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in AD pathogenesis, prompting a reevaluation of the dis-
ease’s underlying mechanisms [1–3]. The integrity of the 
blood-brain barrier (BBB) emerges as a crucial factor in 
AD progression, as its compromise facilitates the infil-
tration of peripheral immune cells into the central ner-
vous system (CNS), exacerbating neuroinflammation and 
accelerating cognitive decline [4].

Emerging research elucidates the complex bidirec-
tional communication between peripheral immune cells 
and CNS-resident microglia [5–8]. Various immune 
cells, including T cells, macrophages, natural killer cells, 
neutrophil, and B cells, modulate the neuroinflamma-
tory milieu in the AD brain, contributing to a self-per-
petuating inflammatory cascade [9]. The dysregulation 
of key immune mediators, such as pro-inflammatory 
cytokines, apolipoprotein E4 (APOE4), β2 microglobu-
lin (B2M), and the microglial receptor TREM2, further 
complicates the neuroimmune landscape, influencing AD 
progression [9, 10]. This review discusses recent progress 

Introduction
Alzheimer’s disease (AD), a major neurodegenerative 
disorder, presents a growing global challenge, with its 
prevalence increasing alongside an aging population [1]. 
While amyloid plaques and neurofibrillary tangles have 
traditionally been the focus of AD research, recent evi-
dence highlights the critical role of peripheral immunity 
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Abstract
Alzheimer’s disease (AD) poses a growing global health challenge as populations age. Recent research highlights 
the crucial role of peripheral immunity in AD pathogenesis. This review explores how blood-brain barrier disruption 
allows peripheral immune cells to infiltrate the central nervous system (CNS), worsening neuroinflammation and 
disease progression. We examine recent findings on interactions between peripheral immune cells and CNS-
resident microglia, forming a self-perpetuating inflammatory cycle leading to neuronal dysfunction. Moreover, this 
review emphasizes recent developments in the dysregulation of immune factors from both the periphery and CNS, 
and their impact on AD progression. With ongoing research and development of new therapeutic strategies, this 
review underscores the importance of modulating interactions between the peripheral immune system and CNS in 
AD therapy.
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in understanding the role of the peripheral immune sys-
tem in AD, with an emphasis on immune-CNS commu-
nication and potential therapeutic targets. It identifies 
promising areas for future research and explores novel 
therapeutic approaches for addressing neuroimmune 
interactions in AD.

The function and mechanism of peripheral immune 
cells in AD
CD8+ T cells
Infiltration of CD8+ T cells into the brain
The BBB is a highly selective structure formed by tightly 
connected endothelial cells of the brain microvascu-
lature [11]. Its primary function is to protect the CNS 
from external substances and blood-borne immune 
cells, thereby maintaining CNS homeostasis [11, 12]. The 
BBB consists of specialized endothelial cells supported 
by pericytes and astrocytic end-feet, with its restrictive 
permeability ensuring that only molecules with specific 
receptors or transport proteins can traverse the endo-
thelial layer [11, 12]. Current evidence from experimen-
tal models, including transgenic mouse models and in 
vitro BBB systems, suggests that this protective func-
tion becomes progressively compromised in Alzheimer’s 
disease-like conditions [13, 14]. While these findings 
provide important mechanistic insights, further valida-
tion in human AD brain samples would strengthen our 
understanding of BBB dysfunction in clinical settings. 
During disease progression, Aβ peptides not only aggre-
gate as parenchymal plaques but also accumulate within 
the meningeal walls and cerebral vasculature, result-
ing in cerebral amyloid angiopathy (CAA) [15, 16]. This 
pathology further compromises BBB integrity, leading to 
vascular dysfunction, ischemia, microhemorrhage, and 
increased infiltration of peripheral immune cells [16, 17].

In AD patients, BBB dysfunction facilitates the infil-
tration of peripheral immune cells, particularly CD8+ T 
cells, into the CNS, thereby exacerbating neuroinflam-
mation and accelerating disease progression [17]. While 
the exact mechanisms of CD8+ T cell entry into the 
brain parenchyma remain under investigation, current 
evidence suggests potential pathways through the dural 
lymphatics, choroid plexus, and cerebral blood vessels 
[18–20]. Studies have shown that the number of CD8+ 
T effector memory CD45RA (TEMRA) cells in the blood 
is increased and negatively correlates with cognitive 
function in AD patients [5]. Notably, clonally expanded 
CD8+ TEMRA cells that possess Epstein-Barr virus (EBV)-
specific T-cell receptors (TCRs) have been detected in 
the cerebrospinal fluid (CSF) of AD patients, as demon-
strated by single-cell TCR sequencing analysis [5]. Infec-
tion with EBV has been proposed to increase the risk 
of developing AD [21]. Similar observations have been 
made in animal models, specifically in Tau transgenic 

mice, where clonal expansion of both CD8+ and CD4+ T 
cells has been observed [22].

The regulation of CD8+ T-cell transmigration and 
function, particularly in early AD, may be crucial for 
preventing further BBB deterioration and disease pro-
gression. Recent studies using a 3D human neuroimmune 
axis model have demonstrated that blocking CXCL10-
CXCR3 interactions through anti-CXCR3 neutralizing 
antibodies markedly reduces the exacerbation of AD 
pathology caused by infiltrating CD8+ T cells [6]. While 
3D culture systems provide valuable insights into the 
roles and effects of CD8+ T cells, they have inherent limi-
tations in replicating the full complexity of the immune 
system. Most notably, these models cannot fully reca-
pitulate critical physiological features, such as BBB func-
tionality and meningeal immune cell dynamics. Given 
these constraints, integrating findings from 3D models 
with in vivo studies in animal models becomes essential 
for understanding CD8+ T cell mechanisms in a more 
physiologically relevant context. Similarly, co-adminis-
tration of CCL2- and CCL8-neutralizing antibodies has 
been shown to attenuate immune cell penetration across 
the BBB [7]. Furthermore, blocking CCL3 can partially 
reduce CD8+ T-cell recruitment in aged brain [8]. Thus, 
effective management and inhibition of CD8+ T-cell infil-
tration and activity may mitigate pathological progres-
sion in AD.

