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known as the high-gamma band [4]. Gamma rhythms in 
various brain regions are believed to be integral to infor-
mation storing and processing [5]. In the hippocampal 
CA1 region, these frequency bands specifically manifest 
during distinct phases of hippocampal coding, suggest-
ing that they facilitate the routing of information origi-
nating from various brain areas to CA1 [6]. Especially, 
the low γ rhythms emanating from the primary visual 
cortex tend to process higher spatial frequency informa-
tion [7]. Moreover, γ oscillations have been extensively 
investigated in the cortex, hippocampus, amygdala, olfac-
tory bulb, striatum, and brainstem and found to play a 
critical role in sensory processing [8], perceptual integra-
tion [9], recognition, working memory [10], locomotion 
[11], and emotion [12]. In contrast, disrupted γ oscilla-
tions induce aberrant neural activity and brain dysfunc-
tion (Table 1) [13]. For example, disrupted γ oscillations 

Introduction
Brain oscillations refer to rhythmic brain activity [1]. 
Endogenous brain oscillations occur at different fre-
quencies, including delta (δ, 1–4 Hz), theta (θ, 4–12 Hz), 
beta (β, 15–30), and gamma (γ, 30–80  Hz) bands [2, 3] 
(Fig. 1). Additionally, alterations in oscillatory power are 
observed across a broad frequency range (80–250  Hz), 
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Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous 
system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, 
gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are 
essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current 
stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic 
modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore 
the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer’s 
disease, Parkinson’s disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma 
entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This 
review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from 
both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic 
approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in 
implementing such strategies.
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cause dysregulation of neural circuits involved in cog-
nitive function, exacerbating Alzheimer’s disease (AD) 
pathology [14, 15]. Furthermore, in an animal model of 
depression-like behaviors, including Flinders sensitive 
line (FSL) rats and mice expressing the truncated Dis-
rupted-in-schizophrenia 1 (Disc1) mutation, γ oscillation 
abnormalities are observed [16, 17]. Emerging evidence 
suggests that the abnormal γ oscillations could be a bio-
marker for major depression [18].

Multiple studies demonstrate the beneficial effects of 
γ oscillation stimulation (Table  2) [19–22]. Currently, γ 
stimulations are conducted using a variety of methods, 
including non-invasive techniques such as sound [23], 
light [24], electricity [25], and magnetism [26], as well 
as invasive methods like optogenetic stimulation [27]. 
Promisingly, γ stimulation produced by non-invasive 
or invasive approaches has been shown to exert potent 
neuroprotective effects in brain disorders [24, 28, 29]. 
Parvalbumin-expressing (PV+) interneurons, which 
innervate the perisomatic regions of pyramidal neurons, 
are believed to be pivotal in regulating and sustaining γ 
oscillations within the brain [30]. Substantial evidence 
supports the notion that modulating γ oscillations affects 
neurocircuit function and behavior [11, 20, 31, 32]. 
Therefore, this review provides an overview of current 
research progress on the potential therapeutic effects of 

γ oscillations in various brain disorders. Furthermore, 
this review focuses on moderating γ activity in the brain 
through external stimulation, particularly on 40  Hz γ 
activity.

Gamma oscillations
Gamma oscillations are rhythmic fluctuations across 
multiple brain regions, characterized by local field poten-
tial changes and interareal coherence, and aid in sen-
sory information processing, attentional selection, and 
memory operations [33, 34]. For example, enhanced γ 
activity is observed in the neocortex and hippocampus 
during sensory information transmission and in interar-
eal coherence [34]. As mentioned above, gamma rhythms 
are categorized into narrowband gamma (i.e., gamma 
oscillations) and broadband γ (i.e., high gamma), which 
exert different biophysical effects [35]. Whereas nar-
rowband gamma represents a “true” gamma oscillation, 
broadband gamma often represents a non-oscillatory or 
“aperiodic” electroencephalography (EEG) phenomenon 
[35]. Mechanistically, the emergence of γ oscillations has 
been attributed to γ-aminobutyric acid type A (GABAA) 
receptor-mediated inhibition involving interactions 
between fast-spiking and PV + interneurons [36, 37]. Fur-
thermore, functional differences in PV + interneurons are 
observed in multiple disorders, disrupting the excitation/

Fig. 1 Diagram illustrating brain oscillation at different frequencies, including delta (δ, 1–4  Hz), theta (θ, 4–12  Hz), beta (β, 15–30), and gamma (γ, 
30–80 Hz) oscillations. The γ oscillation is associated with heightened perception, learning, problem-solving tasks, and cognitive processing
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inhibition balance and causing abnormalities in γ oscil-
lations [38, 39]. Empirical evidence has elucidated that 
optogenetic stimulation of PV + interneurons amplifies 
oscillatory γ activity, while inhibition of PV + interneu-
rons diminishes γ oscillations [40]. For instance, thera-
peutics designed to target PV + interneurons specifically 
have been shown to restore normal γ oscillation patterns, 
thereby enhancing the cognitive function of the J20-APP 
AD mouse model through optogenetic interventions [2].

With evidence highlighting the critical role of γ oscil-
lations in sensory and cognitive processes, researchers 
have investigated the presence of abnormal γ oscillations 
in neurological and neuropsychiatric conditions [41, 42]. 
Indeed, γ-frequency oscillations are disrupted in vari-
ous brain disorders, including AD [14], Parkinson’s dis-
ease (PD) [43], stroke [44], Schizophrenia (SCZ) [45], and 
autism spectrum disorder (ASD) [46]. These disrupted 
γ-frequency oscillations impair neuronal encoding and 
sensory and/or cognitive information transformation 

Table 1 Aberrant γ oscillations in central nervous system diseases
Subject Pathophysiology Neural oscillations Characteristics Ref.
Alzheimer’s disease
TgF344-AD rats Synaptic dysfunction

Neuronal hyperexcitability
SWR power ↑
SWR duration ↓
θ-γ coupling↓

Cognitive impairment [139]

C57BL/6, PV-Cre 
knock-in mice, 
SST-IRES-Cre 
knock-in mice

Aβo1-42 causes synapse-specific dysfunctions in 
PV and SST interneurons

θ-nested γ oscillations↓
LTP↓

Memory encoding 
dysfunction

[140, 
143]

(APP)/PS1 mice Dysfunction of reciprocal dendrodendritic syn-
apses between GCs and MCs

LFP↑
Aberrant increase in γ oscillations↑

Olfactory impairment
preceding learning 
defect

[152]

APP/PS1 and 3xTg 
mice

Decrease in the excitatory responses of M/T cells Ability of M/T cells to trigger interneuron 
GABA release↓

Olfactory dysfunction [153]

Human apoE4-KI 
C57BL/6 mice

ApoE4-induced GABAergic interneuron loss SWR-associated slow gamma power in the 
hippocampus↓

Learning and memory 
deficits

(14, 
207)

C57BL/6 mice Loss of tau homeostasis in hilar astrocytes of the 
dentate gyrus; Altered mitochondrial dynamics 
and function

Gamma oscillations and the number of neu-
rons expressing PV in the dentate gyrus↓

Spatial memory 
impairments

[150]

Parkinson’s disease
PD patients Dopamine depletion

The basal ganglia function disruption
Recruitment of fast gamma bursts during 
movement ↓

Bradykinesia [169]

PD patients LTP-like plasticity capacity in M1↓ γ oscillations within the basal ganglia-thala-
mocortical network↓

Locomotor dysfunction [123]

C57BL/6 mice Dopamine depletion selectively disrupts interac-
tions between striatal neuron subtypes and LFP 
oscillations

Striatal transient high-γ (60–100 Hz) power ↑ Movement ini-
tiation and rotation 
impairment

(208)

Stroke
C57/BL6J mice Enduring depolarization and interneuron func-

tion impairment
The activity of adjacent excitatory neurons↓ Vascular and behav-

ioral dysfunction
[29]

Two-vessel oc-
clusion (2VO) rat 
model

Reduction of the theta-gamma cross-frequency 
coupling strength in the hippocampus

Short and long-term potentiation 
impairment

Cognitive dysfunction [179]

Schizophrenia
Sdy mice Dysbindin-1 mutation-induced defective mito-

chondrial fission
Gamma range integrated power in CA3 ↓ Cognitive impairment [186]

Dlx5/6(+/-) mice Abnormalities in GABAergic interneurons FSINs generate gamma oscillations↓ Disrupt PFC-depen-
dent cognition

[68]

Autism spectrum disorder
ASD patients The number of interneurons↓

Dysregulation in GABA receptor subunit 
expression

Imbalance between excitatory and inhibitory 
signaling

Impairments in activi-
ties of daily living

[37]

ASD patients Spontaneous gamma activity in frontal, temporal, 
and right-lateral regions↓

Task-related gamma power↓; Long- and 
short-range gamma connectivity↓

Sensory abnormalities [190]

