggests the existence of a common power law pattern underlying every league for different 

seasons. However, the power law fittings from model (7) is superior to this one provided by equation (3) 

(see Figure 5). 
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Figure 4. Empirical values of 
*
rp  (2008/09 season = dots, 2009/10 = circles, 2010/11 = crosses, 2011/12 = stars) and the fitted power laws 

cr
r bap )1(* −⋅=  for the top European football leagues 

(2008/09 = solid lines, 2009/10 = long dashed lines, 2010/11 = short dashed lines, 2011/12 = dotted lines). The three coefficients a, b, and c (Table 3) were estimated by nonlinear regressions 

on (7). 
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Figure 5. Interesting parallel, linear relationship between the empirical entropy empH  versus N2log  

(dashed line), the power law (equation (7))-based entropy IIH  versus N2log (dotted line), and the 

reference (solid) line 2logmaxH N= . The three lines are parallel in the form 2logq qH N δ= − .  The 

line of the empirical entropy and that of the power law almost overlap one another and thus the fittings 

using equation (7) beat those using equation (3). 



Table 2. Empirical Shannon entropy empH , power law (equation (3))-based entropy IH , 

and the coefficients a and b of the power laws in (3). 

League Season 
empH  IH  a b 

French 2010/11 4.28244 4.29844 0.07907 −0.22404 

English 2010/11 4.28142 4.29160 0.08402 −0.25495 

Spanish 2008/09 4.27253 4.28467 0.08837 −0.28098 

French 2011/12 4.27058 4.28542 0.08864 −0.28237 

Italian 2009/10 4.26780 4.28659 0.08832 −0.28037 

French 2008/09 4.26634 4.28836 0.08785 −0.27743 

Italian 2010/11 4.26447 4.28868 0.08778 −0.27697 

Italian 2011/12 4.26441 4.28471 0.08888 −0.28378 

French 2009/10 4.26232 4.29387 0.08562 −0.26382 

Italian 2008/09 4.26169 4.28680 0.08939 −0.28628 

Spanish 2010/11 4.25977 4.26749 0.09559 −0.32276 

Spanish 2011/12 4.25913 4.26326 0.09624 −0.32687 

English 2011/12 4.24839 4.27518 0.09569 −0.32195 

Spanish 2009/10 4.24427 4.25650 0.10220 −0.35792 

English 2008/09 4.24298 4.27104 0.09852 −0.33711 

English 2009/10 4.22942 4.27849 0.09728 −0.32953 

German 2010/11 4.12435 4.13535 0.09457 −0.27465 

German 2009/10 4.11172 4.13948 0.09476 −0.27489 

German 2008/09 4.10320 4.13975 0.09612 −0.28215 

Turkish 2011/12 4.10216 4.13457 0.09533 −0.27890 

German 2011/12 4.10058 4.12050 0.10449 −0.32893 

Dutch 2010/11 4.08640 4.13364 0.10012 −0.30433 

Turkish 2010/11 4.08638 4.11557 0.10793 −0.34666 

Dutch 2011/12 4.08362 4.13073 0.10283 −0.31866 

Dutch 2009/10 4.03666 4.10871 0.11860 −0.39706 

Turkish 2009/10 4.02547 4.12984 0.10502 −0.32975 

Polish 2010/11 3.97281 3.98449 0.08974 −0.19434 

Polish 2011/12 3.95355 3.97742 0.09786 −0.24233 

Greek 2010/11 3.93845 3.94868 0.11412 −0.33163 

Greek 2011/12 3.92275 3.94465 0.11793 −0.35043 

Portuguese 2010/11 3.91984 3.92124 0.12587 −0.39115 

Belgian 2011/12 3.91719 3.95172 0.11654 −0.34240 

Portuguese 2008/09 3.91634 3.94635 0.11965 −0.35791 

Greek 2009/10 3.91415 3.94969 0.11611 −0.34085 

Portuguese 2009/10 3.89256 3.92650 0.13009 −0.40804 

Portuguese 2011/12 3.89213 3.93673 0.12711 −0.39307 

Danish 2009/10 3.53579 3.55551 0.12895 −0.27398 

Scottish 2011/12 3.53318 3.55484 0.12988 −0.27859 

Danish 2010/11 3.53140 3.52762 0.14513 −0.35515 

Danish 2011/12 3.50963 3.54577 0.14044 −0.32947 

Irish 2011/12 3.38433 3.41777 0.15269 −0.34361 

Austrian 2011/12 3.26623 3.29105 0.15396 −0.29943 

Austrian 2010/11 3.25125 3.29494 0.15205 −0.28963 

Austrian 2009/10 3.20477 3.26960 0.17685 −0.40075 

 

 

 



Table 3. Empirical Shannon entropy empH , power law (equation (7))-based entropy IIH , 

and the coefficients a, b, and c in (7). 

