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Abstract 

Chitinase‑3‑like‑1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tis‑
sue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurode‑
generative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such 
as traumatic brain injury (TBI), Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), 
Creutzfeldt‑Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV‑associated dementia (HAD), 
Cerebral ischemic stroke (CIS), and brain tumors. This review explores the role of CHI3L1 in the pathogenesis of these 
disorders, with a focus on its contributions to neuroinflammation, immune cell infiltration, and neuronal degenera‑
tion. As a key regulator of neuroinflammation, CHI3L1 modulates microglia and astrocyte activity, driving the release 
of proinflammatory cytokines that exacerbate disease progression. In addition to its role in disease pathology, CHI3L1 
has emerged as a promising biomarker for the diagnosis and monitoring of brain disorders. Elevated cerebrospinal 
fluid (CSF) levels of CHI3L1 have been linked to disease severity and cognitive decline, particularly in AD and MS, 
highlighting its potential for clinical diagnostics. Furthermore, therapeutic strategies targeting CHI3L1, such as small‑
molecule inhibitors and neutralizing antibodies, have shown promise in preclinical studies, demonstrating reduced 
neuroinflammation, amyloid plaque accumulation, and improved neuronal survival. Despite its therapeutic potential, 
challenges remain in developing selective and safe CHI3L1‑targeted therapies, particularly in ensuring effective deliv‑
ery across the blood–brain barrier and mitigating off‑target effects. This review addresses the complexities of target‑
ing CHI3L1, highlights its potential in precision medicine, and outlines future research directions aimed at unlocking 
its full therapeutic potential in treating neurodegenerative diseases and brain pathologies.
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Introduction
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is 
a glycoprotein encoded by the CHI3L1 gene in humans 
[1, 2]. Initially identified due to its structural similari-
ties to the chitinase protein family, CHI3L1 is unique in 
its lack of enzymatic activity, setting it apart from other 
chitinases. CHI3L1 plays diverse roles in both peripheral 
systems and the central nervous system (CNS), where its 
functions are particularly noteworthy. In peripheral sys-
tems, the roles of CHI3L1 in cell regeneration, prolifera-
tion, migration, tissue remodeling, neuroinflammation, 
and angiogenesis have been extensively documented, 
highlighting its involvement in a range of pathological 
conditions [3–6].

CHI3L1 is expressed in a wide range of cell types, 
including macrophages [7], neutrophils [8], tumor cells 
[9], inflammatory cells [3], vascular smooth muscle 
cells [10], and CNS-specific cells such as microglia [11], 
astrocytes [12–17], and neurons [18]. This widespread 
expression underscores the critical role of CHI3L1 in 
maintaining homeostasis in the brain and contributing 
to disease pathology (Fig.  1). Notably, CHI3L1 protein 

levels significantly increase in response to inflammatory 
diseases, cancers, and degenerative conditions, making it 
a potential prognostic marker [19–21]. Elevated CHI3L1 
expression has been observed in patients with acute 
brain pathologies such as traumatic brain injury (TBI) 
and cerebral ischemia [17, 22, 23], as well as in patients 
with CNS tumors such as gliomas [16, 24, 25], including 
neurodegenerative disorders such as Alzheimer’s disease 
(AD) [26], Parkinson’s disease (PD) [27], amyotrophic lat-
eral sclerosis (ALS) [28], and Creutzfeldt-Jakob disease 
(CJD) [29, 30] and neuroinflammatory diseases such as 
multiple sclerosis (MS) [8], neuromyelitis optica (NMO) 
[31], and HIV-associated dementia (HAD) [32]. This 
upregulated expression is associated with increased dis-
ease severity and progression, suggesting a crucial role 
for CHI3L1 in disease pathology [16, 24, 33].

The expression of CHI3L1 is further elevated in 
response to proinflammatory cytokines such as IFN-γ, 
TNF-α, IL-1β, and IL-6 (Fig.  1), indicating its involve-
ment in immune responses and inflammatory pathways 
[1, 34]. As a neuroinflammatory molecule, CHI3L1 has 
recently gained attention in the context of brain diseases. 

Fig. 1 CHI3L1 and its Role in the Pathogenesis of Acute and Chronic Brain Disorders. CHI3L1 contributes to neuronal death, degeneration, 
increased blood–brain barrier (BBB) permeability, neuroinflammation, and angiogenesis. Activated microglia and reactive astrocytes play a central 
role in these brain conditions. The activation of these glial cells leads to the release of inflammatory cytokines, such as IL‑6, TNF‑α, IL‑1β, and IFN‑γ, 
causing neuronal damage and driving the progression of brain diseases
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It is recognized as a well-characterized neuroinflamma-
tory molecule and a powerful biomarker, present at the 
earliest stages of pathogenesis and capable of distinguish-
ing between different brain-related diseases [23, 34–38]. 
CHI3L1 could modulate several key signaling pathways, 
including the AKT, β-catenin, and NF-κB pathways, 
which are involved in cell proliferation, survival, and 
apoptosis [39–41]. Additionally, its proinflammatory 
effects may be mediated through the phosphoinositide-3 
signaling pathway in response to various proinflamma-
tory cytokines [34]. Dysregulation of these pathways 
has been implicated in the pathogenesis of various brain 
pathologies, including tumors, ischemia, TBI, AD, PD, 
ALS, CJD, MS, NMO, and HAD [42–45]. Emerging evi-
dence suggests that inhibiting CHI3L1 can reduce neuro-
inflammation and improve cognitive functions in animal 
models, underscoring its potential as a therapeutic target 
for CNS disorders [46, 47].

Recent research highlights CHI3L1 as a critical bio-
marker and drug target in neuroinflammatory and 
brain diseases, suggesting its broad applicability across 
a spectrum of CNS pathologies. This review explores 
the expression patterns, molecular functions, and thera-
peutic potential of CHI3L1 in neuroinflammatory and 
brain disorders. These findings highlight the transition 
of CHI3L1 from a peripheral biomarker to a key player 
in CNS pathology, emphasizing its emerging significance 
as both a diagnostic biomarker and therapeutic target 
in various brain diseases. Additionally, we discuss the 
therapeutic implications of targeting CHI3L1 to mitigate 
neuroinflammation and improve clinical outcomes in 
patients with CNS disorders, offering insights into novel 
strategies for combating these challenging conditions.

Molecular structure, functions, and expression 
of CHI3L1
CHI3L1 is a member of the glycoside hydrolase family 18, 
characterized by its conserved chitinase-like domain. In 
humans, eight genes encode members of this chitinase 
protein family, with seven of these genes located on chro-
mosome 1 [1, 48]. Notably, multiple single-nucleotide 
polymorphisms (SNPs) within the CHI3L1 gene con-
tribute to up to 23% of the variability in serum CHI3L1 
concentrations among the healthy population [1, 49, 50]. 
Interestingly, mutations in CHI3L1 result in the loss of 
enzymatic activity due to amino acid substitutions in its 
catalytic site [51–53].

Structurally, CHI3L1 forms a homodimer, with each 
monomer containing a cysteine-rich region and a 
highly conserved chitin-binding domain comprising 383 
amino acids and a molecular weight of approximately 
40 kDa [5, 16]. The protein’s N-terminus includes a sig-
nal peptide that is cleaved upon secretion, while the 

C-terminus contains the chitin-binding domain. As a 
glycoprotein, CHI3L1 is characterized by carbohydrate 
chains attached to its polypeptide scaffold [16, 48], fea-
turing a complex and heterogeneous glycosylation pat-
tern that includes N-linked glycans. This glycosylation 
is crucial for CHI3L1’s biological activity, impacting its 
stability, solubility, and interactions with other mol-
ecules [54–56]. CHI3L1 exerts its influence on target 
cells by binding to specific receptors on the cell mem-
brane, primarily interleukin-13 receptor subunit alpha 
2 (IL-13Rα2), transmembrane protein 219, galectin-3, 
and CD44 [50, 57–59]. This binding initiates intracellu-
lar signaling pathways that play a crucial role in various 
biological processes [39]. In the brain, CHI3L1 is primar-
ily expressed by astrocytes and microglia, and its physi-
ological functions extend beyond its initial identification 
as a chitinase-like protein [37]. CHI3L1 is involved in a 
range of processes, including extracellular matrix remod-
eling, cell proliferation, migration, and immune response 
modulation.

Under normal physiological conditions, CHI3L1 con-
tributes to maintaining homeostasis by protecting against 
pathogens, responding to antigen- and oxidant-induced 
injuries, and regulating inflammation, apoptosis, and 
pyroptosis [60, 61]. However, in the context of neurode-
generative diseases, the expression of CHI3L1 is often 
dysregulated, leading to its association with neuroinflam-
mation, glial activation, and neuronal damage [17, 62]. 
Its expression is regulated by various factors, including 
proinflammatory cytokines, growth factors, and environ-
mental stimuli, with elevated levels observed in response 
to inflammatory conditions in the brain [5, 63].