SWR, sharp wave-ripple; PV, parvalbumin interneurons; SST, somatostatin interneurons; LTP, long-term potentiation; GCs, Granule cells; MCs, mitral cells; LFP, local 
field potential; OSNs, olfactory sensory neurons; EOG, electro-olfactogram; M/T cells, mitral/tufted cells; M1, primary motor cortex; FSINs, fast-spiking interneurons; 
PFC, prefrontal cortex
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Method Protocol Subject Outcome Behavior Ref.
Cognitive disorders
Optogenetic ac-
tivation of PV and 
SST interneurons

5 Hz C57BL/6 mice, PV-Cre knock-in mice, SST-
IRES-Cre knock-in mice

Restores theta-nested gamma 
oscillations and oscillation-in-
duced spike timing-dependent 
LTP

Memory encoding↑
The execution of cog-
nitive function↑

[140]

Auditory or audio-
visual stimulation

40 Hz, 2 h/day, 14 
days

ApoE4 Knock-In Mice Amyloid protein levels↓ Neu-
ronal apoptosis↓ cholinergic 
transmission↑

Cognitive 
performance↑
Neuropathology↓

[158]

Optogenetic 
stimulation of
parvalbumin 
neurons

40 Hz J20-APP
AD mouse
5XFAD mice

Slow gamma oscillations am-
plitude and phase-amplitude 
coupling↑
Aβ deposition↑

Spatial memory↑ [2, 
106]

Optogenetic stim-
ulation of FS-PV 
interneurons

40 Hz, 1 h/day 5XFAD mice Aβ1–40 and Aβ1–42 isoforms 
level↓
Microglial Aβ uptake ↑

Cognitive function↑ [48]

Visual stimulation 40 Hz, 1 h/day, 
7 days

5XFAD mice Aβ levels↓
Microglial Aβ uptake↑

Cognitive function↑ [48]

Chronic daily 
gamma visual 
entrainment

40 Hz, 1 h/day, 22 
days

Tau P301S mice
CK-p25 mice

Neuronal loss↓
DNA damage↓
Synaptic function ↑
Neuroprotective factors↑

Learning and spatial 
memory ↑
Neurodegeneration↓

[21]

Combined vi-
sual and auditory 
stimulation

40 Hz, 1 h/d, for 
7 days

5XFAD mice Aβ levels↓
Tau phosphorylation↓
Reactive astrocytes and 
microglia↑

Recognition and spatial 
memory↑

[20]

Transcranial fo-
cused ultrasound

40 Hz 5XFAD mice Microglia activation↑
Aβ plaque clearance↑

Learning and memory↑ [159]

Transcranial 
alternating current 
stimulation

40 Hz, 1 h/day, 4 
weeks

Patients with mild-to-moderate dementia 
(AD)

p-Tau burden temporal lobe 
regions↓

Cognitive function↑ [166]

Visual stimulation 30–50 Hz,
1 h/day, 14 days

two-vessel occlusion (2VO) rat model Reinstated the synchronization 
of phase-amplitude coupling 
with theta oscillations

Degeneration↓
Cognitive function↑

[49]

Mental disorders
Visual stimulation 40 Hz, 1 h/day, 30 

days
APP/PS1 AD mouse Aβ deposition↓

Clock proteins expression↑
Circadian rhythm 
disorders↓

[22]

Chronic multi-
sensory gamma 
stimulation

40 Hz, 20 min per 
session, 3 ses-
sions per block

C57BL/6 PD mice p-α-Syn deposition↓
Stress-related ACTH and
corticosterone levels↓

Depressive behaviors↓ [173]

Visual stimulation 40 Hz, 2 h/d, for 
21 days

C57BL/6 stroke mice Anxiety susceptibility to stress 
exposure ↓
Microglia activation ↓

anxiety-like behaviors↓ [78]

Motor disorders
iTBS-γ tACS 
costimulation

70 Hz (γ-tACS) 
and 20 Hz 
(β-tACS)

PD patients LTP-like plasticity↑
Facilitation of MEPs↑

Motor function↑ [123]

Sensory 
stimulation

40 Hz, 2 h/day, 1 
month

C57BL/6 PD mice α-Syn clearance↑
Cell apoptosis in M1↓

Neuromuscular 
strength↑

[173]

Vibration at 
gamma frequency

40 Hz,
25 min/day,
12 weeks

PD patients Tremor↓
Rigidity↓
Bradykinesia↓

Motor symptoms↑ [174]

Deep brain 
stimulation

160 Hz PD patients The cross-frequency interac-
tions between finely tuned 
gamma oscillations↑

Motor performance ↑ 
Beta power ↓ Gamma 
power ↑

(209)

Table 2 The effect of gamma entrainment in central nervous system diseases
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[30, 35]. Research suggests that γ oscillations may serve 
as potential biomarkers for neural imbalances or inter-
neuron dysfunction, reflecting the underlying patho-
physiological mechanisms of essential neural functions 
in neuropsychiatric diseases [40, 47, 48]. Thus, reinstat-
ing normal γ activity is a potential therapy for improv-
ing higher-order cognition, sensory-motor integration, 
working memory, attention, perceptual binding, and net-
work synchronization.

Sensory stimulation methods to induce gamma 
oscillations
Various stimulation modalities are currently used to 
induce γ entrainment, including sensory stimulation, 
optogenetics, transcranial electrical or magnetic stimula-
tion, and deep brain electrical stimulation (Fig. 2) [40].

Gamma entrainment using sensory stimuli
Various studies on animal models and human diseases 
have investigated Gamma Entrainment Using Sen-
sory stimuli (GENUS), primarily involving auditory and 
visual entrainment [20, 32, 49, 50]. The potential clinical 

Fig. 2 Gamma entrainment using sensory stimuli (GENUS). GENUS encompasses a range of methodologies, including visual stimulation, auditory simula-
tion, audiovisual combined stimulation, and somatosensory stimulation. Feasible clinical advantages stemming from γ sensory stimulation emanate from 
alterations in neural function, neural circuitry, and immune signaling pathways

 

Method Protocol Subject Outcome Behavior Ref.
Optogenetic 
stimulation of 
interneurons

40 Hz, 1 h/d C57/BL6J stroke mice Spreading depolarizations 
Cerebral blood flow ↑

Motor performance ↑
Brain swelling and 
lesion volume ↓

[29]

Optogenetic 
stimulation of the 
nucleus basalis

20 Hz Thirty-five adult ChAT-Cre/Ai32(ChR2-YFP) Acetylcholine↑
Improved recovery of reaching 
and movement scores

Functional recovery↑
Motor behavior↑

[176]

PV, parvalbumin interneurons; SST, somatostatin interneurons; LTP, long-term potentiation; FS-PV, fast-spiking, parvalbumin-positive interneurons; VC, visual 
cortex; AC, auditory cortex; mPFC, medial prefrontal cortex; ACTH, adreno-cortico-tropic-hormone; MEPs, motor-evoked potentials;

Table 2 (continued) 
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benefits of γ sensory stimulation are likely derived from 
flicker-induced changes in neural function, circuitry, and 
immune signaling pathways.

Visual stimulation
The magnitude of visual oscillations is influenced by the 
frequency, chromaticity, and luminance of the light stim-
ulus [40]. During experiments, participants wear por-
table opaque eye masks and earplugs while undergoing 
scalp-EEG recording. They are exposed to flickering light 
in the γ band to evoke γ oscillations [51, 52]. In animal 
models, the visual aspect of GENUS involves moving the 
animals from the holding room to a flicker cage, where 
light-emitting diodes (LEDs) deliver flickering light at the 
desired frequency [21].

Brain oscillatory activity is one of the fundamen-
tal mechanisms supporting cognitive processes. Pres-
ent studies indicate that exposure to γ light stimulation 
leads to functional reorganization across diverse brain 
regions and modulates functional connectivity within rel-
evant neural networks [53, 54]. EEG results demonstrate 
γ wave light flicker augments the power of brain oscil-
lations in healthy individuals, emphasizing enhancing 
activity in the occipital regions bilaterally [55]. Addition-
ally, microglia exhibit a notable affinity for PV + neurons 
and can restructure perineuronal nets (PNNs), which are 
crucial for regulating critical period plasticity in the adult 
cerebral cortex [56, 57]. Evidence shows that exposure to 
γ wave light flicker reduces PNN coverage in the healthy 
adult brain and promotes juvenile-like plasticity [56]. In 
parallel, γ oscillations elicited by light flicker stimula-
tion have been shown to benefit cognitive function and 
synaptic plasticity in animal models [58, 59]. Prolonged 
exposure to γ visual flicker drives the reorganization of 
stress-related neural circuits and enhances hippocampal 
neuroplasticity in wild-type mice [59]. Visual stimulation 
with low γ light flicker induces slow γ oscillations in the 
hippocampal CA1 region, thereby alleviating cognitive 
impairments in the mouse two-vessel occlusion (2VO) 
model of cerebral ischemia [58]. Similar investigations 
in Tau P301S and CK-p25 mice also demonstrated that 
chronic γ flickering light stimulation enhances functional 
neuronal connectivity across brain areas, ameliorates 
neuronal loss, reduces DNA double-strand breaks, offers 
neuroprotection, and improves spatial memory [21].