Interaction between CD8+ T cells and microglia
In AD brain, microglia are highly responsive to deposi-
tion of neurotoxic proteins such as amyloid-β (Aβ) and 
tau. Upon activation, microglia release chemokines that 
attract CD8+ T cells to facilitate their infiltration into 
brain tissue [7, 22]. Infiltrating CD8+ T cells secrete 
cytotoxic factors, including perforin and granzymes, 
which further potentiate microglial activation, resulting 
in increased production of pro-inflammatory cytokines, 
including interferon-γ (IFN-γ), interleukin-1β (IL-1β), 
and tumor necrosis factor-α (TNF-α) [3, 5, 23]. These 
cytokines not only propagate the inflammatory milieu, 
but also augment Aβ production and aggregation while 
impeding Aβ clearance [24–26]. These events exacer-
bate BBB dysfunction, and promote further infiltration 
of CD8+ T cells into brain tissue. This interaction estab-
lishes a self-perpetuating cycle, escalating CD8+ T-cell 
infiltration and neuroinflammatory responses, thereby 
accelerating neurodegenerative progression (Fig. 1).

A significant increase in CD8+ T cells within regions 
enriched for tau pathology has been observed in both 
tauopathy mouse models and AD human brain [27]. 
Microglia-mediated T-cell infiltration leads to neuronal 
dysfunction and death, disruption of neuronal communi-
cation and memory formation. In aging brain, the CD8+ 
T-cell-initiated inflammatory cascade serves as a critical 



Page 3 of 15Zhang et al. Molecular Neurodegeneration           (2025) 20:22 

driver of neurodegenerative processes [28]. CD8+ cyto-
toxic T cells are a primary source of IFN-γ, which induces 
IFN-responsive microglia, thereby triggering neuroin-
flammatory events in the CNS [28]. IFN-γ exerts direct 
effects on oligodendrocytes, microglia, and neural stem 
cells, suggesting that CD8+ T cells contribute to oligo-
dendrocyte death and axonal degeneration, leading to 
cognitive impairment and decline in motor function [28]. 
In the 5×FAD mouse brain, CD8+ T cells exhibit close 
spatial association with microglia in the vicinity of amy-
loid plaques, with their recruitment being mediated by 
peripheral B cells [29]. Therapeutic strategies targeting 
microglia-CD8+ T-cell interactions, such as microglial or 
T-cell depletion or the inhibition of IFN-γ signaling, may 
mitigate tau-mediated neurodegeneration and attenuate 
AD-associated neuroinflammation and neurodegenera-
tive changes [22, 27].

CD4+ T cells
CD4+ T cells exhibit remarkable plasticity, capable of 
differentiating into distinct effector subsets in response 
to specific cytokine environments [30]. These subsets 
can be broadly categorized into pro-inflammatory and 
anti-inflammatory phenotypes, each playing distinct 

roles in AD pathogenesis [31]. The pro-inflammatory 
subsets, primarily T helper type 1 (Th1) and Th17 cells, 
contribute to BBB disruption and enhanced microglial 
activation, thereby exacerbating AD-associated neuropa-
thology [32, 33]. In contrast, anti-inflammatory subsets, 
including Th2 cells and regulatory T cells (Tregs), exhibit 
neuroprotective properties and can attenuate neuroin-
flammation [34, 35]. This functional dichotomy of CD4+ 
T-cell responses underscores the intricate immunologi-
cal landscape in AD and suggests potential targets for 
intervention.

A pro-inflammatory role for CD4+ T cells
Th1 cells activate microglia through secretion of IFN-γ 
to promote clearance of amyloid plaques in APP/PS1 
mouse brain [32]. However, hyperactivated Th1 cells 
can produce excessive levels of IFN-γ and TNF-α, and 
result in Aβ accumulation and microglial overactivation, 
thereby exacerbating neuroinflammation and cognitive 
deficits [32, 33]. In APP/PS1 mice, adoptive transfer of 
Aβ-stimulated Th1 cells increases cerebral Aβ burden 
and impairs synaptic plasticity [34]. Limited therapeutic 
efficacy of anti-Aβ monoclonal antibodies and Aβ vac-
cines may be attributed to their propensity to induce Th1 

Fig. 1 A self-sustaining feedback loop of neuroinflammation mediated by the interplay between T cells and microglia. Neurotoxic protein (Aβ and tau) 
accumulation in AD triggers microglial activation, initiating a cascade of pathological events. Activated microglia release chemokines that recruit T cells to 
the brain parenchyma, where T cells secrete cytotoxic factors that exacerbate Aβ production and aggregation. This further amplifies microglial activation, 
leading to the assembly of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. This critical multi-protein complex activates 
caspase-1, driving the release of pro-inflammatory cytokines, including IL-1β and IL-18. The resulting self-sustaining cycle intensifies T-cell infiltration and 
neuroinflammation, ultimately accelerating neurodegeneration.
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cell-mediated inflammatory responses, potentially lead-
ing to excessive immune activation [36].

Th17 cells demonstrate robust brain infiltration and 
produce a variety of cytokines, such as IL-17  A, IL-23, 
IL-21, IL-6, and IFN-γ, which trigger neuroinflamma-
tory responses characterized by microglial hyperacti-
vation and recruitment of additional immune cells [33, 
37]. In APP/PS1 transgenic mice, adoptive transfer of 
Aβ-specific Th1 and Th17 cells, which recognize Aβ 
through specific TCRs, accelerates memory impairment 
and elevates TNF-α, IFN-γ, and IL-17 levels in the blood 
[33]. Moreover, IL-17 contributes to AD progression 
by enhancing neuroinflammation, inhibiting microg-
lial phagocytosis, and aggravating amyloid deposition. 
Conversely, IL-17 neutralization can mitigate cognitive 
impairment and synaptic dysfunction [37, 38].