This dual role of CHI3L1, both protective under nor-
mal conditions and potentially harmful when dysregu-
lated, underscores the importance of understanding its 
molecular structure, functions, and regulatory mecha-
nisms. Such insights are crucial for developing therapeu-
tic strategies targeting CHI3L1 to address its involvement 
in brain pathology and neurodegeneration.

Role of CHI3L1 in the pathology of various brain 
diseases
CHI3L1 plays a central role in the pathology of a wide 
array of brain diseases, encompassing acute and chronic 
conditions. These include brain tumors [64], ischemic 
brain injury [22], brain trauma [65], and neurodegen-
erative disorders such as Alzheimer’s disease [2], Par-
kinson’s disease [66], amyotrophic lateral sclerosis [67] 
and Creutzfeldt-Jakob disease [29]. Additionally, recent 
evidence has expanded its involvement to autoimmune 
and infectious diseases, such as multiple sclerosis [68], 
neuromyelitis optica [69], and HIV-associated dementia 
[70]. Elevated CHI3L1 levels are closely associated with 
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disease aggressiveness, poor prognosis, and the exacerba-
tion of neuroinflammatory and neurodegenerative pro-
cesses. These findings highlight CHI3L1’s potential as a 
biomarker for disease diagnosis and prognosis, as well as 
a promising therapeutic target for intervention. This sec-
tion provides a comprehensive discussion of CHI3L1’s 
involvement in various neurological diseases, offering 
insights into its pathological mechanisms and therapeu-
tic implications (Table 1).

Brain tumors
Brain tumors are among the most common primary 
malignant tumors in adults [82, 83] and are characterized 
by their highly infiltrative growth and frequent, inevitable 
recurrence, significantly impacting brain health. CHI3L1 
is instrumental in tumor development, facilitating 
growth, invasion, and immune evasion through multiple 
mechanisms [71, 84]. CHI3L1 enhances tumor growth 
primarily by stimulating angiogenesis, the formation of 
new blood vessels, which supplies tumors with essen-
tial nutrients and oxygen [25, 85]. This process is driven 
by CHI3L1-induced expression of vascular endothelial 
growth factor (VEGF) [1, 34, 85, 86], which is a critical 
regulator of angiogenesis (Fig. 2).

Moreover, CHI3L1 promotes tumor invasion by upreg-
ulating the expression of matrix metalloproteinases 
(MMPs), enzymes that degrade the extracellular matrix, 
enabling tumor cells to invade surrounding tissues [87–
89]. Additionally, CHI3L1 contributes to immune evasion 
by dampening the function of T cells and natural killer 
(NK) cells [71, 84, 90], reducing their proliferation, acti-
vation, and cytotoxic capabilities [84, 91]. CHI3L1 also 
influences the differentiation of macrophages towards 
an M2-like phenotype, associated with immunosuppres-
sion and tumor-promoting activity [92, 93]. Furthermore, 
CHI3L1 modulates immune cell activity, including that 
of macrophages and T cells, thus promoting the release 
of immunosuppressive cytokines [94, 95]. This contrib-
utes to the formation of an immunosuppressive micro-
environment within tumors, further inhibiting immune 
cell activity and facilitating tumor growth and metasta-
sis [25, 85, 90]. Recent studies have shown that CHI3L1 
expression is upregulated across all stages of glioma and 
is closely linked to tumor survival, growth, and invasion 
[39, 64]. CHI3L1 is predominantly expressed in glioma 
cells and, to a lesser extent, in neutrophils [64]. Interest-
ingly, CHI3L1 can be released into the tumor microen-
vironment (TME) and interacts with CD44 expressed on 
tumor-associated macrophages to activate the AKT path-
way, thus contributing to M2 macrophage polarization 
[34, 96]. Additionally, CHI3L1 expression is positively 
correlated with the expression of immune checkpoints, 
such as CD274 (PD-L1) and HAVCR2 (LAG3), which 

remodel the TME towards an immunosuppressive phe-
notype [93]. CHI3L1 is also significantly expressed by 
macrophages in various inflammatory conditions, includ-
ing encephalitis, stroke, multiple sclerosis, and brain 
tumors [97]. CHI3L1 interacts with multiple receptors 
(Fig. 3), such as RAGE, IL-13Rα2, and syndecan-1/αVβ3, 
triggering pathways involved in inflammasome activa-
tion, neuronal inflammation, tumor progression, angio-
genesis, apoptosis, and amyloid-beta (Aβ) accumulation 
[98].

This body of evidence highlights the central role of 
CHI3L1 in glioma behavior. CHI3L1 acts not merely as 
a passive participant but as a key player in glioma patho-
physiology, suggesting that its manipulation could open 
new therapeutic avenues [39, 64, 71]. The role of CHI3L1 
as an oncogenic driver in malignant brain tumors extends 
beyond gliomas, indicating its importance in tumor 
aggressiveness, including growth dynamics, migra-
tory tendencies, treatment resistance, and patient sur-
vival rates. Elevated CHI3L1 levels in the bloodstream 
are linked to more aggressive tumor behavior, reduced 
effectiveness of standard therapies, and shorter survival 
times, offering a clearer yet concerning view of glioblas-
toma progression [64, 99, 100]. Understanding the role of 
CHI3L1 in shaping the tumor environment and promot-
ing cancer growth is crucial, emphasizing its importance 
as a target for new treatments. The need for innovative 
therapeutic approaches is more critical than ever, and 
CHI3L1 is at the leading edge of potential targets that 
could revolutionize the management of glioblastoma and 
other malignant brain tumors.

Acute brain injuries
Acute brain injuries, such as traumatic brain injury (TBI) 
and ischemic stroke, result from sudden trauma or vas-
cular events, triggering inflammatory cascades and neu-
ronal damage. CHI3L1 is rapidly upregulated, playing a 
key role in glial activation, neuroinflammation, and tissue 
repair, underscoring its potential as a therapeutic target.

Cerebral ischemic stroke
Stroke is a significant cause of morbidity and mortality 
globally, ranking as the second leading cause of death and 
the third leading cause of disability worldwide [101–103]. 
Stroke encompasses both ischemic and hemorrhagic 
types, with ischemic stroke being the most prevalent, 
constituting more than 75% of all cases [104, 105]. The 
primary pathological mechanism underlying ischemic 
stroke is typically atherosclerosis [106], with secondary 
pathological changes involving bioenergetic failure, an 
imbalance of  Na+/K+ across neuronal membranes, mito-
chondrial dysfunction, oxidative stress, and, notably, neu-
roinflammation [107]. Neuroinflammation is particularly 
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pivotal in postischemic stroke pathology as it exacerbates 
secondary damage and functional impairments through a 
cascade of proinflammatory cytokines [108–110].

A notable discovery in this field is the association of 
CHI3L1 levels in CSF and plasma with the prognosis of 
ischemic stroke [72, 111]. Elevated CHI3L1 levels are 
correlated with increased mortality and recurrence risk, 
suggesting that CHI3L1 is a potential biomarker for 
stroke severity. Intriguingly, research involving CHI3L1-
knockout mice has presented a paradox. These mice, 
which were subjected to middle cerebral artery occlu-
sion, displayed significantly larger infarct volumes and 
more severe neurological deficits than their wild-type 
counterparts 24  h post-ischemia/reperfusion [112]. Fur-
ther observations revealed that CHI3L1-knockout mice 

experienced increased neuronal cell death and a pro-
nounced inflammatory response, marked by elevated 
IL-6 and IL-1β levels and reduced levels of the anti-
inflammatory cytokines IL-10 and IL-4 [113, 114]. These 
changes were accompanied by increased expression of 
inflammation-related proteins such as inducible nitric 
oxide synthase (iNOS), cyclooxygenase 2 (COX-2), ion-
ized calcium-binding adaptor molecule 1 (Iba-1), and 
glial fibrillary acidic protein (GFAP) [112, 115] (Fig. 4).