Previous studies have shown that flickering light stim-
ulation induces neuronal spiking activity, significantly 
reducing β-amyloid (Aβ) plaque burden in the visual cor-
tex of 5XFAD mice and facilitating microglial morpho-
logical transformation [60]. Furthermore, visual gamma 
entrainment reduces phosphorylated tau levels in tauop-
athy mouse models, including P301S and CK-p25, while 
inducing microglial responses similar to those observed 
in 5XFAD mice [21]. However, in elderly C57BL/6J mice, 

γ oscillations induced by visual stimulation did not sig-
nificantly alter microglial transition to a phagocytic state, 
microglial quantity, or neuroinflammatory markers [21]. 
Similarly, in an animal model of ischemic stroke, microg-
lial responses to GENUS appear limited, suggesting that 
its effects on microglia may depend on disease status 
or genetic background [13, 58]. As a result, the precise 
mechanisms and implications of microglial alterations 
induced by γ wave visual stimulation remain to be deter-
mined. In addition, γ stimulation positively modulates 
neuroimmune biochemical signaling. Exposure to γ 
flickering lights in wild-type mice upregulates cytokines 
such as IL-6, and IL-4, enhances microglial phagocytosis, 
and increases the expression of chemokines, including 
macrophage colony-stimulating factor and monokines 
induced by interferon-γ [61]. This neuroimmune activa-
tion is mediated by γ-induced phosphorylation of pro-
teins in the nuclear factor κ-light-chain-enhancer of 
activated B cells (NF-κB) and mitogen-activated protein 
kinase pathways [61].

Auditory simulation
Consistent exposure to auditory stimulation has been 
shown to maintain magnetic field amplitudes in the audi-
tory cortex and induce progressive changes in synaptic 
efficacy and sensory input, thereby influencing neuronal 
activity [62]. In animal models, the auditory component 
of GENUS is administered by exposing animals to tones 
flickering at the target frequency in a dimly lit, sound-
proofed room [20]. In humans, auditory stimulation is 
provided through earphones that emit tones at the speci-
fied frequency, while participants wear LED goggles [52, 
63]. Previously, auditory cue-triggered neuronal synchro-
nization was discovered and termed Auditory Steady-
State Response [64, 65]. It was previously believed that 
auditory-driven gamma oscillations were restricted to the 
temporal/auditory cortex [65, 66]. However, recent find-
ings propose that auditory-driven γ oscillations instead 
encompass the entirety of the cortical mantle [66]. This 
widespread cortical distribution of auditory-driven γ 
oscillations is supported by diverse research methods, 
including whole-head EEG, Magnetoencephalography 
(MEG), invasive recordings, and electrocorticography 
(ECoG), which collectively confirm that γ auditory expo-
sure induces γ synchronization across the entire cortical 
surface [67–70].

Cerebral blood flow (CBF) and vascular changes asso-
ciated with auditory stimulation-induced γ oscillations 
have also been investigated [20, 71]. Previous findings 
suggested that auditory evoked entrainment in healthy 
humans elicited increased regional cerebral blood flow 
(rCBF) in the cortex of the posterior aspect of both cer-
ebellar hemispheres [71]. Recent immunostaining stud-
ies revealed increased vasodilation and blood vessel 
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diameter in the auditory cortex and CA1 region following 
chronic auditory stimulation-induced γ entrainment in 
5XFAD mice [20]. However, the underlying mechanisms 
of the interplay between blood flow and γ entrainment 
remain largely unknown. Interestingly, in a mouse cere-
bral ischemia model, light flicker failed to increase CBF 
and blood vessel density [58]. Therefore, further studies 
are needed to determine whether γ oscillations evoked by 
auditory entrainment could offer therapeutic benefits for 
impaired blood supply and vascular damage.

Audiovisual combined stimulation
Audiovisual stimulation (AVS) is a neurostimulation 
technique that induces a cerebral response by synchro-
nizing visual and auditory inputs [72]. Specifically, flash-
ing lights are presented to the eyes while pulsed tones are 
administered to the ears at frequencies associated with 
brain wave activity, which can be recorded by EEG [73].

According to a recent EEG study, GENUS audiovisual 
stimulation effectively entrains both cortical sensory 
regions and deeper brain areas such as the hippocampus, 
amygdala, insula, and gyrus rectus, noticeably amplify-
ing the power spectral density of frontal and occipital 
neuron oscillations [74]. In addition, entraining γ oscilla-
tions using simultaneous auditory and visual stimulation 
also influence functional brain connectivity, triggering 
a change toward normal function [49, 74]. Chronic (8 
weeks of daily) audiovisual γ stimulation strengthened 
functional connectivity between the PCC and PCUN 
nodes in the DMN of AD patients [49]. PCC-PCUN 
functional connection strength was positively correlated 
with cognitive performance [75]. In contrast, another 
study showed that audiovisual stimulation (3 months 
daily) did not result in connectivity changes within the 
DMN but led to a significant increase in mean functional 
connectivity in the MVN in mild AD patients [74]. How-
ever, the authors deemed the observed augmentation in 
MVN functional connectivity due to the regular use of 
GENUS light and sound stimulation less probable [74].

In addition to the human study, the beneficial effects of 
audiovisual combined stimulation have also been dem-
onstrated in a 5XFAD mouse model. Audiovisual stimu-
lation may exert more widespread effects than auditory 
or visual stimulation. Audiovisual stimulation modality 
uniquely elicited microglial clustering responses in the 
auditory cortex, hippocampus, and medial prefrontal 
cortex and reduced amyloid burden not only in these 
specific regions but also across the entire neocortex [20]. 
Furthermore, altered immune factors and cytokines 
in the cerebrospinal fluid of Alzheimer’s patients fol-
lowing audiovisual γ flicker include downregulation of 
TGF-α (astrocyte activator), IL-5 (microglial prolifera-
tion), MIP-1β (microglial motility), and TWEAK (apop-
tosis inducer) [49]. Therefore, long-term audiovisual 

stimulation therapy may attenuate potentially harm-
ful cytokines involved in the activation of microglia and 
astrocytes. Notedly, TWEAK regulates key immune sig-
naling cascades, including NF‐κB, matrix metalloprotein-
ase, and cellular responses, and results in the disruption 
of the permeability of the neurovascular unit and blood-
brain barrier [76]. Moreover, inhibition of TWEAK may 
have therapeutic potential in several degenerative dis-
eases [77]. Thus, TWEAK may be a new target for treat-
ing neurological diseases through audiovisual stimulation 
combined with γ oscillations.

Somatosensory stimulation
The primary modality of γ somatosensory stimula-
tion involves the use of vibrotactile stimuli [78, 79]. The 
delivery of vibrotactile stimulation was facilitated by 
an acoustic system that converts γ wave electrical sinu-
soidal signals to corresponding vertical vibrations [78]. 
The animal was placed inside a cage on top of a speaker 
connected to an audio amplifier [78]. In human studies, 
the participants underwent vibrations while sitting on a 
vibrating platform chair [79].

External passive γ tactile stimulation induces neural 
oscillations in the somatosensory cortex [80]. In a clini-
cal study with healthy adult participants, a functional 
whole-body vibration exercise platform was associated 
with widespread changes in oxygenated hemoglobin con-
centration in multiple cortices [81]. Animal studies have 
corroborated these results following several weeks of 
daily whole-body γ wave vibrotactile stimulation, which 
triggered neural activity in the primary somatosensory 
cortex (SSp) and primary motor cortex (M1), resulting 
in improved motor performance [78]. Furthermore, after 
vibration stimulation, the SSp and M1 regions showed 
decreased phosphorylated tau, synaptic protein loss, 
DNA damage, and neurodegeneration [78]. Daily vibro-
tactile stimulation sessions improved anxiety-like behav-
ior, motor performance, and spatial memory in aged rats 
[82]. In addition, physical exercise combined with γ wave 
light flickering improves Ca2+ homeostasis, reduces reac-
tive oxygen species (ROS), and enhances cognitive per-
formance, mitochondrial function, and neuroplasticity in 
the 3xTg mouse model [83, 84].

Based on current findings, evidence suggests that 
inducing γ oscillation stimulation can potentially ame-
liorate several neuropathologies [85, 86]. However, a 
significant concern is whether health-related risks occur 
in the neural circuits of long-term frequent visual flick-
ering γ oscillations [85, 86]. A recent study proposes a 
novel γ visual entrainment method using Invisible Spec-
tral Flicker (ISF) [87]. Compared to interventions with 
stroboscopic flicker, ISF induces lower γ amplitude oscil-
lations but exhibits a similar spatial distribution, primar-
ily localized in the posterior electrodes near the visual 
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cortex [87]. Consequently, ISF presents an opportunity 
for future randomized placebo-controlled clinical tri-
als that substantially reduce the potential for discomfort 
[87]. In addition, multiple studies have confirmed that 
GENUS is safe with no serious adverse events and effec-
tively induced γ entrainment with the treatment [49, 74, 
88].