League Season 
empH  IIH  a b c 

French 2010/11 4.28244 4.29323 0.07415 0.90816 0.67314 

English 2010/11 4.28142 4.28206 0.07862 0.89389 0.67112 

Spanish 2008/09 4.27253 4.27317 0.08280 0.87736 0.65418 

French 2011/12 4.27058 4.26982 0.08161 0.89716 0.72314 

Italian 2009/10 4.26780 4.27033 0.08029 0.91129 0.77480 

French 2008/09 4.26634 4.26855 0.07874 0.92879 0.85448 

Italian 2010/11 4.26447 4.26910 0.07760 0.93959 0.91206 

Italian 2011/12 4.26441 4.27218 0.08159 0.89683 0.72075 

French 2009/10 4.26232 4.26753 0.07271 0.97624 1.23773 

Italian 2008/09 4.26169 4.26348 0.07866 0.94050 0.93305 

Spanish 2010/11 4.25977 4.26160 0.09302 0.80005 0.51463 

Spanish 2011/12 4.25913 4.26387 0.09695 0.75243 0.43444 

English 2011/12 4.24839 4.25190 0.08673 0.89295 0.76013 

Spanish 2009/10 4.24427 4.24221 0.09771 0.80542 0.56618 

English 2008/09 4.24298 4.24098 0.08947 0.88609 0.75827 

English 2009/10 4.22942 4.23505 0.08288 0.95076 1.06816 

German 2010/11 4.12435 4.12570 0.08896 0.88089 0.66951 

German 2009/10 4.11172 4.11403 0.08103 0.97221 1.23270 

German 2008/09 4.10320 4.10204 0.08211 0.97659 1.32551 

Turkish 2011/12 4.10216 4.12643 0.08834 0.89360 0.71632 

German 2011/12 4.10058 4.10348 0.09722 0.86484 0.69300 

Dutch 2010/11 4.08640 4.10031 0.08473 0.96890 1.23700 

Turkish 2010/11 4.08638 4.09469 0.09933 0.86768 0.72270 

Dutch 2011/12 4.08362 4.08902 0.08747 0.96366 1.20468 

Dutch 2009/10 4.03666 4.04346 0.10241 0.92368 1.01740 

Turkish 2009/10 4.02547 4.08038 0.08341 0.98960 1.69101 

Polish 2010/11 3.97281 3.97579 0.07733 0.99343 1.66655 

Polish 2011/12 3.95355 3.95691 0.08424 0.98582 1.49040 

Greek 2010/11 3.93845 3.94166 0.11102 0.81089 0.56917 

Greek 2011/12 3.92275 3.93040 0.11124 0.84172 0.66888 

Portuguese 2010/11 3.91984 3.92322 0.12863 0.70408 0.43209 

Belgian 2011/12 3.91719 3.92365 0.10294 0.92366 0.96721 

Portuguese 2008/09 3.91634 3.91574 0.10867 0.89083 0.84300 

Greek 2009/10 3.91415 3.92978 0.10737 0.87408 0.75672 

Portuguese 2009/10 3.89256 3.89274 0.12073 0.83810 0.73087 

Portuguese 2011/12 3.89213 3.89108 0.11423 0.89016 0.88766 

Danish 2009/10 3.53579 3.54896 0.12072 0.90684 0.84078 

Scottish 2011/12 3.53318 3.54642 0.11778 0.93800 1.03030 

Danish 2010/11 3.53140 3.53186 0.15163 0.69167 0.37321 

Danish 2011/12 3.50963 3.51701 0.12369 0.95559 1.29148 

Irish 2011/12 3.38433 3.38805 0.13726 0.93928 1.20882 

Austrian 2011/12 3.26623 3.27245 0.13439 0.97746 1.64594 