Moreover, reducing CHI3L1 expression through 
siRNA-mediated silencing resulted in decreased IL-4Rα 
expression and downstream signaling, suggesting that 
CHI3L1 plays a significant role in modulating neuroin-
flammation. These findings reveal a complex scenario 
where both elevated CHI3L1 levels and its complete 

Fig. 2 CHI3L1‑induced tumor angiogenesis, growth, migration, invasion, and inflammation. CHI3L1, secreted by tumors, stimulates angiogenesis 
by activating endothelial cells through the coupling of the membrane receptor syndecan‑1 with integrin and upregulating the expression of VEGF 
via the ERK1/2 and AKT pathways. CHI3L1 promotes tumor growth and migration by interacting with TGF‑β1 and its receptor TGFR, thereby 
activating the SMAD2/SMAD3 signaling pathway. Additionally, CHI3L1 interacts with CD44 and IL‑13Rα2, further activating the AKT and ERK1/2 
pathways, which enhance tumor growth and invasion. CHI3L1 also promotes invasion via MMP‑9 and induces the secretion of CXCL8 and IL‑6, 
driving inflammation and tumor progression
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absence can adversely affect stroke outcomes. While 
elevated CHI3L1 is associated with poorer outcomes, the 
total absence of CHI3L1 exacerbates neuroinflammation 
and accelerates stroke progression. This paradox under-
scores the intricate role of CHI3L1 in ischemic stroke 
and highlights the need for maintaining its levels within 
an optimal range to mitigate neuroinflammation and 
improve outcomes. Given this complexity, these results 
should be approached with caution, as the absence of 
CHI3L1 may interfere with normal brain functions, 
potentially complicating disease progression. These 
insights into CHI3L1’s dual role in ischemic stroke sug-
gest that therapeutic strategies aimed at modulating its 

activity could help balance the inflammatory responses, 
offering a promising direction for improving stroke man-
agement and patient recovery.

Traumatic brain injury
TBI is a devastating neurological condition resulting 
from physical trauma to the brain, which leads to wide-
spread damage and often long-term neurodegeneration 
[116, 117]. The global incidence of TBI is approximately 
10 million cases annually and continues to rise [118]. 
The primary causes include vehicle accidents, falls, vio-
lent incidents, and sports-related injuries, dispropor-
tionately affecting individuals over 75 years old, children, 

Fig. 3 CHI3L1 Interactions and Intracellular Signaling Pathways in Neuroinflammation and Tumor Progression. CHI3L1 interacts with various 
cell surface receptors, including IL‑13Rα2, syndecan‑1/αvβ3, and RAGE, triggering multiple intracellular signaling pathways. These interactions 
lead to diverse cellular outcomes, such as the regulation of apoptosis, tumor metastasis, inflammation, carcinogenesis, and tumor angiogenesis. 
Interaction with syndecan‑1 induces angiogenesis through integrin αvβ3 and MAPK signaling. CHI3L1’s interaction with RAGE activates the Wnt/
β‑catenin pathway, promoting tumor progression by facilitating immune evasion and migration. Similarly, interactions with IL‑13Rα2 drive 
carcinogenesis and tumor angiogenesis via Erk1/2, Wnt/β‑catenin, and Akt signaling pathways. Additionally, CHI3L1 modulates brain inflammation 
and neurodegenerative disorders by influencing the IL‑13 signaling pathway through IL‑13Rα2, enhancing the secretion of inflammatory cytokines 
such as IL‑1β and IL‑6, and activating pathways like AKT and ERK1/2
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and young males [119, 120]. TBIs are categorized as 
mild, moderate, or severe based on clinical assessments, 
including consciousness levels, amnesia, and other neu-
rological indicators [121, 122]. Mild TBI represents the 
most prevalent form of TBI, accounts for 80–90% of 
cases and is characterized by acute brain function dis-
ruption, often with or without brief loss of conscious-
ness, confusion, and symptoms that can persist for up 
to a year post-injury [123]. Following TBI, an inflam-
matory response involving the activation of microglia 
and astrocytes is triggered within the brain. These cells 
are essential for the brain’s immune response and tissue 
repair [124, 125]. Previous research has highlighted ele-
vated CHI3L1 protein levels in both human and animal 
models of TBI [61, 74], as well as in patients with various 
neurological conditions. Increased CHI3L1 levels within 
the brain and CSF are believed to exacerbate neuroin-
flammation by stimulating microglia and astrocytes to 
release proinflammatory cytokines and chemokines [11] 
(Fig. 5). This response disrupts the homeostatic functions 
of microglia, such as immunosurveillance and phagocy-
tosis, while promoting their migration and proliferation, 
thereby exacerbating neuronal damage and contributing 
to secondary injury cascades post-TBI [126–128].

Recent studies have identified that CHI3L1 medi-
ates its effects on neuroinflammation and tissue repair 
through several key signaling pathways. By binding to 
the interleukin-13 receptor alpha 2 (IL13Rα2), CHI3L1 
activates mitogen-activated protein kinases (MAPKs), 

including ERK1/2 and JNK, as well as the PI3K/Akt 
and NF-κB pathways [129–131]. These pathways regu-
late critical processes such as apoptosis, pyroptosis, 
and inflammasome activation, all of which are essential 
for the brain’s response to trauma and repair. Addition-
ally, IL13Rα2’s interaction with transmembrane protein 
219 (TMEM219) enhances the anti-apoptotic response, 
underscoring the complexity of CHI3L1’s role in pro-
moting cell survival while modulating the inflammatory 
response (Fig. 6).

The elevation of CHI3L1 levels post-TBI suggests its 
potential as a biomarker for predicting injury outcomes, 
with higher CSF levels being associated with increased 
mortality and disability [132, 133]. While the precise role 
of CHI3L1 in the CNS remains incompletely understood, 
its expression patterns and sustained presence at injury 
sites suggest that it plays a critical role in both the inflam-
matory and repair responses following brain trauma. The 
multifaceted role of CHI3L1 in TBI not only underscores 
its importance in modulating the brain’s inflammatory 
response but also highlights it as a promising target for 
new therapeutic approaches aimed at reducing inflam-
mation and facilitating recovery after brain trauma.

Neurodegenerative disorders
Neurodegenerative disorders involve the progressive 
loss of neuronal structure and function, often accompa-
nied by chronic inflammation. CHI3L1 contributes to 
these diseases by modulating microglial and astrocyte 

Fig. 4 The role of CHI3L1 in ischemic stroke progression. The absence of CHI3L1 accelerates stroke progression, as observed in CHI3L1 knockout 
models. In these models, there was an increased release of proinflammatory cytokines such as IL‑6 and IL‑1β, along with a decreased release 
of anti‑inflammatory cytokines like IL‑10 and IL‑4. Additionally, there was heightened expression of inflammation‑related proteins, including iNOS, 
COX‑2, Iba‑1, and GFAP. As a result, the deletion of CHI3L1 exacerbates neuroinflammation and neuronal cell death following ischemia, further 
accelerating stroke progression
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responses, promoting neuroinflammatory pathways, and 
impairing tissue homeostasis. Its varying roles across 
Alzheimer’s disease, Parkinson’s disease, amyotrophic 
lateral sclerosis, and Creutzfeldt-Jakob disease highlight 
its complexity as a biomarker and potential therapeutic 
target.

Alzheimer’s disease
Alzheimer’s disease (AD), which typically emerging later 
in life, is the leading cause of dementia, with its preva-
lence doubling approximately every five years after the 

age of 65 [134]. AD is characterized by the activation of 
microglia and astrocytes, which influences the produc-
tion and clearance of β-amyloid-42 (Aβ42). This, in turn, 
exacerbates tau pathology, accelerates neurodegenera-
tion, and worsens the severity of the disease [35, 135]. 
The pathophysiology of AD involves a complex interplay 
of genetic, environmental, and molecular factors, with 
emerging evidence indicating CHI3L1 as a significant 
contributor to disease progression [11, 34, 37]. Elevated 
levels of CHI3L1 in the CSF and brain tissues have been 
associated with cognitive decline in AD patients [29, 31, 

Fig. 5 Neuroinflammatory conditions modulated by CHI3L1 under the condition of TBI. Inflammatory responses are characterized by leukocyte 
infiltration into the CNS parenchyma and a significant loss of BBB integrity. The influx of leukocytes is linked to the disruption of homeostatic 
microglial functions, including immunosurveillance, phagocytosis, and immune resolution. Furthermore, CHI3L1 promotes astrocyte migration 
and proliferation, further exacerbating the inflammatory response. This cascade contributes to increased neuronal damage and the progression 
of secondary injury following TBI
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50]. Accumulating evidence suggests that CHI3L1 plays 
a role in the formation and aggregation of Aβ plaques, 
a hallmark of AD pathology, by modulating microglial 
phagocytosis and the clearance of Aβ peptides [136, 137]. 
The relationship between CSF CHI3L1 levels and Aβ42 
[138], as well as the CSF CHI3L1/Aβ42 ratio, provides 
insights into the risk of cognitive impairment [139].

Recent research utilizing positron emission tomogra-
phy (PET) imaging has shown that elevated CSF CHI3L1 
and GFAP levels correlate with tau and Aβ burdens, 
respectively, both of which are associated with cognitive 
decline [140, 141]. This finding suggests that there are 
distinct biomarker signatures in response to Aβ and tau 
accumulation, shedding light on the complex relation-
ship between reactive astrogliosis heterogeneity and AD 
progression. Previous studies have also demonstrated 
that higher CSF CHI3L1 levels in individuals with mild 
AD-type dementia, compared to healthy controls [139], 
suggesting that CHI3L1 has potential to discriminate 
AD from other forms of dementia and be a predictor of 

disease progression [36, 50, 142]. Furthermore, associa-
tions between CSF CHI3L1 levels and changes in brain 
morphology in AD patients have been reported [143], 
including axonal damage and synaptic disruption as the 
disease progresses (Fig.  7). This evidence underscores 
CHI3L1’s potential as both a biomarker and a therapeutic 
target in Alzheimer’s disease.