Photobiomodulation
Photobiomodulation (PBM) refers to using low-power 
light in the visible and near-infrared spectra to induce 
beneficial biological processes in cells and tissues. Mono-
chromatic wavelengths evoke distinct colors of light on 
the short-wavelength end of the visible spectrum, includ-
ing violet (360–400 nm), blue (400–580 nm), and green 
(560–650 nm) [89].

Current literature suggests that γ rhythm violet opti-
cal stimulation through the eyes significantly increases 
alpha-gamma coupling oscillations, enhancing attention, 
perception, and memory [54]. Interestingly, exposure to 
violet light (360–400 nm) has been found to upregulate 
myopia suppressive gene (EGR-1) expression. EGR-1 is a 
transcriptional regulator that controls the distribution of 
methylation sites on brain DNA, which is crucial for neu-
ronal plasticity and memory formation [90, 91]. However, 
whether specific γ rhythm violet optical stimulation trig-
gers an increase in EGR-1 expression or improves related 
cognitive functions remains unclear and warrants further 
investigation. In addition, blue light regulates brain activ-
ity patterns more broadly than violet light [89]. Human 
functional magnetic resonance imaging (fMRI) reveals 
distinct neural activation patterns in response to γ 
rhythm blue light exposure through the eyes during a rec-
ognition memory task [92]. Furthermore, the γ rhythm 
visual stimulation-induced neural response exhibits a 
stronger link to regulating core components within the 
memory-related network, such as the hippocampus, than 
exposure to non-flickering natural light [92].

Red-to-infrared light therapy within the 600–1070 nm 
wavelength range, particularly the near-infrared range, is 
recognized as a safe and potent therapeutic approach for 
arresting neuronal degeneration [93]. The application of 
1070 nm light stimulation through the scalp and skull at 
a θ rhythm pulse frequency (10 Hz) activates microglia, 
leading to morphological changes and enhanced co-local-
ization of microglia with Aβ in APP/PS1 mice, thereby 
ultimately improving memory ability [28]. Moreover, 
applying a 1064  nm laser results in significant amplifi-
cations of the spectral power strength of electrophysi-
ological oscillations within the alpha (8–13 Hz) and beta 
(13–30 Hz) bands, observed across a wide range of scalp 
regions in the human brain [94]. Consequently, employ-
ing selective pulse frequencies to manipulate brain oscil-
lations closely linked to specific memory functions may 

represent a promising strategy to optimize the benefits of 
light intervention for regulating cognitive function.

Genetic modifications or optogenetic stimulation
Optogenetic stimulation, a genetic technique that uses 
genetically engineered cells expressing photosensitive 
proteins, allows precise activation or inhibition of spe-
cific neuronal populations [95]. Moreover, modern opto-
genetics represents a pivotal milestone in neuroscience, 
enabling profound insights into the complex orchestra-
tion of neural circuitry and behavioral mechanisms while 
overcoming the limitations of most other methods [96, 
97]. Previous research has demonstrated that optogenetic 
stimulation induces γ rhythms and activates excitatory 
neurons [98, 99]. For example, constant optogenetic stim-
ulation activates channel rhodopsin 2 (ChR2)-expressing 
interneurons in the sensory cortex and produces γ band 
activity in anesthetized cats [27]. In addition, optogenetic 
stimulation applied to the peri-infarct zone has been 
shown to effectively restore neuronal activity after stroke 
in motor and parietal association areas. This also helps 
attenuate vascular and behavioral dysfunction [29].

Indeed, mounting evidence suggests that optoge-
netic manipulation of γ oscillations affects neurocircuit 
function and behavior. For instance, optogenetic acti-
vation of γ oscillations in the prefrontal cortex during 
a goal-directed attentional task improved attentional 
behavior [100]. Furthermore, optogenetic stimulation 
of parvalbumin interneurons in the mPFC effectively 
improved social novelty preference and rescued the 
social novelty deficit in autism [101]. Similarly, opto-
genetic stimulation targeting fast-spiking interneurons 
(FSINs) to induce γ oscillations in the basolateral amyg-
dala has been shown to enhance contextual memory 
consolidation [102]. The crucial role of the Dlx5/6 gene 
in the development of GABAergic interneurons provides 
further evidence supporting the impact of γ stimulation 
on circuit function and behavioral flexibility, as demon-
strated in experiments with Dlx5/6+/− mice [69, 103]. In 
these mice, the abnormality of FSINs occurs during ado-
lescence, coinciding with the onset of cognitive inflex-
ibility and compromised task-evoked γ oscillations [69]. 
However, optogenetic induction of γ oscillations in the 
PFC effectively restored cognitive flexibility in Dlx5/6+/− 
mice, enabling them to perform the task consistently over 
an extended duration [69].

Although optogenetic stimulation has demonstrated 
neuroprotective effects, the mechanisms by which γ 
entrainment in various brain regions affects Aβ deposi-
tion remain unclear. For example, optogenetic manipula-
tion of γ oscillations in CA1 neurons has been linked to 
reduced Aβ levels in both 5XFAD and APP/PS1 mouse 
models [60]. Conversely, a separate study found that 
optogenetic stimulation of PV + neurons in the basal 
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forebrain of 5XFAD mice increased amyloid burden in 
the frontal cortical region [104]. Similarly, optogenetic 
stimulation of medial septal PV + neurons rescue the 
amplitude of hippocampal low-frequency γ oscillations 
and enhances spatial memory performance despite signif-
icant plaque deposition [2]. Hence, it is hypothesized that 
divergent stimulation modalities elicit distinct molecular 
and cellular responses. These responses may involve dif-
ferent action mechanisms, potentially entraining γ oscil-
lations within a complex neurocircuit that spans multiple 
brain regions [13]. Along with meticulously designed 
clinical trials, further investigations are warranted to elu-
cidate these limitations, ascertaining whether induction 
methods have potentially positive or harmful impacts on 
pathology.

Transcranial electrical stimulation
Transcranial electrical stimulation (TES) is a non-inva-
sive technique that delivers controlled electric fields to 
the scalp to directly modulate cerebral activity through 
low voltage constant or alternating currents [105]. TES 
encompasses a range of methodologies, including tran-
scranial direct current stimulation (tDCS), transcranial 
random noise stimulation (tRNS), transcranial alter-
nating temporal interference (tTIS), and transcranial 
alternating current stimulation (tACS) [106–108]. Spe-
cifically, tDCS modulates cortical areas by delivering 
low-intensity direct current, which induces bidirectional, 
polarity-dependent changes in spontaneous neuronal 
activity [109]. Meanwhile, tDCS exhibits remarkable tol-
erability in humans, allowing for a comprehensive assess-
ment of neuropsychological, physiological, and motor 
effects in clinical research [109]. In comparison, tRNS 
delivers low-intensity, randomly alternating biphasic 
current directly to the scalp and elucidates the modu-
latory effects of cortical excitability on motor learning 
and perceptual processing [110]. Furthermore, tTIS is a 
non-invasive method for achieving focal and steerable 
deep brain stimulation, which involves applying high-fre-
quency alternating currents at distinct scalp sites [106]. 
Finally, tACS entails the administration of sinusoidal 
alternating electric currents with specific frequencies in 
pre-defined cerebral regions across the scalp to primarily 
impact endogenous oscillatory activity in the brain [111]. 
Additionally, tACS is intended to modulate cerebral 
function and influence cognitive processes by entrain-
ing brain oscillations and enhancing neural communica-
tion [112]. Although tDCS and tRNS effectively modulate 
cortical excitability and plasticity, tACS uniquely targets 
frequency-specific modulation of oscillatory dynam-
ics. Meanwhile, current literature insinuates that tACS 
applied at γ frequencies effectively modulates various 
cerebral functions [19, 113]. Thus, this section will inves-
tigate the theoretical and practical applications of tACS.

In a randomized, double-blind, sham-controlled cross-
over pilot study, the impact of transcranial alternating 
current stimulation at γ frequency (γ-tACS) or sham 
tACS was meticulously explored in patients with mild 
cognitive impairment [19]. Notably, the active γ-tACS 
intervention involves a solitary 60-minute treatment ses-
sion, precisely targeting the Pz region (an area overlying 
the medial parietal cortex and the precuneus), which 
is known to play a pivotal role in the episodic mem-
ory network [114]. Compared to the sham exposure, 
γ-tACS yielded significant improvements in memory 
performance and reinstated intracortical connectivity 
measures of cholinergic neurotransmission [19]. A sub-
sequent study examined the effects of γ-tACS on episodic 
memory and cholinergic transmission in patients with 
Alzheimer’s [113]. The 60-minute treatment targeted 
the precuneus with either γ-tACS or a sham interven-
tion. Results showed a significant correlation between 
improvements in episodic memory and indirect measures 
of cholinergic neurotransmission following active γ-tACS 
[113]. Pre- and post-EEG assessments revealed increased 
γ-power activity in posterior brain regions, indicating the 
localized impact of γ-tACS on the precuneus, posterior 
parietal cortex, and cognitive function [113].