T helper type 22 (Th22) cells are characterized by their 
production of IL-22 without co-expression of IL-17 or 
IFN-γ [39]. In AD brain, elevated IL-22 levels activate 
glial cells, leading to pro-inflammatory cytokine produc-
tion and lymphocyte infiltration into the brain paren-
chyma [40]. Concurrently, T helper type 9 (Th9) cells are 
markedly upregulated in AD, resulting in enhanced IL-9 
production [40]. IL-9, in combination with TGF-β1, facil-
itates the differentiation of naive CD4+ T cells into Th17 
cells, which are also elevated in the peripheral blood 
mononuclear cells of AD patients [40, 41] (Fig. 2).

An anti-inflammatory role for CD4+ T cells
Th2 cells stimulated by Aβ suppress IFN-γ production 
in Th1 and Th17 cells, thereby downregulating CD86 
and CD40 expression in microglia and attenuating sub-
sequent pro-inflammatory responses [34]. In APP/PS1 
mice, administration of purified Th2 cells reduces IFN-
γ, TNF-α, GM-CSF, IL-2, IL-4, and Aβ levels in plasma, 
while enhancing cognitive function and diminishing 
plaque-associated microglia and vascular amyloidosis 
[42].

Tregs play a crucial role in controlling immune 
responses by suppressing the activation and proliferation 
of effector T cells through the secretion of anti-inflam-
matory cytokines, such as IL-10 and TGF-β [35]. Post-
mortem analyses of human AD brains have revealed a 
reduction in Treg populations compared to non-AD con-
trols [43]. This reduction is associated with excessive pro-
duction of pro-inflammatory cytokines such as TNF-α, 
IL-1β, and IL-6, leading to enhanced neuroinflammatory 
effects [43]. Furthermore, studies in APP/PS1 mice have 
shown that the transfer of Aβ-specific Th1 and Th17 cells 
diminished both the number and functionality of Tregs 
in the CNS and peripheral blood, further exacerbating 
neuroinflammation [33].

In APP/PS1 mice, peripheral administration of human 
IL-2 at low doses selectively induces the expansion of 
Tregs, restores the Treg/Th17 balance, increases plaque-
associated microglia, and reduces amyloid plaques and 

Fig. 2 Impact of peripheral immunity on the CNS in AD brain. In AD, peripheral immune cells infiltrate the dura mater, subarachnoid space, and brain 
parenchyma, disrupting CNS immune homeostasis through clonal expansion, abnormal antigen accumulation, and excessive inflammatory mediator 
release. Within the brain parenchyma, microglia and astrocytes transition from homeostatic to reactive states, amplifying inflammation and accelerating 
neurodegeneration. This cascade of events progressively compromises neuronal integrity, leading to structural and functional deterioration.
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neuroinflammation, thereby enhancing cognitive func-
tion [44]. These positive outcomes have led to the pro-
gression of low-dose IL-2 therapy to a phase 2 clinical 
trial (NCT06096090) for AD treatment [45]. Another 
potential treatment strategy involves direct Treg trans-
fer. Autonomous ex vivo expansion and transfer of Tregs 
following Aβ stimulation have been shown to reduce 
amyloid load and microglial overactivation in 5×FAD 
mice, while downregulating pro-inflammatory cytokines 
and the complement cascade, thereby ameliorating cog-
nitive impairment, Aβ accumulation, tau hyperphos-
phorylation, and neuroinflammation [46]. Additionally, 
Aβ-stimulated Tregs suppress pro-inflammatory microg-
lial activity through bystander suppression [46].

However, contrasting evidence suggests that tempo-
rary depletion of FOXP3+ Tregs can also have beneficial 
effects. This depletion triggers an IFN-γ-dependent sys-
temic immune response and activates the choroid plexus. 
Consequently, this activation leads to the infiltration 
of monocyte-derived macrophages (MDMs) and Tregs 
into the vulnerable brain region of amyloid pathology, 
resulting in a reduction of amyloid plaque burden and 
improved cognitive function in 5×FAD mice [47].

These findings highlight the complex dynamics of Treg 
modulation in AD. While enhancing Treg function might 
be beneficial in some contexts, their depletion could 
prove advantageous in others. This complexity under-
scores the need for tailored therapeutic strategies that 
consider the specific pathological context and immune 
environment in AD. As such, molecular targeting 
approaches that aim to enhance Treg inhibitory func-
tions through pathways like TGF-β and IL-10 signaling 
are still under exploration [35, 48].

Other peripheral immune cells
Macrophages, including border-associated macrophages 
(BAMs) and monocyte-derived macrophages (MDMs), 
play crucial roles in AD pathogenesis [49–52]. BAMs, 
residing in cerebral border regions, are vital for main-
taining brain homeostasis by facilitating glymphatic 
system clearance [50–53]. However, age-related altera-
tions in BAMs, such as enhanced major histocompatibil-
ity complex class II (MHC-II) expression and impaired 
extracellular matrix degradation, contribute to vascular 
and glymphatic dysfunction, thereby increasing the risk 
of AD [52, 54, 55]. In AD mouse models with amyloid 
pathology, BAM depletion exacerbates Aβ deposition 
and microglial activation [50].

MDMs accumulate with age and participate in Aβ 
clearance [56, 57], however, their capacity to take up Aβ 
diminishes with age and AD progression, partially due 
to decreased expression of phagocytic receptors, such 
as TREM2 [56]. Genetic variations in TREM2 are asso-
ciated with an increased risk of AD onset [58]. TREM2+ 

macrophages cluster around amyloid plaques, while 
TREM2-deficient mice exhibit reduced inflammation 
and attenuated pathology [59]. In TREM2-deficient AD 
mouse models, the number of CD45hiLy6C+ macro-
phages is substantially decreased, resulting in attenuated 
inflammation and ameliorated amyloid and tau pathology 
[60].