Despite extensive research, the precise functions of 
CHI3L1 remain unclear. A study by Lananna and the 
colleagues highlighted that CHI3L1, regulated by the 
astrocytic circadian clock, plays a significant role in AD 
pathogenesis [144]. In AD mouse models, the deletion of 
CHI3L1 reduced Aβ burden and increased the expres-
sion of the microglial lysosomal marker CD68 around 
plaques, suggesting that CHI3L1 may inhibit glial phago-
cytic activation, thereby promoting amyloid accumula-
tion [144]. These findings indicate that CHI3L1 is not 
only a potential diagnostic marker for early-onset AD 
but also a key player in the molecular mechanisms driv-
ing AD pathology. A deeper understanding of CHI3L1’s 

Fig. 6 IL13Rα2 signaling pathways mediated by CHI3L1. CHI3L1 binds to IL13Rα2, activating MAPKs such as ERK1/2 and JNK, along with the PI3K/
Akt and NF‑κB pathways, to regulate apoptosis, pyroptosis, and inflammasome activation. The binding of IL13Rα2 to TMEM219 further enhances 
the anti‑apoptotic response triggered by CHI3L1 stimulation
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influence on glial cell activity, amyloid deposition, and 
the neuroinflammatory environment could lead to more 
targeted therapeutic strategies aimed at slowing AD pro-
gression or preventing its symptoms. While research into 
CHI3L1’s role in AD is still in its early stages, each new 
discovery opens up avenues for innovative treatments, 
offering hope to the millions affected by AD globally.

Parkinson’s disease
Parkinson’s disease (PD) is a prevalent and debilitating 
movement disorder that affects approximately 1% of the 
population over the age of 60 worldwide [145]. It is char-
acterized by the gradual degeneration of dopaminergic 
neurons in the substantia nigra pars compacta (SNpc), 
leading to symptoms such as bradykinesia (slowed 
movement), tremors, and muscle rigidity [146, 147]. 
Additionally, dopamine-modulated and immune cell 
functions are dysregulated in PD [148]. While the exact 
molecular mechanisms of PD are not fully understood, 
research using both human samples and animal models 
has indicated that inflammation plays a significant role 
in the onset and progression of PD. This involvement is 
evidenced by the presence of Lewy bodies containing 
α-synuclein, neuronal loss, and the activation of micro-
glia and astrocytes [62, 77].

CHI3L1, a protein closely associated with neuroinflam-
mation, has been implicated in the pathophysiology and 
progression of PD [76]. However, its precise role in PD 
remains incompletely understood, with contrasting find-
ings from various studies offering intriguing insights. 
Wennstrom et  al. [26] and Llorens et  al. [29] reported 
elevated levels of CHI3L1 in the CSF of Alzheimer’s dis-
ease (AD) patients, but not in those with PD. Conversely, 
Olsson and the colleagues observed lower levels of CSF 
CHI3L1 in PD patients compared to healthy individuals, 
suggesting reduced glial activation in PD [77]. These vari-
ations in CHI3L1 levels across studies highlight potential 
differences in the inflammatory responses between PD, 
AD, and other neurodegenerative diseases, underscoring 
the need for further research into CHI3L1’s role in PD.

The mechanisms by which CHI3L1 influences PD pro-
gression involve complex interactions between immune 
cells and glial cells. In PD, proinflammatory cytokines 
produced by Th1 and Th17 cells activate microglia and 
astrocytes, leading to neuroinflammation and dopamin-
ergic (DA) neuron degeneration. In contrast, regulatory 
T cells (Tregs) and Th2 cells may exert neuroprotective 
effects by counteracting the inflammatory response. As 
α-synuclein accumulates, it further activates glial cells, 
amplifying the inflammatory cascade [62, 77]. CHI3L1 

Fig. 7 CHI3L1’s role in the pathology of Alzheimer’s disease through modulation of neuroinflammation. As chronic inflammation progresses, 
astrocytes and microglia release proinflammatory mediators, including CHI3L1, cytokines, and chemokines. CHI3L1 regulates IL‑6 levels, which 
in turn elevates IL‑1β and TNF‑α levels, disrupting the BBB and initiating neuroinflammation, ultimately leading to neuronal death. IL‑6 activation 
stimulates astrocytes, with reactive astrocytes (marked by increased GFAP) promoting amyloid‑beta (Aβ) aggregation and Tau phosphorylation. 
Through STAT3 activation, CHI3L1 promotes APP expression in neurons, further driving Aβ aggregation and cognitive decline. Additionally, 
CHI3L1 induces microglial activation by regulating IL‑6, resulting in the production of IL‑6, IL‑1β, and TNF‑α, which exacerbates neuroinflammation 
and disrupts neurotransmitter signaling. CHI3L1 also activates the MAPK and NF‑κB pathways, contributing to Aβ accumulation and neuronal 
inflammation via RAGE activation in both astrocytes and neurons
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plays a pivotal role in regulating cytokines that activate 
microglia and astrocytes, leading to the release of proin-
flammatory mediators such as TNF-α, IL-1β, IL-6, and 
nitric oxide (NO), all of which contribute to DA neuron 
apoptosis. This activation of microglia also stimulates 
astrocytes, resulting in further secretion of IL-6, IL-1α, 
IL-1β, and NO. Together, CHI3L1, along with microglia, 
astrocytes, and T cells, sustains chronic neuroinflamma-
tion, perpetuating DA neuron loss in PD (Fig. 8).

The contrasting findings regarding CHI3L1 in PD high-
light the complex nature of the disease and underscore 
the need for further research to fully elucidate CHI3L1’s 
role. More studies are essential to clarify how CHI3L1 
may influence PD progression and whether it could serve 
as a biomarker or therapeutic target. Given the limited 
literature on CHI3L1’s impact in PD, expanding our 
understanding in this area could reveal new opportuni-
ties for managing this challenging condition. Moreover, a 
deeper investigation into CHI3L1’s role in PD may help 

distinguish it from other neurodegenerative diseases, 
such as Alzheimer’s disease, by shedding light on the 
distinct molecular mechanisms at play in each condi-
tion. This knowledge could pave the way for more precise 
treatment strategies by leveraging insights into neuro-
inflammation and the specific contributions of proteins 
like CHI3L1 in PD pathogenesis. As the field advances, 
unraveling the complexities of CHI3L1 in PD will be crit-
ical for developing innovative therapeutic strategies, ulti-
mately improving outcomes for patients.

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a devastating neu-
rodegenerative disease characterized by the progres-
sive loss of motor neurons, leading to muscle weakness, 
paralysis, and ultimately respiratory failure. Neuroin-
flammation has emerged as a central mechanism in ALS 
pathogenesis, contributing to motor neuron degenera-
tion and disease progression [149, 150]. Elevated levels 

Fig. 8 CHI3L1 pathogenesis and glial‑immune cell interactions in PD. In PD, proinflammatory cytokines produced by Th1 and Th17 cells activate 
astrocytes and microglia, leading to the apoptosis of DA neurons. Conversely, Treg and Th2 cells may provide protection against neuroinflammation. 
The accumulation of α‑synuclein initiates PD, thereby activating astrocytes and microglia. CHI3L1 regulates cytokines, which further activate 
microglia and astrocytes. Activated microglia release TNF‑α, IL‑1β, IL‑6, and NO, which contribute to DA neuron degeneration. Microglia 
also activate astrocytes, resulting in secretion of IL‑6, IL‑1α, IL‑1β, and NO. Overall, T cells, astrocytes, microglia, and CHI3L1 collaborate to sustain 
neuroinflammation and DA neuron loss in PD patients
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of CHI3L1 have been detected in CSF and plasma sam-
ples from ALS patients, suggesting its involvement in the 
disease’s complex pathology [78, 151, 152]. In the ALS 
context, CHI3L1 is upregulated in astrocytes and micro-
glia in response to neuroinflammatory signals, which are 
major drivers of the chronic inflammatory environment 
that accelerates neuronal damage [67].