Recent investigations have unveiled a causal nexus 
between γ oscillations and preparatory and execution 
stages of movement [115]. Targeting the application of 
γ-tACS within the M1 enhances the velocity and accel-
eration of visually triggered movements, contrasting with 
the negligible impact of beta-tACS or sham stimulation 
[115]. These improvements induced by γ-tACS are sig-
nificantly associated with the altered blood oxygenation 
level-dependent activity localized to the stimulated M1 
region and task-specific modulation of neural activity in 
the distant dorsomedial prefrontal cortex [115]. Addi-
tionally, γ-tACS is related to the motor performance of 
tasks requiring motor control, like visuomotor perfor-
mance [116]. Applying 70 Hz tACS over the M1 and cer-
ebellar cortex significantly improved performance on an 
isometric force task involving visuomotor control of the 
right index finger, particularly in healthy individuals with 
suboptimal baseline motor performance [116]. Simi-
larly, stimulation at a high γ frequency (80 Hz) enhances 
motor performance during a visuomotor coordination 
task [117]. Thus, the involvement of high-frequency 
motor cortex γ oscillations in complex visuomotor tasks 
involves abrupt adjustments to motor planning and exe-
cution [117]. In addition, γ oscillations in cortical motor 
areas reflect synaptic activity and contribute to plasticity 
[118]. Previous studies indicate that γ-tACS combined 
with intermittent θ burst stimulation (iTBS) induces 
LTP-like plasticity in the M1 of healthy individuals [119]. 
Clinical research also shows that γ entrainment (70 Hz) 
via tACS improves motor impairment in PD patients and 
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modulates GABAA activity in M1 [43, 118]. Specifically, 
γ-tACS reverses LTD-like effects and enhances LTP-like 
plasticity by inhibiting GABAergic interneurons in M1 
[43]. Thus, γ-tACS can potentially reverse LTD-like plas-
ticity in the human M1. In addition, working memory is a 
complex cognitive function involved in temporary infor-
mation storage and manipulation, making it a target for 
neurorehabilitation [120].

Several studies suggest that tDCS also modulates γ 
activity. During a visual task, administration of tDCS to 
the occipital cortices results in augmented local γ oscil-
lation amplitude [121]. Remarkably, tDCS also unravels 
network-level ramifications, characterized by heightened 
γ oscillations in the prefrontal cortex, parietal cortex, and 
various visual attention regions [121]. Similarly, anodal 
tDCS applied to the dorsolateral prefrontal cortex signifi-
cantly increases γ power and improves working memory 
performance in patients with SCZ [122]. In addition, 
vagus nerve stimulation (VNS), another γ-band stimula-
tion methodology, involves the modulation of the vagus 
nerve through electrical impulses [123]. The vagus nerve 
traverses the neck, forming a neural pathway that links 
peripheral organs with lower regions of the brain [123]. 
Vagal nerve branches intricately innervate anatomical 
structures associated with human memory processing 
within complex neuronal networks [123]. γ entrainment 
using transcutaneous auricular vagus nerve stimulation 
(γ-taVNS) efficiently reduces hippocampal amyloid load 
in APP/PS1 mice [124]. Furthermore, γ-taVNS elicits 
microglial phagocytosis and regulates microglial pyrop-
tosis by effectively suppressing the P2 × 7R/NLRP3/
caspase-1 pathway in the hippocampus [124]. Addition-
ally, γ-taVNS exerts inhibitory effects on the hippocam-
pal NF-κB pathway, increasing neuroprotection, spatial 
memory, and learning [124].

Transcranial magnetic stimulation
Transcranial Magnetic Stimulation (TMS) is a non-inva-
sive medical procedure that uses magnetic fields to stim-
ulate nerve cells in the brain [105]. It involves placing a 
coil near the scalp, generating magnetic pulses that pass 
through the skull and penetrate targeted brain regions 
[105]. Recent studies show that periodic electromag-
netic force engendered through rhythmic TMS modu-
lates brain function [125]. Notably, rhythmic TMS fosters 
the regulation of brain oscillations by perturbing and 
realigning ongoing oscillatory activities [125]. The most 
commonly used TMS method is repetitive transcranial 
magnetic stimulation (rTMS), capable of inducing time-
varying magnetic fields within the cerebral cortex [126]. 
These evoked magnetic fields generate action poten-
tials within specific neurons of targeted brain regions 
by eliciting electric currents in rhythmic patterns [126]. 
Recently, γ-band rTMS treatment amplified power in the 

γ frequency band within the left temporoparietal cortex, 
improving cognitive and executive functions by facilitat-
ing local, long-range, and dynamic connectivity within 
the brain regions, promoting information flow and inte-
gration [127].

Interestingly, all patients maintained favorable health 
status, without any documented unwanted reactions 
during therapy, indicating the safety and feasibility of 
γ-rTMS intervention [127]. Enhancing γ oscillatory activ-
ity through rTMS applied to the dorsolateral prefrontal 
cortex has emerged as a promising cognitive enhance-
ment strategy for neuropsychiatric disorders charac-
terized by cognitive impairments [128]. Compelling 
evidence highlights the ability of rTMS to target the 
dorsolateral prefrontal cortex and to induce normalizing 
excessive gamma oscillations in individuals with schizo-
phrenia and ASD [129, 130]. Furthermore, rTMS elicits 
plasticity-like changes in cortical function and behav-
ior, improving language function in healthy individuals 
and various aspects of memory in patients with severe 
depression [128].

Gamma brain stimulation for Alzheimer’s disease
AD is one of the most prevalent neurodegenera-
tive diseases, pathologically characterized by exces-
sive extracellular Aβ accumulation and intracellular tau 
hyperphosphorylation [131, 132]. Although numerous 
studies have been conducted over the past decades to 
treat AD by targeting Aβ and abnormal tau, nearly all 
clinical trials targeting Aβ and tau hyperphosphorylation 
have failed [133]. Therefore, the Aβ and tau hypotheses 
have been questioned in recent years [134].

The pathological buildup of amyloid-beta oligomers 
(Aβo) disrupts the synchronized generation of action 
potentials in pyramidal cells and disturbs the balance of 
excitatory and inhibitory processes within the hippocam-
pal network [135]. This disruption results in impaired 
hippocampal theta-gamma phase-amplitude coupling 
and compromised long-term potentiation (LTP), which 
are crucial for memory encoding and cognitive func-
tion [136, 137]. PV + and somatostatin-positive (SST) 
interneurons represent the prominent subtypes of inter-
neurons in the hippocampus, playing a pivotal role 
in θ -nested γ oscillogenesis and LTP induction [137, 
138]. Specifically, PV + interneurons selectively modu-
late γ oscillations, while SST + interneurons modu-
late θ oscillations [60, 139]. Dysfunction in SST + and 
PV + interneurons contributes to impairments in θ and 
γ oscillations observed in an AβO-injected mouse model 
of AD [140]. Thus, Aβo causes synapse-specific dysfunc-
tion in PV + and SST + interneurons, likely contribut-
ing to impaired hippocampal γ oscillations and synaptic 
plasticity in AD [137]. In AD mouse models, the regu-
latory capacity of inhibitory interneurons to maintain 
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oscillatory rhythms and network synchrony crucial for 
cognitive function is compromised [48, 141]. Notably, 
the dysfunction of Nav1.1-dependent interneurons is 
functionally significant in the pathogenesis of AD-asso-
ciated cognitive impairments [141]. Efforts to restore 
the normal levels of Nav1.1 facilitate the enhancement 
of γ-oscillatory activities, mitigate excessive network 
synchrony, and alleviate cognitive decline in hAPP mice 
[142].