Targeting the immune checkpoint blockade by anti-
PD-1 antibodies results in the recruitment of MDMs to 
the brain, which subsequently facilitates the clearance 
of amyloid plaques and restores cognitive function in 
5×FAD mice [61]. Notably, the effects of PD-1/PD-L1 
blockade extend beyond MDMs, as it also disrupts nega-
tive signaling between IFNγ-producing T cells and their 
target cells, resulting in broad enhancement of immune 
responses [61]. Building on this approach, IBC-Ab002, 
a humanized IgG1 antibody that inhibits the related 
immune checkpoint protein PD-L1, has now entered 
phase 1 clinical trials (NCT05551741) [45].

Transcriptomic analyses and immunohistochemical 
characterization of postmortem human hippocampal tis-
sue revealed that monocyte-derived macrophages infil-
trate the brain parenchyma in late-stage AD [62] (Fig. 2). 
Nonetheless, replacing brain-resident microglia with 
peripheral monocytes does not affect the amyloid plaque 
load in AD mouse models with amyloid pathology [63, 
64]. This finding prompts inquiries regarding the distinct 
functions of peripheral monocytes and microglia in the 
clearance of Aβ.

Natural killer cells, key components of the innate 
immune system, play complex and seemingly paradoxi-
cal roles in AD pathogenesis. Depletion of NK cells in 
the 3×Tg-AD mouse model has neuroprotective effects, 
including attenuated neuroinflammation, enhanced neu-
rogenesis, and improved cognitive function [65]. Con-
versely, augmentation of NK cell function in the APP/
PS1 mouse model can mitigate cerebral Aβ deposition 
and enhance cognitive performance [66]. These con-
trasting findings underscore the multifaceted nature 
of NK cells in AD. Recent clinical investigations, nota-
bly the ASK-AD trial (NCT04678453), have explored 
the therapeutic potential of autologous NK cell therapy 
(SNK01) in AD patients. Preliminary results indicate 
that SNK01 treatment may lead to reductions in cerebral 
Aβ and tau protein levels, coupled with amelioration of 
neuroinflammation.

Neutrophils play a pivotal role in cerebral hypoperfu-
sion, a well-established phenomenon in AD, by adher-
ing to capillary segments, which leads to reduced and 
eventually obstructed cerebral blood flow (CBF) [67]. 
Additionally, neutrophils compromise BBB integrity by 
disrupting tight junction proteins such as occludin and 
claudins, thereby promoting increased BBB permeabil-
ity [68]. In transgenic AD models, such as 5×FAD and 
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3×Tg-AD mice, neutrophils extravasate and accumulate 
in regions of amyloid deposition, accompanied by the 
formation of neutrophil extracellular traps (NETs) and 
expression of IL-17 [69]. Aβ42 peptide induces a high-
affinity conformation of lymphocyte function-associated 
antigen 1 (LFA-1), promoting rapid neutrophil adhe-
sion to integrin ligands, which subsequently exacerbates 
AD pathology and cognitive decline [69]. Therapeutic 
approaches targeting neutrophils have shown promising 
results. Transient neutrophil depletion during early dis-
ease stages results in sustained cognitive improvements, 
while administration of Ly6G antibodies or LFA-1 inhibi-
tors enhances cerebral blood flow, alleviate AD-like neu-
ropathology, and improve cognitive function [67, 69]. 
Moreover, LFA-1-deficient transgenic AD mice demon-
strate resistance to cognitive deterioration and exhibit 
reduced gliosis [69]. LFA-1 is not only crucial for NK 
cell responses but is also expressed by other peripheral 
immune cells, including T cells, where it plays essential 
roles in activation, adhesion, and migration [68–70]. The 
involvement of LFA-1 in these diverse immune cell func-
tions suggests its potential significance in AD pathology 
and warrants further investigation.

B cells in AD patients became activated and accumu-
late in the periphery and brain parenchyma, where they 
produce immunoglobulins that target Aβ [70]. While 
B-cell-derived immunoglobulins that target Aβ may 
impede plaque formation and disease progression, they 
may concurrently impair microglial function and exacer-
bate AD pathology [70]. The role of B cells in AD extends 
beyond immunoglobulin production, as evidenced by the 
correlation between increased numbers of activated B 
cells in cervical lymph nodes from aged 3×Tg AD mice, 
which rise as the disease progresses [71]. B-cell depletion 
in 5×FAD and APP/PS1 mice is associated with attenu-
ated disease progression, amelioration of cognitive and 
motor deficits, and a reduction in amyloid burden [71]. 
Paradoxically, B-cell depletion during the early disease 
stages accelerates cognitive decline and increases amyloid 
burden in AD mouse models, highlighting the complex 
and stage-dependent role of B cells in AD pathogenesis 
[72, 73].

Mucosal-associated invariant T (MAIT) cells, a subset 
of innate-like T cells, recognize microbial-derived metab-
olites, particularly those derived from vitamin B, through 
the major histocompatibility complex class I (MHC-I)-
related protein MR1 [74]. In the 5×FAD mouse model, 
MAIT cell numbers progressively increase and display 
activation signatures [75]. Both AD patients and 5×FAD 
mice exhibit significantly elevated MR1 expression in 
microglia surrounding amyloid plaques [76]. Notably, 
amyloid plaque formation is markedly reduced in MR1-
deficient mice [76].

Gamma delta T (γδT) cells, another subset of innate 
immune cells, serve as the primary source of interleu-
kin-17  A (IL-17) in healthy meninges, where they sup-
port synaptic plasticity in CA1 hippocampal neurons 
and facilitate short-term memory [77]. However, in the 
3×Tg AD mouse model, γδT cells accumulate substan-
tially in the brain parenchyma and meninges, correlating 
with cognitive deterioration [37]. Notably, IL-17-pro-
ducing γδT cells show marked increases in the CNS of 
these mice, with their accumulation associated with early 
short-term memory deficits and synaptic dysfunction 
[37]. These findings suggest that γδT cells may exacerbate 
neuroinflammation and contribute to the early AD path-
ological progression.