Recent studies have further elucidated CHI3L1’s role 
in ALS. Dreger and the colleagues reported significantly 
elevated CHI3L1 levels in ALS patients compared to 
healthy controls, with these levels correlating strongly 
with clinical measures of disease severity and the rate of 
motor decline [153]. This highlights CHI3L1 as a poten-
tial biomarker for tracking disease progression. Similarly, 
another study identified CHI3L1 as a critical media-
tor in the activation of microglial cells within the spinal 
cord. These activated microglia release proinflammatory 
cytokines and exacerbate oxidative stress, creating a toxic 
environment for motor neurons and further accelerating 
disease progression [154]. Meanwhile, in  vitro and ani-
mal model studies further suggest that CHI3L1 modu-
lates glial cell activity and neuroinflammatory pathways 
through its interaction with receptors such as IL-13 
receptor α2 [155]. This interaction likely amplifies the 
production of inflammatory mediators, contributing to 
the neurodegenerative cascade.

Given its multifaceted role, CHI3L1 has emerged as a 
promising biomarker and therapeutic target in ALS. Tar-
geting CHI3L1 with inhibitors or neutralizing antibod-
ies could mitigate neuroinflammation and slow disease 
progression, though further research is needed to refine 
therapeutic strategies and assess safety.

Creutzfeldt‑Jakob Disease
Creutzfeldt-Jakob Disease (CJD), also known as prion 
disease, is a rare and fatal neurodegenerative disorder 
caused by the accumulation of misfolded, transmissible 
protein particles [30]. This disease is characterized by 
rapid neuronal loss, gliosis, and a pronounced neuroin-
flammatory response. Recent research has highlighted 
the potential of chitinases, particularly CHI3L1, as diag-
nostic biomarkers for differentiating CJD from other 
neurodegenerative disorders [29].

Studies measuring glial markers in protein misfold-
ing dementias found significantly elevated CSF CHI3L1 
levels in patients with sporadic CJD compared to Alz-
heimer’s disease, frontotemporal dementia, and healthy 
controls [156]. Although other markers such as Chi-
tinase 1 and GFAP were also elevated in CJD patients, 
they lacked the specificity to differentiate between neu-
rodegenerative dementias [156]. In a separate study, CSF 
CHI3L1 levels were significantly higher in sporadic CJD 
patients compared to both neurologic controls and those 

with other neurodegenerative diseases. Moreover, these 
levels strongly correlated with tau, a marker of axonal 
degeneration, suggesting CHI3L1’s potential as a surro-
gate marker for disease progression [29, 157].Peripheral 
blood studies also revealed significantly higher plasma 
CHI3L1 levels in CJD patients compared to individu-
als with other neurodegenerative dementias, neurologic 
controls, and healthy individuals [37, 79]. Histological 
analyses further demonstrated marked upregulation of 
CHI3L1 in the frontal cortex and cerebellum of sporadic 
CJD patients, correlating positively with GFAP levels, 
further implicating CHI3L1 in the neuroinflammatory 
processes driving disease progression [79].

The distinct elevation of CHI3L1 in CJD highlights 
its diagnostic and prognostic utility. CHI3L1 not only 
reflects the neuroinflammatory response characteristic 
of prion diseases but also serves as a differentiating fac-
tor among protein misfolding dementias. These findings 
underscore CHI3L1’s potential as a biomarker for early 
diagnosis and monitoring of CJD progression, while also 
suggesting its relevance for exploring therapeutic inter-
ventions targeting neuroinflammation in prion disorders.

Neuroinflammatory diseases
Neuroinflammatory diseases are characterized by 
immune-mediated processes that lead to inflammation 
within the CNS. CHI3L1 plays a critical role in modulat-
ing glial activation, cytokine production, and BBB integ-
rity. Elevated levels of CHI3L1 have been associated with 
disease progression and tissue damage in multiple sclero-
sis, neuromyelitis optica, and HIV-associated dementia, 
making it a key player in these pathologies.

Multiple sclerosis
Multiple sclerosis (MS) is a chronic condition affecting 
the CNS, characterized by inflammation and demyelina-
tion in both grey and white matter, leading to widespread 
neurodegeneration [158, 159]. MS manifests in various 
phenotypes, including relapsing–remitting MS (RRMS), 
clinically isolated syndrome (CIS), primary-progressive 
MS (PPMS), secondary progressive MS (SPMS), exclud-
ing radiologically isolated syndrome (RIS) [160], with 
inflammation being a common feature across all clas-
sifications [158, 159]. Typically, the onset of MS often 
presents as an acute neurological episode [161], and mag-
netic resonance imaging (MRI) plays a crucial role in pre-
dicting the progression toward a definitive MS diagnosis. 
Given this, the search for biomarkers that can distinguish 
between MS stages and provide prognostic insights into 
disease progression is crucial [161].

Recent evidence suggests that CSF CHI3L1 levels may 
serve as a promising diagnostic and prognostic marker 
for MS [8, 162]. The detected levels of CHI3L1 indicate 
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its secretion by reactive astrocytes in regions of active 
demyelination [69, 163]. Elevated CSF CHI3L1 levels 
have been linked to cognitive impairments in the early 
stages of MS [164]. Notably, increased CSF CHI3L1 levels 
have been observed in patients progressing to clinically 
definite MS, correlating with the number of gadolinium-
enhanced lesions, disability progression, and a faster 
transition to confirmed MS [161]. However, the influence 
of CSF CHI3L1 levels on the progression of RIS to MS 
remains debated [165, 166]. Furthermore, CHI3L1 levels 
in the CSF vary across different MS stages, being higher 
in patients with active RRMS and SPMS than in those 
with inactive RRMS or healthy individuals [167]. CHI3L1 
concentrations also tend to increase as the disease pro-
gresses, with higher levels found in individuals with pro-
gressive MS compared to those with RRMS [167–169].

In MS, the damaged BBB allows T-lymphocytes and 
B-lymphocytes to infiltrate the CNS, where they inter-
act with microglia and other immune cells. These 

interactions result in the release of antibodies and 
cytokines, including CHI3L1, which can become patho-
genic during inflammation. CHI3L1, in conjunction with 
antibodies, may directly cause damage to target cells or 
alter their function, leading to demyelination. Addition-
ally, secreted CHI3L1 and antibodies may indirectly 
promote demyelination by activating autoreactive T-lym-
phocytes, microglia, and macrophages, further exac-
erbating neuroinflammation and tissue damage [170]. 
This highlights CHI3L1’s role in driving both immune 
activation and tissue injury, making it a key player in MS 
pathogenesis (Fig. 9).

Recent studies suggest that analyzing CSF CHI3L1 
in conjunction with neurofilament light chain protein 
(NFL) could improve the differentiation of MS pheno-
types [162], as NFL correlates with disease activity while 
CHI3L1 is associated with disease progression [170, 171]. 
This combination of biomarkers has proven useful in 
predicting clinical outcomes, with higher NFL and lower 

Fig. 9 Mechanisms of CHI3L1 and immune cell pathogenicity in multiple sclerosis. In multiple sclerosis, T‑lymphocytes and B‑lymphocytes breach 
the permeable blood–brain barrier and enter the CNS. Interactions between T‑lymphocytes, B‑lymphocytes, and microglia lead to the release 
of antibodies and cytokines, including secreted CHI3L1, which can become pathogenic during inflammation. Antibodies may induce vascular 
damage and CNS inflammation through complement‑dependent or antibody‑dependent cellular cytotoxicity, mediated by Fc receptors 
on microglia and macrophages. Autoreactive B‑lymphocytes infiltrate the brain, resulting in elevated intrathecal antibody production. The binding 
of CHI3L1 and antibodies to target cells may directly cause damage or alter cellular function, leading to demyelination. Additionally, secreted 
CHI3L1 and antibodies can indirectly promote demyelination by activating autoreactive T‑lymphocytes, microglia, and macrophages
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CHI3L1 levels being more typical in RRMS patients 
[170].

Overall, CHI3L1 levels across different MS phenotypes 
offer valuable insights into disease progression, and when 
combined with NFL levels, they provide a more compre-
hensive tool for distinguishing between MS subtypes. 
Although CHI3L1 shows promise as a target for novel 
treatments, further research is necessary to fully under-
stand its role in MS. As our understanding deepens, 
CHI3L1 may become a crucial component in developing 
personalized treatment plans for MS patients, aimed at 
improving outcomes. The path forward includes explor-
ing how CHI3L1 can be used not only to diagnose MS 
earlier but also to guide targeted therapies that could 
slow or modify the course of the disease.

Neuromyelitis optica
Neuromyelitis optica (NMO) is an autoimmune disor-
der primarily affecting the optic nerves and spinal cord. 
While research involvement in NMO is less explored, 
emerging evidence suggests that CHI3L1, secreted pre-
dominantly by activated astrocytes, plays a significant 
role in neuroinflammation [50]. CHI3L1 has been recog-
nized as a prominent biomarker in neurological disorders 
marked by neuroinflammation, including autoimmune 
diseases such as NMO spectrum disorder (NMOSD) 
[69]. NMO is driven by autoantibodies targeting the 
astrocyte protein aquaporin-4 (AQP4), leading to vision 
loss, motor deficits, and cognitive decline. A recent study 
by Qi and the colleagues found a correlation between 
elevated CHI3L1 levels and disease severity in NMO, 
suggesting its potential utility for monitoring disease 
progression and treatment response [80]. Similarly, Floro 
and the colleagues observed significantly higher CHI3L1 
levels in NMO patients compared to those with MS, indi-
cating a more specific role of CHI3L1 in NMO [68].