The alteration of neuronal network activity may predate 
the onset of AD, potentially occurring before the deposi-
tion of Aβ and leading to changes within the hippocam-
pal network [143, 144]. In the early stages of the disease, 
abnormal slow γ oscillations are observed during hippo-
campal sharp wave ripples (SWRs) in AD mouse models 
[60]. The gradual decline in slow γ activity initiated by 
interneurons during SWRs significantly contributes to 
apoE4-mediated learning and memory impairments [14]. 
SWRs originate in hippocampus and are triggered by 
synchronized activation of CA3 pyramidal neurons, lead-
ing to high-frequency oscillations in the local field poten-
tial recorded from the CA1 region [145]. During SWRs, 
slow gamma oscillations are elevated, and the increased 

gamma synchrony between CA3 and CA1 is associated 
with more coordinated neuronal firing [146]. Restoring 
slow γ oscillations during SWRs is critical for modulating 
memory retrieval. In addition, accumulation of the 1N3R 
isoform of tau within astrocytic processes in the dentate 
gyrus of AD patients triggered mitochondrial relocation 
and impaired motility in hilus astrocytes, diminishing 
γ oscillations and PV-expressing neurons, resulting in 
spatial memory impairments [147]. On the other hand, 
before the deposition of Aβ plaques and the onset of cog-
nitive impairments, individuals with AD exhibit olfactory 
dysfunction characterized by an inability to perceive and 
identify odors [148]. With advancing age, Aβ aggregation 
induces the dysfunction of reciprocal dendrodendritic 
synapses between granule cells and mitral cells, conse-
quently leading to aberrantly enhanced γ oscillations and 
olfactory impairment [149]. Thus, considering γ oscilla-
tions as potential biomarkers for preclinical AD is ratio-
nal (Fig. 3) [150].

Mounting evidence suggests γ-band oscillations (espe-
cially 40 Hz) are critical for multiple sensory and cogni-
tive processes [3, 151, 152]. Previous studies confirm that 
cognitive activity induces 40  Hz event-related potential 

Fig. 3 The beneficial effect of gamma stimulation in AD. Gamma stimulation confers various benefits on AD, including enhancing brain-inter-area com-
munication, improving Aβ and p-tau clearance, regulating glial cell function, preserving respiratory chain enzyme activity, alleviating cognitive symp-
toms, and enhancing clock protein expression
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in humans [153]. Similarly, researchers discovered that 
compared with healthy people, Alzheimer’s patients had 
reduced 40  Hz brainwaves in the cortical component 
[154]. In the 5XFAD mouse model, exposure to flicker 
stimulation at various frequencies (including 8  Hz, 
40  Hz, 80  Hz, random stimulation, and no stimulation) 
revealed that 40  Hz (1  h per day, 7 days) flicker signifi-
cantly reduced Aβ plaque burden in the visual cortex 
[60]. Similarly, the application of 40 Hz (1 h/d day, 7 days) 
γ visual stimulation enhanced gamma power among sev-
eral brain areas, including the visual cortex, hippocam-
pus, prefrontal cortex, and somatosensory cortex, leading 
to improvements in associated cognitive symptoms and 
neurodegeneration [21, 60]. Interestingly, random stimu-
lation resulted in increased Aβ levels, suggesting that 
different types of visual stimuli may elicit distinct effects 
[60]. Similarly, auditory or audiovisual stimulation at 
40 Hz (2 h/day, 14 days) improves cognitive performance 
and mitigates neuropathological alterations in apoE4 
knock-in mice while also reducing neuronal apoptosis 
and enhancing cholinergic transmission in the hippo-
campus [155]. Another study used transcranial-focused 
ultrasound pulsed at 40 Hz, decreasing Aβ plaque depo-
sition in 5XFAD mouse models [156]. Notably, 40  Hz 
flickering also improves mitochondrial function. In the 
Aβ1–42 toxicity condition (as an AD model), utilizing a 
40 Hz flickering white LED has been shown to improve 
the structural and functional integrity of ion channels, 
particularly mitoBKCa channel, and promote mito-
chondrial respiratory chain enzyme activity, specifically 
complex I and IV [157, 158]. Furthermore, evidence sug-
gests that 40 Hz light simulation enhances mitochondrial 
membrane potential (ΔΨm) and mitigates ROS produc-
tion in mouse models of AD [157].

Sleep and circadian dysfunction commonly occur 
in AD patients, partly contributing to the progression 
of neurodegeneration [159, 160]. A recent study dem-
onstrates that 40  Hz (1  h/day, 30 days) light simulation 
ameliorates circadian rhythm disturbance in the APP/
PS1 AD mouse model, restoring the hypothalamus elec-
trophysiological changes, reducing Aβ deposition in the 
hypothalamus, and enhancing rhythmic expression of 
clock proteins, including BMAL1, CLOCK, and PER2 
[22, 161]. Specifically, pretreatment with 40 Hz (1 h/day, 
30 days) flickering light alleviated disrupted circadian 
rhythms, improved the ratio of nighttime to total activity, 
and corrected fragmented rest periods in AD mice [22]. 
Furthermore, after 30 days of 40 Hz flickering light treat-
ment, no adverse effects on body weight, blood glucose 
levels, heart rate, or biological rhythms were observed in 
the mice [22]. Overall, 40 Hz entrainment exhibited posi-
tive outcomes across various AD pathology animal mod-
els (including 5XFAD, Tau P301S, APP/PSI, and CK-p25), 

indicating that the effects are not model-specific [162, 
163].

However, despite these promising results, it is impor-
tant to note that other studies could not replicate these 
outcomes. Specifically, a recent study showed that both 
acute (10-minute baseline followed by one-hour stimula-
tion) and chronic (one hour per day for seven days) 40 Hz 
visual flickering failed to entrain deeper brain structures 
in APP/PS1 and 5XFAD models [31]. Only a small frac-
tion of neurons responded to light stimulation, with no 
detectable effects on intrinsic γ oscillations [31]. Further-
more, the results revealed no overt reliably reduced Aβ 
load in the neocortex or hippocampus or alteration in 
microglial morphology within the experimental animals 
[31]. Optogenetic stimulation was employed to selectively 
activate medial septal PV neurons at different γ-band fre-
quencies in the cortex of J20-APP animal models [2, 164]. 
Although 40 Hz stimulation successfully restored hippo-
campal slow γ oscillation amplitude and phase-amplitude 
coupling, effectively rescuing spatial memory deficits, Aβ 
plaque deposition persisted [2]. Likewise, 40 Hz (1 h/day, 
4 weeks) tACS did not substantially impact Aβ burden 
but did reduce p-Tau levels within the specific tempo-
ral lobe area in AD patients [165]. Given the constraints 
of small sample sizes, varying treatment protocols, and 
diverse evaluation criteria in clinical trials, large-scale 
studies are needed to establish a robust therapeutic phe-
notype for γ entrainment in AD pathology.

Gamma brain stimulation for Parkinson’s disease
PD is characterized by dopaminergic neuron depletion, 
α-synuclein (α-Syn) misfolding and aggregation, mito-
chondrial dysfunction, neuroinflammation, and oxida-
tive stress [166]. PD is clinically manifested by motor 
symptoms such as resting tremor, bradykinesia, rigidity, 
and postural instability, as well as non-motor symptoms 
like REM sleep disorder, anosmia, cognitive impairment, 
and depression [167]. Pharmacological interventions, 
such as dopamine replacement therapy, remain the pre-
dominant treatment modality. However, these treatments 
show diminishing efficacy over time, potentially leading 
to motor complications [166]. Increasing investigations 
into non-invasive neurostimulation and neuromodula-
tion techniques have emerged as alternative strategies to 
address PD pathology.

Under the decreased burst rate of the hypodopaminer-
gic state, a deficiency in regulating subcortical γ signal-
ing may contribute to the pathomechanism underlying 
bradykinesia in PD (Fig. 4) [168]. Furthermore, dopamine 
loss disrupts the basal ganglia, a brain structure respon-
sible for regulating motor function [168]. Enhancing 
gamma oscillations restores synaptic plasticity in the cor-
tical motor regions [43, 169]. Recent neurophysiological 
studies show reduced long-term potentiation (LTP)-like 
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plasticity in M1 and diminished γ oscillations within the 
basal ganglia-thalamo-cortical network in PD patients 
[43, 170]. The specific γ oscillatory activity ranging from 
60 to 90 Hz is relevant to the motor network and exhib-
its correlated changes with movement execution [171]. 
The combination of tACS delivered over the cortical 
motor areas at 70  Hz and intermittent θ burst stimula-
tion demonstrates that driving γ oscillations restores 
LTP-like plasticity in patients with PD [43]. Furthermore, 
a double-blind, randomized controlled trial suggests that 
40 Hz vibration (25 min/day, 12 weeks) through psycho-
acoustic therapy improves tremor, rigidity, bradykinesia, 
posture, and gait in PD patients [172].

Additionally, GENUS has the potential to facilitate 
aberrant protein clearance and treat non-motor symp-
toms in PD animal models. Prolonged multisensory 
40 Hz (2 h/day, 1 month) stimulation effectively reduces 
p-α-Syn deposition in the cortex and striatum [173]. 
However, 40 Hz (2 h/day, 1 month) audiovisual stimula-
tion ameliorates neuromuscular strength, spatial work-
ing memory, and depressive behaviors in A53T PD mice 
[173]. Thus, γ stimulation has the potential to modify PD 
progression.