Dysregulation of immune factors in AD
Dysregulation of immune factors plays a pivotal role in 
AD pathophysiology and significantly affects the neu-
roimmune axis. Aberrant neuroimmune regulation not 
only facilitates peripheral immune cell infiltration into 
the CNS by compromising BBB integrity, but also exac-
erbates neurodegenerative processes directly [78]. Key 
neuroimmunological mediators implicated include pro-
inflammatory cytokines, APOE4, B2M, TREM2, and 
CD22. These factors are instrumental in modulating neu-
roinflammatory responses and maintaining homeostatic 
immune interactions between the CNS and the periph-
ery. Perturbation of these neuroimmunoregulatory fac-
tors intensifies neuroinflammation, compromises BBB 
function, and accelerates neurodegeneration through 
augmented peripheral immune cell infiltration. Conse-
quently, elucidating the mechanisms underlying immune 
factor dysregulation and developing targeted immuno-
modulatory interventions are crucial for advancing novel 
therapeutic strategies aimed at attenuating and/or halting 
the progression of neurodegenerative disorders (Fig. 3).

Pro-inflammatory cytokines
Pro-inflammatory cytokines, including interleukins (ILs), 
tumor necrosis factor (TNF) and interferons (IFNs), are 
predominantly secreted by peripheral immune cells [78]. 
In AD patients, these cytokines are markedly elevated in 
the plasma, facilitating their redistribution across a leak-
age-prone BBB associated with neurodegenerative pro-
gression [78].

Interferons are classified into Type I (IFN-I) and Type 
II (IFN-II, specifically IFN-γ) subtypes. IFN-I induces 
microglial activation and synaptic pruning, whereas 
selective inhibition of interferon α/β receptor (IFNAR) 
through specific blockers or neutralizing antibodies miti-
gates microgliosis and prevents synaptic loss in 5×FAD 
mouse model [79, 80]. IFN-II exhibits a biphasic role 
in neurodegenerative diseases. At physiological levels, 
IFN-γ enhances microglial phagocytosis, promotes Aβ 
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clearance, and augments cognitive functions [81]. Addi-
tionally, IFN-γ-mediated immune responses recruit 
monocyte-derived macrophages to the CNS, facilitating 
amyloid plaque clearance and cognitive improvement 
[81]. However, chronic IFN-γ-induced inflammation 
compromises BBB integrity and allows peripheral inflam-
matory mediators to infiltrate the CNS, thereby exac-
erbating neuroinflammation, neuronal damage and 
cognitive decline [81, 82].

The pro-inflammatory milieu induces the upregu-
lation and activation of NLRP3, forming the NLRP3 
inflammasome and resulting in substantial produc-
tion of pro-inflammatory cytokines [83]. In AD, NLRP3 
inflammasome activation occurs predominantly in 
innate immune cells, particularly microglia in the CNS 
[83]. Hyperactivation of the inflammasome triggers an 

inflammatory cascade that exacerbates neuronal injury. 
Studies using 16-month-old APP/PS1 transgenic mice 
demonstrated that Nlrp3 deficiency markedly enhanced 
microglia-mediated Aβ phagocytosis, reduced amyloid 
plaques, and improved spatial memory [84]. Further-
more, in transgenic Tau22 mice, Nlrp3 deficiency attenu-
ated tau hyperphosphorylation and aggregation while 
ameliorating Aβ-induced tau pathology [85].

B2M
B2M, a key component of MHC-I complex, exists in 
circulation as a non-covalently associated monomeric 
protein that is predominantly cleared through renal glo-
merular filtration [86]. Under pathological conditions, 
such as chronic kidney disease with long-term dialysis, 
B2M forms amyloid fibrils, leading to amyloidosis and 

Fig. 3 Dysregulation of immune factors in AD pathogenesis. In AD, compromised BBB integrity facilitates the entry of multiple immune factors, including 
pro-inflammatory cytokines, APOE4, B2M, TREM2, and CD22, into the CNS. These molecules play crucial roles in modulating neuroinflammation, maintain-
ing BBB integrity, and regulating Aβ uptake and degradation. Elucidating the mechanisms associated with the dysregulation of immune factors in AD is 
essential for developing targeted immunomodulatory therapies.
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related disorders [86]. Recent research has highlighted 
the significant involvement of B2M in AD and Down syn-
drome (DS), where it affects cognitive function through 
both central and peripheral pathways [10, 87].

In AD, elevated B2M levels promote amyloid pathol-
ogy through co-aggregation with Aβ, facilitating plaque 
formation and propagation [10]. This aggregation process 
enhances neurotoxicity and neuroinflammation, thereby 
accelerating both neurodegeneration and the spatial 
expansion of Aβ pathology [10]. Experimental studies in 
AD mouse models have demonstrated that B2M reduc-
tion—achieved through genetic ablation, antisense oli-
gonucleotide (ASO) administration, or antibody-based 
interventions—markedly attenuates cognitive deficits 
and reduces amyloid plaque burden [10]. Additionally, 
the ability of B2M to traverse the BBB presents a prom-
ising therapeutic opportunity [10]. Notably, peripheral 
B2M clearance via systemic administration of low-dose 
anti-B2M antibodies effectively reduces brain B2M levels 
and improves cognitive function in AD mouse models, 
offering a potential alternative to high-dose Aβ antibody 
therapies, which frequently induce adverse effects [10].

Individuals with DS frequently develop AD by middle 
age, suggesting shared pathogenic mechanisms between 
these conditions [88]. In DS, elevated plasma B2M 
crosses the BBB and suppresses N-methyl-D-aspartate 
(NMDA) receptor activity, disrupting synaptic excit-
atory/inhibitory homeostasis and precipitating cogni-
tive dysfunction [87]. Mechanistic studies have revealed 
that B2M directly interacts with the GluN1 subunit of 
NMDA receptors, attenuating receptor function. The 
development of GluN1-P2, a therapeutic peptide that 
competitively inhibits this B2M-GluN1 interaction, 
has demonstrated significant improvements in synap-
tic plasticity and cognitive performance in both DS and 
aging mouse models [87]. Through parabiosis studies 
and plasma transfer experiments, elevated circulating 
B2M has been identified as a critical mediator of cogni-
tive impairment in both DS patients and mouse mod-
els [87]. Therapeutic interventions targeting peripheral 
B2M, including antibody neutralization and parabiotic 
circulation exchange, successfully reverse these cognitive 
deficits.