Recent findings further expand CHI3L1’s role in NMO-
related neuroinflammation by implicating its signaling in 
hippocampal neurogenesis and cognitive function. This 
novel mechanism involves CHI3L1 engaging the chem-
oattractant receptor-homologous molecule expressed 
on Th2 cells (CRTH2), leading to the suppression of 
β-catenin signaling, which is crucial for neurogenesis 
[31]. Importantly, studies have demonstrated that block-
ing the CHI3L1/CRTH2/β-catenin signaling cascade can 
restore neurogenesis and improve cognitive outcomes 
[31], highlighting a potential therapeutic strategy for 
addressing neuroinflammatory disorders like NMO.

Additionally, CHI3L1’s interaction with immune 
cells, such as microglia and T cells, likely contributes to 
the inflammatory milieu of NMO lesions, influencing 
cytokine release and extracellular matrix remodeling, 

thereby exacerbating disease pathology [172]. These 
findings highlight CHI3L1 as both a diagnostic bio-
marker and a potential therapeutic target in NMO. 
However, further research is needed to fully elucidate 
its role in the immunopathogenesis of the disease.

HIV‑associated dementia
HIV-associated dementia (HAD) represents the most 
severe form of HIV-associated neurocognitive disor-
der (HAND), characterized by cognitive impairments 
caused by chronic HIV infection and the accompanying 
inflammatory response in the CNS [173]. The neuroin-
flammatory environment induced by HIV leads to glial 
cell activation and the subsequent release of inflamma-
tory mediators, including CHI3L1, which exacerbates 
neuronal injury [173].

Studies have demonstrated elevated CHI3L1 levels in 
the CSF and serum of individuals with HAD, implicat-
ing its involvement in neuroimmune responses [70]. 
Hermansson and the colleagues identified increased 
CHI3L1 expression in the brains of HAD patients, cor-
relating with their cognitive decline [81]. Their follow-
up investigations revealed that CHI3L1 is upregulated 
in microglial cells following HIV infection, contributing 
to chronic neuroinflammation and neuronal damage, 
hallmark features of HAD [81].

The upregulation of CHI3L1 in response to HIV-
induced glial activation underscores its dual potential 
as a diagnostic biomarker and therapeutic target for 
HAD. However, the prevalence of HAD has signifi-
cantly decreased due to widespread antiretroviral ther-
apy, limiting the opportunities for further study [173]. 
Nonetheless, these findings emphasize CHI3L1’s role 
in HIV-related neurodegeneration and its potential for 
therapeutic strategies aimed at alleviating cognitive 
deficits in HIV-infected individuals.

Clinical relevance of targeting CHI3L1 
in the treatment of brain and neurodegenerative 
diseases
The exploration of CHI3L1 inhibition and modu-
lation as a therapeutic strategy has shown prom-
ising results in preclinical studies across various 
neurological disorders, highlighting its potential in 
mitigating neuroinflammation [174]. Importantly, sub-
stantial advancements through CHI3L1 inhibition have 
significantly slowed disease progression while demon-
strating favorable biological safety, positioning these 
treatments as promising candidates for future clinical 
application.
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Therapeutic strategies for CHI3L1 inhibition 
and modulation
Several strategies have been developed to disrupt or 
inhibit CHI3L1 function (Table  2). One approach 
involves the use of small-molecule inhibitors that spe-
cifically target CHI3L1. Studies have shown that these 
inhibitors can reduce CHI3L1 expression and attenuate 
its proinflammatory effects in various cell types, includ-
ing microglia, astrocytes, and cancer cells. For example, 
K284-6111, a compound identified by South Korean 
researchers, has demonstrated the ability to counteract 
memory dysfunction by dampening neuroinflamma-
tion through CHI3L1 inhibition and activation of the 
ERK-dependent PTX3 pathway [47]. Meanwhile, in an 
AD mouse model (Tg2576), K284-6111 reduced neuro-
inflammatory responses and improved memory, effects 
that were associated with the selective inactivation of the 
ERK and NF-κB pathways, both of which are activated by 
CHI3L1 overexpression in the brain [46]. Another prom-
ising inhibitor, G721-0282, has been shown to reduce 
neuroinflammation induced by chronic unpredictable 
mild stress (CUMS) and alleviate anxiety-like behaviors 
[175].

In addition to small-molecule inhibitors, the use of 
CHI3L1-neutralizing antibodies offers another promis-
ing therapeutic approach. These antibodies specifically 
inhibit proinflammatory signaling pathways and cytokine 
production, both in  vitro and in  vivo, demonstrating 
their potential to modulate the immune response within 
the brain’s microenvironment (Fig.  10). By targeting 
CHI3L1 and its associated pathways, neutralizing anti-
bodies hold significant potential as a treatment strategy 
for brain diseases, particularly in conditions marked by 
excessive neuroinflammation. For example, in lung can-
cer models, anti-CHI3L1 antibodies have been shown 
to modulate the tumor microenvironment by inhibiting 

STAT6-dependent signaling [176], leading to reduced M2 
macrophage polarization [176]. Similar antibody-based 
approaches targeting CHI3L1 could eventually offer new 
treatments for various brain and neurodegenerative dis-
eases [177, 178]. The promising results from preclinical 
studies underscore the need for transitioning these find-
ings to clinical trials to evaluate the efficacy and safety of 
CHI3L1-targeted therapies in humans.

Challenges in delivering CHI3L1‑targeting therapies
Delivering CHI3L1-targeting drugs to the brain presents 
significant challenges, particularly in overcoming the 
restrictive blood–brain barrier. Among the promising 
strategies, intranasal administration offers a direct route 
to the CNS by bypassing the BBB entirely [179, 180], thus 
avoiding systemic circulation and potentially reducing 
off-target effects. Another innovative approach involves 
the use of nanoparticle-based carriers, where function-
alized nanoparticles are equipped with ligands such as 
transferrin or apolipoproteins [181, 182]. These ligands 
facilitate targeted delivery by interacting with spe-
cific receptors expressed on brain cells, enhancing drug 
localization to the site of action. Systemic delivery meth-
ods, such as liposomal formulations [183] or antibody–
drug conjugates [184, 185], have also shown promise by 
improving drug specificity and stability while reducing 
systemic exposure to minimize undesired side effects.

However, despite these advancements, off-target effects 
remain a major concern due to the widespread expres-
sion of CHI3L1 in critical organs, including the lungs, 
liver, and kidney [1]. Such off-target activity may lead 
to serious adverse effects, such as respiratory complica-
tions, liver toxicity, or immune suppression, which could 
significantly limit the therapeutic window. Therefore, it is 
essential to design delivery systems with high precision 
and to implement rigorous monitoring protocols during 

Table 2 Lists of current available therapeutics targeting CHI3L1

IGFBP3 insulin-like growth factor-binding protein 3, G721-0282 N-Allyl-2-[(6-butyl-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidin-5-yl)sulfanyl]
acetamide. K284-6111 2-(sulfanyl)-N-(4-ethaylphenyl) butanamide, IgG immunoglobulin gamma

Therapeutic Agent Condition Type Mechanism of Action Outcome Reference

K284‑6111 Alzheimer’s Disease Small molecule Inhibition of CHI3L1 activity 
that prevents the nuclear trans‑
location and activation of down‑
stream signaling pathways 
in both in vivo and in vitro models.

Leads to beneficial effects 
by reducing amyloid plaque accu‑
mulation and neuroinflammation, 
ultimately promoting neuronal 
survival and enhancing memory 
function.

 [46]

G721‑0282 Chronic unpredict‑
able mild stress

Small molecule Modulates neuroinflamma‑
tion mediated by IGFBP3 
through the inhibition of CHI3L1

Reduces anxiety‑like behaviors 
induced by chronic unpredictable 
mild stress

 [175]

Anti‑hYKL‑40 IgG Brain tumor Monoclonal antibody Targeting CHI3L1 Neutralize CHI3L1 activity 
to inhibit its pro‑tumorigenic 
effects

 [177, 178]
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therapy. This dual focus on optimizing drug targeting and 
minimizing risks is crucial to ensure both safety and effi-
cacy in CHI3L1-targeting therapies.

Contextual complexities in CHI3L1 as a therapeutic target
Another important consideration when targeting 
CHI3L1 for brain diseases is its differential expression 
and context-specific roles across various neurodegen-
erative conditions, such as AD and PD. This underscores 
the complexity of CHI3L1’s involvement in disease 
pathophysiology.