Gamma brain stimulation for stroke
Stroke is a prominent cause of mortality and func-
tional impairment that results from a transient or last-
ing decrease in cerebral perfusion [174]. After a stroke, 

neurons may undergo persistent depolarization, wors-
ened by impaired interneuron function, which typi-
cally inhibits adjacent excitatory neurons [29]. During a 
stroke, rapid and extensive deterioration occurs within 
the neuronal structure and function, with limited resto-
ration during reperfusion [175]. Moreover, the delicate 
balance between excitatory and inhibitory processes 
is disrupted, leading to reduced cerebral activity that 
impedes the dynamic reorganization of functions after 
the stroke [175]. However, the persistence of γ oscilla-
tions in the affected hemisphere is positively correlated 
with rehabilitation progress in stroke patients, suggesting 
that γ oscillations are integral to the post-stroke recov-
ery process [44]. Hence, γ oscillation synchronization is 
strongly associated with clinical outcomes in stroke reha-
bilitation survivors [44].

Recent findings suggest modulating cortical oscilla-
tory dynamics during the acute phase may offer neuro-
protection against stroke (Fig. 5) [29]. In the acute phase 
following stroke, optogenetic stimulation of fast-spiking 
interneurons at 40  Hz in the lesioned hemisphere acti-
vates inhibitory interneurons in the M1, reducing the 
incidence of spreading depolarizations [29]. Subse-
quently, activation of interneurons at 40  Hz alleviates 
brain edema and lesion volume, enhances cerebral blood 
flow, and improves behavioral outcomes of post-stroke 
mice [29]. In addition, the cholinergic neurons of the 
basal forebrain exert influence over an array of functions, 

Fig. 4 The beneficial effect of gamma stimulation in PD. Gamma stimulation improves basal ganglia normalization, preserves synaptic plasticity, allevi-
ates the increase in stress-related hormones, and improves behavioral changes
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including cortical plasticity, attention, and sensorimo-
tor behavior [175]. Research indicates that acetylcholine 
(ACh) regulates cortical plasticity during the acute phase 
after stroke, playing a key role in recovery and compen-
sation [176]. Thus, ACh innervation in the neocortex is 
thought to play a significant role in post-stroke recov-
ery [176]. Optogenetic stimulation of the nucleus basa-
lis during the post-stroke period increases ACh release, 
improving functional recovery and motor behavior in the 
photothrombotic stroke mouse model [175].

Deficits in specific hippocampal oscillation frequen-
cies are closely linked to cognitive dysfunction in the 
ischemic brain. Previous studies suggest that reduced 
cross-frequency coupling between θ and γ rhythms in 
hippocampal local field potentials is associated with 
impaired short- and long-term potentiation in the 2VO 
rat model [177]. Additionally, a persistent reduction in 
low γ oscillations has been identified in an anesthetized 
mouse model of unilateral hippocampal ischemia [178]. 
Visual stimulation at low γ frequency (30–50  Hz, 1  h/

Fig. 5 The beneficial effect of gamma stimulation in stroke. Gamma stimulation confers various benefits on stroke, including preserving synaptic plastic-
ity, alleviating lesion volume, and maintaining cerebral blood flow. Additionally, γ stimulation downregulates the HDAC3/COX1/EP2 network and allevi-
ates deficits in behavioral changes
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day, 14 days) restores phase-amplitude coupling with θ 
oscillations and rescues cognitive dysfunction in the 2VO 
mouse model [58]. Mechanistically, γ frequency sensory 
entrainment enhances synaptic plasticity via RGS12-
regulated N-type CaV2.2 voltage-gated calcium channels 
(N-VGCC) [58].

Most evidence indicates that post-stroke phobic anxi-
ety is widely prevalent, impeding the rehabilitation of 
patients and disrupting their usual activities [179]. Post-
stroke anxiety is mediated by the up-regulation of histone 
deacetylase 3 (HDAC3) in activated microglia residing 
within the ischemic cortex, which facilitates the deacety-
lation process, subsequently leading to the nuclear trans-
location of p65 and activation of the NF-κB pathway [13, 
180]. The activation of the NF-κB pathway further upreg-
ulates downstream target genes involved in prostaglandin 
synthesis, including cyclooxygenase-1 (COX1) and pros-
taglandin E2 (PGE2) [13, 180]. Subsequently, the interac-
tion between PGE2 and EP2 receptors in the amygdala 
enhances anxiety and depression susceptibility to stress 
following ischemic stroke [13, 180]. Importantly, it is 
worth noting that γ flicker stimulation has shown efficacy 
in inhibiting the activation of cortical microglia, down-
regulating the HDAC3/COX1/EP2 signaling network, 
and alleviating anxiety-like behaviors in the photothrom-
botic stroke mouse model [180].

Gamma brain stimulation for schizophrenia
SCZ presents as a prominent psychotic disorder with 
manifestations of positive symptoms (hallucinations and 
delusions), negative symptoms (avolition and anhedo-
nia), and impairments in the prefrontal cortex-dependent 
cognitive domains, encompassing attention, cognitive 
flexibility, working memory, and social cognition [181]. 
Cognitive dysfunction is a fundamental characteristic of 
SCZ [182]. Cognitive impairments persist continuously 
throughout the illness, which is strongly correlated with 
long-term functional prognosis and frequently preced-
ing the onset of overt psychosis [182, 183]. Regrettably, 
existing antipsychotic treatments exhibit only marginal 
efficacy in addressing cognitive symptoms [183]. Dysbin-
din-1, a protein containing a coiled-coil domain, exhibits 
reduced levels within the cerebral cortex of individuals 
afflicted with SCZ [184]. Gamma-frequency neuronal 
firing facilitates the translocation of dysbindin-1 into 
mitochondria, where it interacts with Drp1 and related 
receptors, inducing the formation of oligomeric Drp1 
complexes that promote mitochondrial fission [184, 185]. 
As a result, Drp1 deficiency may diminish mitochondrial 
fission and disrupt γ oscillations in mouse models [185]. 
However, the augmentation of mitochondrial fission 
using a light-responsive mitochondrial fission system 
offers a potential solution to restore the integrity of the γ 
rhythm [185].

Disrupted GABAergic signaling and diminished activ-
ity of NMDA receptors are pivotal components in the 
pathophysiology of SCZ, disrupting the balance between 
excitation and inhibition in cortical and subcortical net-
works leading to abnormal neural oscillations [181]. 
While performing tasks requiring cognitive control, indi-
viduals with SCZ exhibit observable deviations in the 
PFC γ activity and concomitant impairments in PV + neu-
ron functionality [45, 103]. Therefore, the pathological 
mechanisms that influence PV + neurons detrimentally 
affect γ oscillations and the synchronization of cortical 
neural activity, contributing to the cognitive dysfunction 
observed in SCZ [45].

Previous findings demonstrate that optogenetic stim-
ulation effectively overcomes the inherent cognitive 
impairment in the SCZ mouse model, resulting in long-
lasting cognitive flexibility improvements (Fig.  6) [69]. 
Remarkably, cognitive benefits from interneuron stimula-
tion occur only when γ-frequency stimulation is applied 
at 40–60  Hz, not with stimulation protocols combining 
higher and lower frequencies [69]. Hence, γ-frequency 
activity originating from prefrontal interneurons is cru-
cial in cognitive functions central to SCZ [69]. Neverthe-
less, future investigations must explore the mechanisms 
by which interneuron-driven γ oscillations facilitate cog-
nitive enhancement. Additionally, patients diagnosed 
with SCZ exhibit impairments in high-frequency γ 
(≥ 60 Hz) oscillations, particularly during visual process-
ing [186], suggesting that gamma entrainment techniques 
could offer a promising therapeutic intervention for these 
visual processing abnormalities.

Gamma brain stimulation for autism spectrum 
disorder
ASD is a multifactorial condition influenced by genetic 
and environmental factors, leading to persistent deficien-
cies in social engagement and communication, sensory 
abnormalities, restricted interests, and repetitive behav-
iors [187]. ASD often co-occurs with disorders such as 
anxiety, depression, attention-deficit/hyperactivity disor-
der (ADHD), and obsessive-compulsive disorder (OCD), 
contributing to significant impairments in activities of 
daily living (ADLs) in both pediatric and adult popula-
tions [46]. Research shows that ASD is characterized by 
disrupted neuronal interactions within local networks, 
leading to aberrant γ-frequency brainwave activity pat-
terns [188]. In patients with ASD, reduced interneu-
ron numbers and dysregulated GABA receptor subunit 
expression reflect an imbalance between excitatory and 
inhibitory signaling, primarily mediated by the GAB-
Aergic pathway [38]. Similarly, several studies in ASD 
patients have found reduced spontaneous γ activity in 
frontal, temporal, and right-lateral regions, reduced left-
hemispheric MEG steady-state γ responses, reduced 
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task-related γ power, and reduced long- and short-range 
γ connectivity [46]. Deviant patterns of evoked and 
induced γ oscillations elicited by sensory tasks have like-
wise been documented in individuals with ASD within 
the visual domain [189] and the auditory domain [190]. 
Given the various body of evidence, we posit that abnor-
mal γ frequency activity should be regarded as an integral 
component within the expansive pathophysiological con-
struct of ASD (Fig. 6) [126, 191].