As a systemic aging factor, B2M levels increase with 
age in the plasma and CSF, contributing to cognitive 
decline in aging and neurodegenerative disorders [89]. 
The co-aggregation of B2M with Aβ enhances neurotox-
icity, necessitating a refinement of the amyloid cascade 
hypothesis. Furthermore, B2M’s pathological interac-
tion with NMDA receptors establishes it as a promising 
therapeutic target. These mechanistic insights provide a 
foundation for developing small-molecule inhibitors and 
antibody-based therapeutics targeting B2M-mediated 
pathology [10, 87].

APOE4
The APOE4 gene variant encoded on human chromo-
some 19, is the most important genetic risk factor for 
late-onset AD [90]. APOE4 is characterized by arginine 
residues at positions 112 and 158 (Arg112/Arg158), dis-
tinguishing it from APOE3 (Cys112/Arg158) and APOE2 
(Cys112/Cys158) [90]. APOE4 impacts both the CNS 
and peripheral immunity. In cognitively normal APOE4 
carriers, the presence of plasma proteins in brain tissue 
and CSF suggests the presence of compromised BBB 
integrity prior to cognitive decline [91]. APOE4 poten-
tially weakens endothelial tight junctions, increases BBB 
permeability and facilitates neuroinflammation [92], and 
enhances BBB breakdown by reducing the capillary base-
ment membrane area and increasing thrombin levels in 
vessel walls and perivascular spaces [93, 94]. APOE4 also 
affects pathogenic changes in cerebral vasculature by 
promoting Aβ deposition and exacerbating CAA, further 
compromising BBB integrity and AD neuropathology 
[13]. Moreover, APOE4 impairs BBB-mediated Aβ clear-
ance, shifting Aβ40/42 clearance from rapid clearance 
pathways mediated by low-density lipoprotein receptor-
related protein 1 (LRP1) to slower clearance pathways 
mediated by the very low-density lipoprotein (VLDL) 
receptor pathway [95]. Conversely, APOE2 and APOE3 
facilitate faster Aβ clearance at the BBB [95]. CAA pro-
gression alters Aβ clearance mechanisms and vascu-
lar pathology, including increased vascular pulsatility 
and reduced vascular smooth muscle cell coverage [13]. 
APOE4 also attenuates Aβ clearance by promoting pre-
mature meningeal lymphatic vessel atrophy [96].

APOE4 accelerates immunosenescence in neutrophils, 
resulting in the infiltration of immunosuppressive IL-
17-producing neutrophils in the brains of female APOE4 
carriers with AD. In human APOE4 knock-in APP/PS1 
mice, genetic ablation of APOE4 in neutrophils dimin-
ishes their immunosuppressive phenotype and reduces 
IL-17 signaling. This alteration restores the microglial 
response, alleviates amyloid pathology, and enhances 
cognitive function in these AD transgenic mice [97]. 
Studies using mouse models expressing human APOE3 
or APOE4 in the liver have demonstrated that liver-
expressed APOE4 exacerbates cerebral amyloid pathol-
ogy, whereas APOE3 reduces it. These findings suggest 
that peripheral APOE4 impairs cerebrovascular function, 
affecting synaptic plasticity and cognition, thus providing 
a rationale for targeting peripheral APOE4 in AD ther-
apy [92]. Therapeutic strategies targeting APOE4, such 
as angiotensin receptor blockers, vascular endothelial 
growth factor A (VEGFA), and epidermal growth factor 
(EGF), can potentially improve BBB integrity and func-
tion and slow AD progression [98].

APOE is primarily synthesized and secreted by astro-
cytes and activated microglia in the CNS [90, 99]. In the 
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PS19-APOE4 mouse model, astrocyte-specific APOE4 
deletion reduces disease-associated gene expression 
across multiple cell types and suppresses aberrant syn-
aptic phagocytosis [100, 101]. Neuron-specific APOE4 
deletion markedly reduces tau pathology and amelio-
rates neurodegeneration [102], while microglial APOE4 
deletion enhances Aβ clearance in APP/PS1 mice [103]. 
These cell type-specific effects reveal distinct contribu-
tions of APOE4 to AD pathogenesis.

TREM2
TREM2, a member of the immunoglobulin receptor 
superfamily, is predominantly expressed in osteoclasts, 
macrophages, and microglia [104]. It activates down-
stream signaling pathways, including Ca2+ mobilization, 
MAPK, and mTOR, by binding to various ligands, such 
as phospholipids, APOE, Aβ oligomers, and apoptotic 
neurons [105–107]. In mouse models of AD, TREM2 
exhibits neuroprotective effects primarily through its 
expression in microglia, where it serves as a critical 
regulator of immune responses in neurodegenerative 
diseases [108]. Studies in AD mouse models have also 
shown that Trem2 knockout (Trem2−/−) or the presence 
of the TREM2 R47H mutation results in reduced plaque-
associated microglia and increased dystrophic neurites 
[109]. Microglial reduction exacerbates Aβ toxicity and 
tau seeding and spreading [110]. Conversely, TREM2-
activating antibodies enhance microglial metabolism and 
function, which leads to reduced amyloid plaque forma-
tion [111].

TREM2 undergoes ectodomain shedding at histidine 
157 by α-secretases ADAM10 and ADAM17, generating 
soluble TREM2 (sTREM2) [112–114]. sTREM2 promotes 
microglial survival and plaque-associated clustering 
while enhancing both Aβ clearance and cytokine produc-
tion [115]. Both TREM2 and sTREM2 significantly affect 
BBB function [116, 117]. Loss of TREM2 function or 
mutation can exacerbate neuroinflammation and neuro-
degenerative progression by increasing BBB permeabil-
ity, thereby allowing peripheral immune cells and other 
inflammatory factors to enter the CNS [118].