In AD, CHI3L1 levels are significantly elevated, espe-
cially in areas with active astrocytes and microglia. 
Higher levels in CSF are linked to increased tau and Aβ 
deposits, cognitive decline, and synaptic damage, making 
CHI3L1 a potential biomarker for disease severity [29, 
31, 50]. While this increase may initially reduce inflam-
mation and support tissue repair, its prolonged elevation 
strongly correlates with worsening disease, suggesting 
that this response may become maladaptive over time. 
Conversely, CHI3L1 levels are reduced in PD [77], cor-
relating with severe phenotypes such as oxidative stress, 
mitochondrial dysfunction, and neurodegeneration. 
This reduction may indicate an impaired astrocytic and 
microglial response [77], increasing neuronal vulnerabil-
ity to environmental stress. These contrasting patterns 
highlight CHI3L1’s context-dependent roles and its asso-
ciation with distinct pathological mechanisms in differ-
ent neurodegenerative diseases.

Developing effective treatments requires a deeper 
understanding of CHI3L1’s functions across various 

disease stages and cell types. Advanced techniques like 
single-cell analysis and proteomics can clarify how 
CHI3L1 interacts with different receptors and affects 
signaling pathways. Longitudinal studies in animal mod-
els and human samples are also critical to map CHI3L1’s 
role throughout disease progression. By addressing these 
complexities, researchers can better translate CHI3L1 
findings into targeted therapies for neuroinflammatory 
and neurodegenerative diseases.

Current gaps of targeting CHI3L1 and future 
perspectives
Despite significant advances in understanding CHI3L1’s 
roles in neuroinflammation and neurodegeneration, 
critical gaps in knowledge remain. CHI3L1 is a multi-
functional protein involved in diverse physiological and 
pathological processes [62, 186]. However, achieving 
specificity and selectivity in targeting CHI3L1 while min-
imizing off-target effects on other biological pathways 
is a significant challenge. Addressing these limitations 
is essential for fully harnessing CHI3L1’s potential as a 
biomarker and therapeutic target [187]. We outline key 
unanswered questions and propose future research direc-
tions aimed at overcoming these challenges (Table 3).

Molecular mechanisms in neuroinflammation
One major gap in the field is the incomplete understand-
ing of CHI3L1’s molecular mechanisms in driving neuro-
inflammation. While its upregulation has been linked to 
the release of proinflammatory cytokines such as IL-1β, 
TNF-α, and IL-6, the signaling pathways mediating these 

Fig. 10 Therapeutic strategies targeting the CHI3L1/IL13Rα2 pathway in the tumor microenvironment involve the use of blocking antibodies 
or inhibitors. Immunosuppressive macrophages, activated by PD‑L1/PD‑1 signaling, induce CHI3L1 expression in tumor cells, leading 
to the activation of naive macrophages and promoting the accumulation of immunosuppressive macrophages in the tumor microenvironment. 
This accumulation fuels tumor progression
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effects remain underexplored. CHI3L1 interacts with 
receptors such as IL-13Rα2, CRTH2, and RAGE, trig-
gering downstream pathways like NF-κB, MAPK, and 
β-catenin signaling [34, 188]. However, the specific con-
tributions of these pathways to different neurological dis-
eases are unclear. Understanding how CHI3L1-mediated 
signaling varies across diseases is essential for developing 
targeted therapies.

Future research should focus on elucidating how 
CHI3L1 activates microglial and astrocytic responses, 
particularly its role in initiating and sustaining neu-
roinflammation. Advanced techniques like single-cell 
transcriptomics and proteomics can map downstream 
signaling pathways, revealing distinct molecular signa-
tures across different cell types and disease contexts. 
Integrating in  vivo models with spatial transcriptom-
ics could further clarify CHI3L1’s regional effects in the 
CNS, especially in areas affected by specific neurological 
diseases. These precision approaches may minimize side 
effects and enhancing the efficacy of therapies targeting 
CHI3L1 in neuroinflammatory and neurodegenerative 
disorders.

Interactions with inflammatory mediators
CHI3L1’s interactions with cytokines, chemokines, and 
their receptors remain poorly understood, representing 
a critical gap in the understanding of its role in modula-
tion of inflammatory events. While CHI3L1 engages key 
inflammatory pathways [189], the precise mechanisms 
and downstream effects of these interactions, particu-
larly their context-dependent roles in health and disease, 

require further investigation. Understanding the cross-
talk between CHI3L1 and other mediators in the CNS, 
such as IL-6, TNF-α, and IL-1β, is crucial to disentan-
gling its dual role in promoting neuroinflammation and 
supporting tissue repair.

Advanced molecular tools, including CRISPR-based 
genome editing [190], protein–protein interaction assays 
[191], and proteomics [16], could provide critical insights 
into these pathways. These technologies can help identify 
specific receptor-ligand interactions, elucidate signaling 
specificity, and differentiate CHI3L1’s pathological effects 
from its physiological functions. Furthermore, mapping 
these interactions in both in vitro and in vivo models may 
uncover disease-specific inflammatory signatures, paving 
the way for targeted interventions. Such research could 
lead to novel therapeutic strategies that selectively miti-
gate neuroinflammation without disrupting CHI3L1’s 
protective roles in CNS homeostasis.

CHI3L1’s role in the BBB integrity
CHI3L1’s effects on BBB integrity and permeability 
remain poorly understood, especially in the context of 
neuroinflammatory conditions. Emerging evidence sug-
gests that CHI3L1 may influence BBB dynamics through 
its interactions with endothelial cells [192], glial cells 
[192], and inflammatory mediators [11], potentially facil-
itating the recruitment of peripheral immune cells into 
the CNS [193, 194]. However, the precise mechanisms 
underlying these processes have yet to be elucidated.

Future studies should utilize in  vitro BBB models, 
such as microfluidic organ-on-a-chip systems, to mimic 

Table 3 Current gaps and proposed future directions

Current Gaps/Unanswered issues Future Directions/Potential Solutions

Limited understanding of CHI3L1’s molecular mechanisms in neuro‑
inflammation

Investigate CHI3L1’s signaling pathways in microglial and astrocyte activa‑
tion during neuroinflammatory responses, using single‑cell transcriptomics 
and proteomics to map downstream pathways.

Uncertainty about CHI3L1’s interactions with inflammatory media‑
tors

Dissect CHI3L1’s interactions with cytokines, chemokines, and receptors 
involved in CNS inflammation, leveraging CRISPR‑based genome editing 
and protein–protein interaction assays.

Poor understanding of CHI3L1’s role in the BBB integrity Study CHI3L1’s influence on BBB permeability and its interactions 
with endothelial cells in health and disease, using in vitro BBB models 
and high‑resolution imaging techniques.

Lack of robust animal models for studying CHI3L1 in human dis‑
eases

Develop transgenic or humanized animal models that closely mimic 
human neurodegenerative and inflammatory diseases.

Absence of specific CHI3L1 inhibitors for therapeutic use Design and test small molecules, monoclonal antibodies, or gene therapies 
targeting CHI3L1 pathways, focusing on structural biology to identify selec‑
tive modulators.

Insufficient data on the temporal dynamics of CHI3L1 expression Explore CHI3L1’s expression patterns during disease onset, progression, 
and recovery in longitudinal studies.

Limited knowledge of CHI3L1’s influence on cognitive decline Investigate CHI3L1’s effects on synaptic plasticity, neural connections, 
and cognitive processes in neurodegenerative disorders.

Lack of translational studies for CHI3L1‑targeted therapies Evaluate the efficacy, safety, and potential off‑target effects of CHI3L1‑
targeted therapies in preclinical and clinical models.
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the complex interactions between CHI3L1, endothelial 
cells, and the surrounding microenvironment. High-
resolution imaging techniques, such as live-cell confo-
cal and electron microscopy [195, 196], could be used 
to observe real-time changes in BBB permeability and 
structural integrity in response to CHI3L1. Combined 
with advanced proteomics and transcriptomics, these 
approaches could uncover key molecular interactions 
and signaling pathways. Understanding CHI3L1’s role 
in maintaining or disrupting BBB integrity could pro-
vide crucial insights to guide the development of tar-
geted therapeutic strategies that preserve BBB function 
while mitigating CHI3L1’s pathological effects, ultimately 
enhancing outcomes in neuroinflammatory and neuro-
degenerative disorders.

Lack of robust animal models
Current animal models fail to fully replicate the com-
plexity of CHI3L1-associated pathologies observed 
in humans [197]. The lack of robust systems to study 
CHI3L1’s role in neuroinflammation and neurodegenera-
tion limits the translational potential of preclinical find-
ings [198]. Developing transgenic or humanized mouse 
models [199, 200] with targeted overexpression or knock-
out of CHI3L1 in specific cell types, such as microglia, 
astrocytes, or endothelial cells, could provide a more 
accurate platform for investigating its function.