Austrian 2010/11 3.25125 3.25726 0.12785 0.99832 2.93359 

Austrian 2009/10 3.20477 3.21579 0.15751 0.94428 1.40458 

 



 

Table 4. Kullback-Leibler divergences (in bits) between the empirical distributions and 

the two models of power laws given by equation (3) (model I) and equation (7) (model 

II). The last column shows the difference between the two models. Negative differences 

favor model II. 

League Season Model I Model II II – I 
Turkish 2009/10 0.061639 0.035226 −0.026414 

Austrian 2010/11 0.025101 0.001128 −0.023973 

Austrian 2009/10 0.023823 0.009162 −0.014661 

Dutch 2010/11 0.018049 0.006761 −0.011287 

Dutch 2011/12 0.012669 0.002475 −0.010194 

Danish 2011/12 0.012489 0.002873 −0.009616 

Austrian 2011/12 0.011333 0.001889 −0.009445 

Dutch 2009/10 0.011436 0.002640 −0.008795 

German 2008/09 0.010053 0.001612 −0.008441 

English 2009/10 0.010499 0.002077 −0.008422 

Polish 2011/12 0.009518 0.001166 −0.008352 

French 2009/10 0.010529 0.002398 −0.008131 

German 2009/10 0.007556 0.000141 −0.007415 

Irish 2011/12 0.009882 0.003226 −0.006656 

Belgian 2011/12 0.007268 0.001124 −0.006144 

Scottish 2011/12 0.012980 0.008179 −0.004801 

Polish 2010/11 0.006170 0.001667 −0.004503 

Italian 2008/09 0.004291 0.000477 −0.003815 

Italian 2010/11 0.006120 0.002372 −0.003748 

Turkish 2011/12 0.021627 0.018043 −0.003584 

Danish 2009/10 0.012510 0.009788 −0.002723 

Danish 2010/11 0.002990 0.000441 −0.002549 

Italian 2011/12 0.006652 0.004687 −0.001965 

French 2008/09 0.004447 0.002638 −0.001809 

Portuguese 2010/11 0.003940 0.002575 −0.001365 

French 2010/11 0.010275 0.009011 −0.001263 

Italian 2009/10 0.003288 0.002158 −0.001130 

English 2011/12 0.003754 0.002813 −0.000941 

Turkish 2010/11 0.006846 0.006062 −0.000784 

Portuguese 2011/12 0.003337 0.002617 −0.000720 

Portuguese 2008/09 0.001713 0.001110 −0.000602 

Greek 2011/12 0.005731 0.005246 −0.000485 

Greek 2009/10 0.015500 0.015204 −0.000296 

Greek 2010/11 0.001635 0.001501 −0.000134 

German 2011/12 0.002311 0.002253 −0.000057 

Spanish 2011/12 0.006019 0.006199 0.000180 

English 2010/11 0.001253 0.001567 0.000314 

Spanish 2008/09 0.000914 0.001268 0.000354 

German 2010/11 0.001687 0.002147 0.000460 

French 2011/12 0.000706 0.001313 0.000607 

English 2008/09 0.000872 0.002484 0.001612 

Spanish 2010/11 0.003140 0.005519 0.002379 

Portuguese 2009/10 0.002587 0.006760 0.004173 

 

 

 