As a potential link between the CNS and peripheral 
immune system, changes in sTREM2 levels can reflect 
the inflammatory state and severity of neurodegenerative 
changes within the CNS [119]. In AD patients, elevated 
sTREM2 levels in CSF and plasma are associated with 
early disease stages and mild cognitive impairment [120]. 
Increased sTREM2 correlates with memory decline and 
hippocampal atrophy [121]. Additionally, sTREM2 levels 
positively correlate with CSF tau and p-tau levels, indi-
cating its potential applicability as a biomarker for AD 
progression [122].

CD22
CD22, which was originally characterized as a B-cell 
receptor, has been found to exert important regulatory 
effects on microglia within the CNS [123]. Microglia 
maintain CNS homeostasis through phagocytic clear-
ance of protein aggregates and cellular debris; however, 
this function deteriorates with age and in various neuro-
degenerative disorders associated with cognitive decline 
[123]. Studies have demonstrated that CD22 functions 
as a negative regulator of microglial phagocytosis and is 
upregulated in aged microglia [123]. CD22 is associated 
with exacerbated neuroinflammation and neurodegener-
ative changes through its anti-phagocytic effects derived 
from CD22 interactions with α2,6-linked sialic acid, 
which inhibits microglial phagocytosis and promotes the 
formation and propagation of amyloid plaques [123].

Soluble CD22 (sCD22) serves as a marker of inflamma-
tion and microglial dysfunction [124]. Elevated sCD22 
levels have been detected in the peripheral blood of AD 
patients, are negatively correlated with CSF Aβ42 lev-
els and Aβ42/Aβ40 ratios, and are positively correlated 
with phosphorylated tau levels and amyloid burden in 
the brain [125]. Furthermore, elevated plasma sCD22 
levels are associated with accelerated cognitive decline, 
suggesting that sCD22 may accelerate the progression of 
various neurodegenerative disorders [125].

In the periphery, CD22 regulates B-cell activation 
and immune responses through interactions with B-cell 
receptors [126]. The upregulation of CD22 in AD patients 
may lead to dysregulation of the peripheral immune sys-
tem, exacerbating inflammation in the CNS. Studies 
have shown that inhibition of CD22 activity can increase 
microglial phagocytosis activity and improve clearance 
of myelin debris, Aβ oligomers, and α-synuclein fibrils, 
thereby improving cognitive function in murine models 
[123]. Consequently, CD22 and its associated pathways 
represent potential therapeutic targets and offer novel 
strategies for mitigating or halting the progression of var-
ious neurodegenerative disorders.

Conclusions
This review elucidates the importance of bidirectional 
communication between the nervous and immune sys-
tems in AD. We emphasize the role of BBB disruption 
in facilitating peripheral immune cell infiltration and its 
role in exacerbating neuroinflammation and AD pathol-
ogy (Table 1). Specifically, we delineate the roles of vari-
ous peripheral immune cells, including CD8+ T cells, 
CD4+ T cells, and other immune cell populations, in 
driving AD progression. Furthermore, we summarize the 
impact of dysregulated key immunological mediators on 
neurodegeneration. Importantly, these immunological 
mediators originate not only from peripheral sources but 
also from within the brain parenchyma itself. The local 
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production of pro-inflammatory factors, APOE4, B2M, 
and TREM2 in the brain is intimately linked to neuro-
degeneration, neuroinflammation, and BBB dysfunction. 
Thus, understanding both the peripheral and central ori-
gins of these mediators, and their distinct contributions 
to AD pathology, is essential for fully deciphering neu-
roimmune interactions. The meninges - comprising the 
pia mater, arachnoid mater, and dura mater - protect and 
encase the CNS while harboring diverse immune cells, 
including macrophages, dendritic cells, innate lymphoid 
cells, mast cells, neutrophils, B cells, and T cells [20]. T 
cell priming occurs primarily in peripheral lymphoid 
organs, where antigen-presenting cells (APCs), particu-
larly dendritic cells, capture antigens like Aβ and pres-
ent them to CD4+ T cells via MHC-II or CD8+ T cells via 
MHC-I, leading to T cell activation and clonal expansion 
[127]. In AD, functional meningeal lymphatic vessels are 
believed to transport CSF-derived molecules and cyto-
kines to the deep cervical lymph nodes (dCLN), enabling 
interactions between CNS antigens and peripheral T 
cells; however, this process requires further experimental 
validation [127–130]. Notably, meningeal lymphatic dys-
function in AD mouse models correlates with increased 

Aβ deposition in both the meninges and CNS, while 
enhanced lymphatic function combined with Aβ anti-
body therapy promotes Aβ clearance [51]. These findings 
suggest that the meninges not only provide a BBB-inde-
pendent pathway for macromolecular clearance but also 
serve as an immune surveillance platform, facilitating 
interactions between peripheral immune cells and CNS-
derived antigens.

Immunosenescence affects T cell priming, resulting 
in reduced APC function, decreased T cell clonal diver-
sity, and functional impairment [131, 132]. Interestingly, 
despite the age-related decline in immune responses, AD 
patients exhibit enhanced T-cell reactivity to Aβ42 pep-
tide [127]. This paradoxical activation likely stems from 
chronic Aβexposure, persistent low-grade inflammation, 
and alterations in the immune microenvironment [127, 
133]. The heightened T cell response can lead to their 
abnormal accumulation in the CNS, further exacerbating 
neuroinflammation and neuronal damage [5, 6, 22].