Many scholarly investigations within the medical 
domain substantiate a robust association linking the 
functionality of PV cells, γ oscillations, and impairments 
in social cognition [126]. Disruptions in inhibitory feed-
back, mediated by fast-spiking interneurons, lead to 
imbalances in excitation and inhibition within prefrontal 
circuits among young individuals, resulting in reduced 
coherence in evoked γ frequency synchronization [192]. 
These extensive alterations at structural and functional 
levels culminate in attenuated cognitive capabilities and 
impaired social proficiency [192]. Consequently, dynamic 
modulation of prefrontal activity during the early stages 
of neurodevelopment plays a pivotal role in governing 
the cognitive competence of adults, potentially exert-
ing a critical impact on the manifestation of cognitive 

symptoms in neuropsychiatric disorders [192]. Manipula-
tion of γ oscillations, particularly within the dorsolateral 
prefrontal cortex, correlates with enhancements in cog-
nitive abilities, corrections of the excitatory-inhibitory 
balance within the cerebral cortex, and improvement of 
social deficits [126, 129]. Recent literature suggests that 
TMS therapy over the dorsolateral prefrontal cortex in 
ASD patients normalizes γ band irregularities, enhances 
cognitive functioning, and improves socio-behavioral 
impairments [187].

Dysfunction in synaptic neurotransmission may under-
lie intricate modifications in neural circuits, contributing 
to behavioral phenotypes in ASD [193, 194]. Deletion of 
the autism-associated Cntnap2 gene disrupts the den-
sity of PV + interneurons within the hippocampus, lead-
ing to imbalances in inhibitory neurotransmission in the 
perisomatic region [193]. Reduction in PV + interneuron 
density leads to decreased inhibition of CA1 pyramidal 
cells, resulting in deficits in spatial discrimination and 
alterations in frequency-dependent circuit dynamics in 
the hippocampus, such as disrupted γ oscillations, sharp-
wave ripples, and theta-gamma modulation [193]. Cur-
rent evidence suggests that the real-time modulation of 
the excitation-inhibition balance in the prefrontal cortex 

Fig. 6 The beneficial effect of gamma stimulation in SCZ and ASD. Gamma stimulation confers various benefits on SCZ and ASD, including preserving 
GABAergic signaling, alleviating mitochondrial fission, enhancing prefrontal interneuron activity, improving cognitive flexibility and control, maintaining 
prefrontal activity dynamic balance modulation, preserving cerebral cortex excitatory-inhibitory equilibrium and parvalbumin cell function, and alleviat-
ing behavioral changes
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of Cntnap2-null mutant mice effectively alleviates social 
behavior deficits reminiscent of autism phenotypes [194]. 
Currently, γ entrainment of medial septal PV + inter-
neurons restores aberrant low-frequency γ oscillation 
amplitudes and theta-gamma phase-amplitude coupling 
within the hippocampus, ameliorating spatial memory 
deficits [2]. Consequently, harnessing the potential of γ 
entrainment to enhance hippocampal circuit dynamics 
in ASD might yield similar benefits and warrants further 
investigation.

Discussion and future directions
Gamma oscillations are essential for sensory processing, 
memory consolidation, and cognitive function and are 
attenuated in neurodegenerative diseases and other brain 
disorders. Various techniques for brain stimulation have 
been shown to induce gamma oscillations. Importantly, 
synchronized light and sound stimulation at 40 Hz effec-
tively induces corresponding brain activity at the same 
frequency [13, 195]. Overall, 40 Hz GENUS is associated 
with reduced neuroinflammation, enhanced synaptic 
transmission, and increased expression of genes related 
to synaptic plasticity. These effects lead to improve-
ments in cognitive function [21, 23, 24, 58, 83, 196, 197]. 
Furthermore, 40 Hz GENUS leads to an increase in the 
expression of cytokines in microglia, normalization of 
circadian rhythms, and a reduction in Aβ plaque burden 
[61, 198, 199]. Additionally, other studies have demon-
strated that multisensory 40  Hz stimulation enhances 
the glymphatic clearance rate of Aβ [200]. Despite these 
promising findings, some studies have failed to replicate 
these results. Another study has demonstrated that 40 Hz 
optogenetic stimulation effectively modulated spatial 
memory, while plaque loads were not altered [2]. Addi-
tionally, several studies have reported failures to replicate 
the natural γ oscillations, Aβ reduction, and microglial 
activation observed with 40  Hz GENUS [31]. The com-
plex pathological changes associated with AD may lead to 
variability in the accuracy and effectiveness of the 40 Hz 
stimulation protocol, depending on different stages of the 
pathogenesis of AD [63]. Thus, possible reasons for the 
discrepancies above lie in the variations in stimulation 
modalities and assay time relative to stimulation. To bet-
ter understand the discrepancies between these results 
and previously reported findings, it is essential to inves-
tigate specific parameters (such as optimal color, inten-
sity, and frequency) that can effectively induce gamma 
entrainment. Research on flicker light stimulation for γ 
wave entrainment in humans indicates that pure white 
light at a brightness level of 400 cd/m² and a flicker fre-
quency of 34–38  Hz may represent the most effective 
strategy for achieving γ entrainment [86]. In addition 
to stimulation parameters, another potential contribut-
ing factor to the discrepancies observed between studies 

may be individual variances among animals or patients 
and their specific responses to the stimulation. Animals 
or patients exhibit slight differences in their processing 
of visual sensory stimuli between dark and light cycles, 
which can result in distinct behavioral responses [55]. 
For example, a study that applied 40  Hz visual stimula-
tion during the dark phase observed an increase in anx-
iety-like behaviors in 5XFAD mice, potentially due to 
differences in brain states and neuroregulatory systems 
associated with circadian rhythms [31]. Furthermore, it 
is crucial to investigate whether the presence of aversive 
behaviors could diminish the gamma entrainment effect 
and impede the clearance of amyloid proteins. Other 
studies reporting positive outcomes performed light 
stimulation during non-aversive phases [60, 74]. There-
fore, establishing appropriate control groups to examine 
the influence of environmental factors on the effective-
ness of GENUS interventions is imperative. In fact, non-
invasive acoustic stimulation experiments demonstrate 
that, in both animals and humans, the application of slow 
oscillatory sound stimuli during sleep can enhance γ 
oscillations, potentially improving circadian mechanisms 
and sleep quality [22, 198].

The neuroprotective effects of induced gamma activ-
ity, particularly through 40  Hz GENUS, are promising. 
However, several questions remain about the underlying 
molecular pathways and the roles of different cell types, 
such as neurons and glial cells. Future investigations are 
essential to clarify the cellular mechanisms that regulate 
brain oscillations, thereby enhancing understanding of 
the neuroprotective mechanisms that mitigate disease 
progression. While the pronounced neuroprotective 
effects of 40  Hz GENUS in various neurodegenerative 
disease models are noteworthy, several unresolved ques-
tions remain and warrant further exploration. Notably, 
most existing studies concentrate on the early stages of 
pathological changes, leaving unanswered whether 40 Hz 
GENUS can reverse substantial neuronal loss once dam-
age has occurred. In addition, different diseases or dis-
orders may have specific frequency characteristics [186, 
201]. For instance, the 60–90 Hz frequency range is asso-
ciated with bradykinesia [202], while γ wave anomalies 
in the range of 40 Hz to 100 Hz are related to the spec-
trum of SCZ [203]. Consequently, future research should 
recognize that variations in gamma frequency across 
different diseases necessitate disease-specific applica-
tions of sensory entrainment. Additionally, it is crucial 
to assess whether acute or chronic interventions with 
GENUS result in greater improvements in brain function. 
While GENUS has demonstrated safety and feasibility in 
humans and positive outcomes in various animal stud-
ies, previous research has been limited by small sample 
sizes [49, 74, 198, 204]. Therefore, large-scale clinical tri-
als are indispensable for rigorously assessing the efficacy 
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of GENUS in improving disease outcomes. Addition-
ally, determining how long the neuroprotective effects 
of GENUS last after cessation is crucial, as this informa-
tion could inform long-term treatment strategies for sus-
tained therapeutic benefit.

Conclusions
Natural gamma and 40  Hz sensory-induced steady-
state oscillations likely engage distinct neurobiological 
mechanisms. Thus, elucidating the mechanisms under-
lying spontaneous, sensory-evoked, and optogeneti-
cally induced gamma entrainment could provide critical 
insights into the nature of brain oscillations. In summary, 
the 40  Hz GENUS, with its ability to modulate higher-
order emotional and cognitive processing via multiple 
pathways, exerts pervasive effects on the brain, poten-
tially mitigating pathological states. Thus, further inves-
tigation into the neurobiological mechanisms behind 
induced gamma activity could lead to novel therapeutic 
strategies for treating neurological disorders.
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