These models could be further enhanced by integrat-
ing cutting-edge imaging techniques, such as two-pho-
ton microscopy [201–203], to visualize real-time cellular 
dynamics and BBB integrity in response to CHI3L1 mod-
ulation. Additionally, combining these models with omics 
technologies, including single-cell RNA sequencing and 
proteomics [204, 205], could offer deeper insights into 
disease-specific signaling pathways and molecular inter-
actions. The creation and utilization of such sophisticated 
models would significantly improve the understand-
ing of CHI3L1’s role in CNS pathologies and facilitate 
the development of targeted therapeutic strategies with 
greater translational relevance.

Absence of specific CHI3L1 inhibitors for therapeutic 
applications
The lack of specific CHI3L1 inhibitors has significantly 
impeded the development of targeted therapies. Design-
ing agents capable of selectively modulating CHI3L1’s 
pathological pathways while preserving its physiological 
roles remains a critical challenge. Future research should 
prioritize the development of small molecules, mono-
clonal antibodies, or gene therapies that target CHI3L1’s 
interactions with its receptors [98], such as IL-13Rα2, 
CRTH2, or RAGE, or its downstream signaling cascades, 
including NF-κB, MAPK, and β-catenin pathways.

High-throughput screening of compound libraries, 
coupled with structural biology approaches such as X-ray 
crystallography [206] and cryo-electron microscopy 
[207], could accelerate the identification of selective mod-
ulators. These tools can provide insights into CHI3L1’s 
binding sites and receptor-ligand interactions, enabling 
the rational design of inhibitors with high specificity.

Additionally, future efforts should focus on delineating 
CHI3L1’s pathological effects from its protective roles, 
such as tissue repair and angiogenesis, to minimize off-
target effects. Pairing therapeutic agents with biomark-
ers to identify patients who would benefit most from 
CHI3L1 inhibition could further refine treatment strat-
egies [208]. These advancements will be instrumental 
in translating CHI3L1-targeted approaches into viable 
therapies for neuroinflammatory and neurodegenerative 
diseases.

Insufficient data on temporal dynamics of CHI3L1
The temporal dynamics of CHI3L1 expression across the 
progression of different diseases remain poorly under-
stood. Current studies often provide static snapshots of 
CHI3L1 levels, overlooking how its expression evolves 
over time and disease stages [209]. This gap limits our 
understanding of CHI3L1’s role in the initiation, progres-
sion, and resolution of pathological processes.

Longitudinal studies using advanced animal models 
and patient-derived samples are essential to map CHI3L1 
expression patterns throughout disease courses. Such 
studies could evaluate whether CHI3L1 serves as a reli-
able biomarker for early diagnosis, treatment response, 
and disease monitoring [1]. Temporal mapping could 
also reveal specific phases during which CHI3L1 modula-
tion would be most effective, enabling the identification 
of critical therapeutic windows. Moreover, integrating 
temporal data with spatial transcriptomics and proteom-
ics could uncover the interplay between CHI3L1 and 
other molecular and cellular processes over time, provid-
ing deeper insights into its dynamic role in CNS patholo-
gies [11]. Understanding these temporal dynamics is 
critical for developing and optimizing CHI3L1-targeted 
therapies.

Limited knowledge of CHI3L1’s influence on cognitive 
decline
CHI3L1’s role in cognitive decline, particularly its impact 
on synaptic plasticity [11, 210], neural connections, and 
overall cognitive processes, has received limited atten-
tion. Understanding how CHI3L1 contributes to learn-
ing and memory deficits [211] is crucial, especially in the 
context of neurodegenerative disorders such as Alzhei-
mer’s and Parkinson’s diseases, where cognitive decline is 
a hallmark feature.
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Future studies should focus on elucidating the molec-
ular and cellular mechanisms through which CHI3L1 
affects neuronal connectivity and function. Advanced 
imaging techniques, such as super-resolution microscopy 
and two-photon imaging [212, 213], could be used to 
visualize changes in synaptic connections and morphol-
ogy in response to CHI3L1 modulation. Combining these 
with electrophysiological methods, such as patch-clamp 
recordings and optogenetics [214, 215], could offer valu-
able insights into CHI3L1’s effects on synaptic transmis-
sion and plasticity. These approaches would help clarify 
the role of CHI3L1 in cognitive decline and potentially 
inform strategies to preserve or restore cognitive func-
tion in neurodegenerative conditions.

More translational studies are required
Translational research on CHI3L1-targeted therapies 
remains in its early stages, underscoring the need for 
robust preclinical and clinical studies to evaluate their 
efficacy, safety, and potential off-target effects. A deeper 
understanding of CHI3L1’s role in neuroinflamma-
tion and neurodegeneration [34] is essential for bridg-
ing the gap between experimental findings and clinical 
applications.

Future studies should focus on conducting systematic 
preclinical trials to optimize therapeutic strategies, fol-
lowed by clinical trials to assess their translational poten-
tial. Exploring the synergistic effects of CHI3L1-targeted 
therapies in combination with existing treatments, such 
as immunomodulatory or neuroprotective agents, could 
offer innovative approaches for treating complex CNS 
disorders. Additionally, employing advanced drug deliv-
ery systems, such as nanoparticle-based delivery [216] or 
BBB-penetrating technologies [217], could enhance tar-
geting efficiency and reduce systemic side effects. These 
approaches would greatly improve CHI3L1 modulation’s 
precision and therapeutic outcomes.

By addressing these gaps and pursuing the proposed 
future directions, the field can significantly advance the 
understanding of CHI3L1 in brain diseases. These efforts 
will not only enhance its potential as a diagnostic and 
prognostic biomarker but also pave the way for targeted 
therapies that mitigate its pathological effects while pre-
serving its physiological roles.

Conclusion
This review provides a comprehensive overview of the 
role of CHI3L1 in brain diseases, emphasizing its poten-
tial as a prognostic biomarker and a promising thera-
peutic target for various brain diseases, such as tumors, 
stroke, Alzheimer’s disease, Parkinson’s disease, amyo-
trophic lateral sclerosis, Creutzfeldt-Jakob disease, mul-
tiple sclerosis, neuromyelitis optica, and HIV-associated 

dementia. The role of CHI3L1 in immune cell infiltration, 
neuroinflammation, and tissue remodeling highlights its 
involvement in disease progression and recovery. How-
ever, more research is needed to fully understand its 
mechanisms, including the effects on microglia, astro-
cytes, and related signaling pathways. Further studies 
should also explore CHI3L1’s potential as a biomarker 
for predicting outcomes and monitoring disease progres-
sion, with particular focus on its levels in blood, tissues, 
and CSF. The development of CHI3L1-targeted thera-
pies, including small-molecule inhibitors and neutral-
izing antibodies, holds promise for future treatments, 
but the risks of unintended consequences must be care-
fully evaluated. Overall, CHI3L1 represents a promising 
therapeutic avenue, and advancing research is essential to 
unlocking its full potential, paving the way for treatments 
that could transform brain disease management and offer 
new hope to millions of patients worldwide.
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IL‑1α/‑1β/4/‑6/10  Interleukin‑1 alpha or ‑1 beta or ‑4 or ‑6 or ‑10
IL‑4Rα  Interleukin‑4 receptor subunit alpha
IL‑13Rα2  Interleukin‑13 receptor alpha 2
IFN‑γ  Interferon‑gamma
iNOS  Inducible nitric oxide synthase
JNK  Jun N‑terminal kinase
LAG3  Lymphocyte activation gene 3
MAPK  Mitogen‑activated protein kinase
miR‑25802  Micro ribonucleic acid 25802
MMP‑9  Matrix metalloproteinase‑9
MS  Multiple sclerosis
NF‑κB  Nuclear factor kappa‑light‑chain‑enhancer of activated B 

cells
MND  Motor neuron diseases
NMO  Neuromyelitis optica
NMOSD  Neuromyelitis optica spectrum disorder
NK  Natural killer
NO  Nitric oxide
PD  Parkinson’s disease
PD‑L1  Programmed cell death‑ligand 1
PD‑1  Programmed cell death 1
PI3K  Phosphoinositide 3‑kinase
TBI  Traumatic brain injury
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Th cell  T helper cell
TGF‑β1  Transforming growth factor beta 1
TGFR  Transforming growth factor beta receptor
Treg  Regulatory T‑cell
TMEM219  Transmembrane protein 219
TNF‑α  Tumor necrosis factor‑alpha
RAGE  Receptor for advanced glycation end‑products
siRNA  Small or short or silencing interfering ribonucleic acid
shRNA  Short hairpin ribonucleic acid
SMAD2/SMAD3  Mothers against decapentaplegic homolog 2 or 3
SNpc  Substantia nigra pars compacta
STAT3  Signal transducer and activator of transcription 3
VEGF  Vascular endothelial growth factor
Wnt  Wingless‑related integration site
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