The role of CD8+ T-cells in AD pathogenesis remains 
controversial. Recent studies using a 3D human neuroim-
mune axis model demonstrated that CD8+ T cells pro-
mote neurodegeneration via CXCL10-CXCR3 signaling 

Table 1 Peripheral immune cell functions and mechanisms in AD
Immune cell type Main function Immune 

factors
Refer-
ences

CD8+ T cells Exacerbate neuroinflammation by secreting cytotoxic factors that activate microglia, leading to neuro-
nal damage and neurodegeneration; increased CD8+ TEMRA cells correlate negatively with cognitive 
function

CCL2, CCL3, 
CCL4, CCL8, 
CXCL10, IFN-γ

 [5–8, 
17, 22]

CD4+ T cells - Th1 Activate microglia to promote Aβ clearance; excessive activation exacerbates Aβ accumulation and 
neuroinflammation, leading to cognitive deficits

IFN-γ, TNF-α  [32–34, 
36]

CD4+ T cells - Th2 Regulate immune response, reduce inflammation, promote microglial deactivation, alleviating Aβ 
burden and neuroinflammation

IFN-γ, TNF-α, 
GM-CSF, IL-2, 
IL-4

 [34, 42]

CD4+ T cells - Th9 IL-9, in combination with TGF-β1, promotes differentiation of naive CD4+ T cells into Th17 cells IL-9  [40, 41]
CD4+ T cells - Th17 Induce neuroinflammation; inhibit microglial Aβ clearance, accelerating memory impairment and Aβ 

accumulation
IL-17 A, IFN-γ, 
IL-23, IL-21, 
IL-6, TNF-α

 [33, 37, 
38]

CD4+ T cells - Th22 Activates glial cells, promoting pro-inflammatory cytokine production and lymphocyte infiltration into 
brain parenchyma

IL-22  [39]

CD4+ T cells - Tregs Modulate immune response through secretion of anti-inflammatory cytokines; enhancing Tregs func-
tion can be beneficial, while depletion may offer advantages in certain contexts; Tregs are reduced in 
AD patients

IL-10, TGF-β  [35, 
43–48]

B cells Secrete anti-Aβ immunoglobulins, affecting Aβ accumulation; B cell depletion reduces disease pro-
gression, but early depletion accelerates cognitive decline, indicating a complex, stage-dependent role

 
[71–73]

Macrophages Involved in Aβ clearance; function declines with age; monocyte-derived macrophages infiltrate brain 
parenchyma in late-stage AD, potentially compromising BBB integrity

IL-1β, TNF-α  [56, 57, 
59–61, 
63, 64]

Natural killer cells Function is complex; depletion provides neuroprotection while augmentation mitigates Aβ deposition 
and enhances cognitive performance

IL-2, IFN-γ  [65, 66]

Neutrophils Extravasate and accumulate in amyloid deposition regions, exacerbating AD pathology and contribut-
ing to cognitive decline; disrupt BBB integrity

IL-17, NETs  
[67–69]

γδT cells Accumulate in brain and meninges in AD models, associated with cognitive decline; contribute to 
neuroinflammation and early pathological progression

IL-17 A  [37, 77]

MAIT cells Elevated MR1 expression in AD brains; promote neuroinflammation and amyloid plaque formation; 
MR1 or MAIT cell deficiency slows amyloid plaque formation

MR1  
[74–76]
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pathway, leading to enhanced microglial activation [6]. 
Other work showed that increased CD8+ T cells in tau 
pathological regions correlate with neuronal loss, while 
inhibiting IFN-γ and PD-1 signaling reduced brain atro-
phy [22]. Studies using 5×FAD mice yielded conflicting 
results: one group found CD8+ T cell depletion wors-
ened amyloid pathology [134], while another observed 
these cells accelerated AD-like pathology by targeting 
disease-associated microglia [29]. These findings suggest 
context-dependent functions of CD8+ T cells in AD, war-
ranting further investigation into their complex roles and 
mechanisms.

Neurodegenerative diseases such as AD, Parkinson’s 
disease (PD), Huntington’s disease (HD), and amyo-
trophic lateral sclerosis (ALS) shared several pathological 
mechanisms. These include protein misfolding, chronic 
neuroinflammation, and neuronal loss, which involve 
interactions between immune cells within and outside 
the CNS [135–137]. Misfolded proteins like Aβ, tau, and 
α-synuclein act as danger signals, triggering inflamma-
tory responses through pattern recognition receptors 
that activate glial cells and promote pro-inflammatory 
factor release [135, 138, 139]. Immune-related risk genes, 
such as TREM2 p.R47H variant and HLA-DRB1, high-
light the role of immune system dysregulation in these 
diseases [140–142]. The TREM2 p.R47H variant impairs 
microglial function and phagocytic capacity, contribut-
ing to neuroinflammation in both AD and PD. HLA-
DRB1 variations affect antigen presentation and T cell 
responses, influencing disease progression [140, 141, 
143]. The timing of immune responses varies among 
these diseases: in multiple sclerosis (MS), inflamma-
tion precedes neurodegeneration, while in AD, neu-
rodegeneration often triggers inflammatory responses 
[137, 144–146]. These insights guide the development of 
immunomodulatory therapies, such as engineering anti-
inflammatory macrophages or enhancing regulatory T 
cell activity to control inflammation while maintaining 
neuroprotective functions.

Novel therapeutic strategies targeting neuroimmune 
interactions show significant potential in AD therapeu-
tics. Early intervention strategies using regulatory T cells 
and targeted antibodies to mitigate immune cell infiltra-
tion and neuroinflammation may be crucial in preventing 
AD progression. Despite these valuable insights, signifi-
cant gaps in knowledge persist, particularly regarding 
the stage-specific mechanisms of peripheral immune 
cells in AD. Future studies investigating the interactions 
between microglia and peripheral immune cells and their 
roles in neuroinflammation will be crucial and insight-
ful. Additionally, further characterization and identi-
fication of peripheral immune cells or factors as early 
diagnostic biomarkers for AD may uncover clinically 
promising prognostic cell types/cell states or molecular 

markers. Additionally, characterization of key immu-
nological mediators may lead to enhanced precision in 
targeted therapeutic strategies. Specifically, the effects of 
APOE4 on BBB integrity and Aβ clearance efficiency, co-
aggregation of B2M with Aβ, and the role of TREM2 in 
regulating microglial function may lead to specific target-
ing strategies which maximize therapeutic effects while 
limiting the perturbation of undesired off-target effects.

Understanding these neuroimmune mechanisms is 
crucial for developing new therapies to prevent AD pro-
gression, potentially providing new avenues for clinical 
intervention.
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