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Abstract 

Sorting spikes from extracellular recordings, obtained by sensing neuronal activity around an electrode tip, is essen‑
tial for unravelling the complexities of neural coding and its implications across diverse neuroscientific disciplines. 
However, the presence of overlapping spikes, originating from neurons firing simultaneously or within a short delay, 
has been overlooked because of the difficulty in identifying individual neurons due to the lack of ground truth. In this 
study, we propose a method to identify overlapping spikes in extracellular recordings and to recover hidden spikes 
by decomposing them. We initially estimate spike waveform templates through a series of steps, including discrimina‑
tive subspace learning and the isolation forest algorithm. By leveraging these estimated templates, we generate syn‑
thetic spikes and train a classifier using their feature components to identify overlapping spikes from observed spike 
data. The identified overlapping spikes are then decomposed into individual hidden spikes using a particle swarm 
optimization. Results from the testing of the proposed approach, using the simulation dataset we generated, dem‑
onstrated that employing synthetic spikes in the overlapping spike classifier accurately identifies overlapping spikes 
among the detected ones (the maximum F1 score of 0.88). Additionally, the approach can infer the synchronization 
between hidden spikes by decomposing the overlapped spikes and reallocating them into distinct clusters. This study 
advances spike sorting by accurately identifying overlapping spikes, providing a more precise tool for neural activity 
analysis.
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Introduction
Electrophysiological research in neuroscience heavily 
relies on spike train analysis to decode neuronal activities 
and understand brain functions [1]. Precise spike sorting 
is crucial for understanding the firing patterns of neurons 

in response to endogenous and exogenous stimuli [2, 3]. 
However, a significant challenge is presented by over-
lapping spikes, where signals from multiple neurons are 
superimposed, complicating the identification of indi-
vidual neuronal activities [4]. In particular, synchroni-
zation between neuronal spikes, which is considered an 
important aspect of temporal coding, serves as a crucial 
indicator of information processing [5–9]. However, par-
adoxically, in extracellular recordings, temporal synchro-
nization of neurons concentrated around one electrode 
can result in overlapping spikes, posing challenges for 
the analysis of temporal coding [10, 11] (Fig. 1A, B). This 
issue becomes particularly prominent in scenarios involv-
ing dense electrode arrays or rapid firing sequences, 
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highlighting the complexity of interpreting neuronal sig-
nals [10–14]. The widespread challenge of overlapping 
spikes has substantial implications for current research 
and the development of neuroengineering applications 
[15]. Traditional spike sorting methods, limited by their 
probabilistically analytical frameworks, often fall short in 
accurately isolating these superimposed neuronal signals 
[1, 4]. This limitation not only restricts our capacity to 
delve into the brain’s intricate dynamics but also impacts 
our ability to analyze the subtle mechanisms underlying 
neural processing [16, 17]. Therefore, there is an evident 

need for novel approaches that surpass the constraints of 
conventional techniques, facilitating more effective dis-
crimination and the reuse of overlapping spikes.

The primary focus of this study is addressing the iden-
tification of overlapping spikes from detected signals. 
Overlapping spikes occur when the spike waveforms of 
individual neurons around a single electrode are detected 
simultaneously, influenced by factors such as waveform 
size (w), firing latency (τ), and distance from the elec-
trode [18] (see Fig.  1C). Despite the potential similarity 
in firing latency, overlapping spikes are generally difficult 

Fig. 1  Examples of the impact of overlapping spikes on neural activity analysis. A Examples of spike trains with non-overlapping and overlapping 
waveforms. Solid blue-, orange-, and yellow-coloured lines are individual spike waveforms, and magenta coloured line denotes an overlapping 
spike. B Comparison of spike synchronization distributions between single units with non-overlapping (perfectly isolated) spikes and those 
with overlapping spikes. The dataset was generated through a synthetic spike generation procedure repeated 500 times (details provided 
in “Methods”). The shaded areas in grey and green represent the spike synchronization distributions for single units without and with overlapping 
spikes, respectively. Vertical solid lines indicate the median values of each distribution. Asterisks (***p < 0.001) denote statistically significant 
differences according to the Wilcoxon rank-sum test. C An overlapping spike model. D Visualization of feature distributions projected by three 
different subspace learning methods: PCA, tSNE, and LDA–GMM, and E examples of spike waveforms categorized based on each method
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to distinguish in the feature space commonly considered 
by the traditional spike sorting methods. For example, a 
principal component analysis (PCA) commonly serves as 
a feature extraction method for spike sorting, allowing the 
observation of spike clusters under relatively low-noise 
conditions [19, 20]. However, because it does not factor 
in noise, this method faces challenges with noise interfer-
ence, hindering the accurate identification of overlapping 
spikes within a linear subspace [19, 20] (see Fig. 1D, E). 
On the other hand, a t-distributed stochastic neighbor 
embedding (tSNE) is a visualization technology using 
non-linear dimensionality reduction, which can identify 
spike clusters more clearly [21]. However, it does not 
provide clear clusters for identifying overlapping spikes. 
Recently, Keshtkaran and Yang proposed an approach 
that combines a linear discriminant analysis (LDA) and 
a Gaussian mixture model (GMM), optimizing the objec-
tive function of LDA through iterative feature extraction 
and clustering, which is called LDA–GMM [22]. LDA–
GMM can estimate the subspace, which unambiguously 
transforms detected spikes into distinct features by effec-
tively excluding outliers. Thus, it could be useful not only 
for estimating representative waveforms of a single unit, 
but also for detecting overlapping spikes (the excluded 
outliers) depending on the effect of GMM [22]. However, 
because a significant number of overlapping spikes could 
blend into the feature distribution, it may be difficult to 
clearly detect the characteristics of these overlapping 
spikes (Fig. 1D). In addition, a study explored deep learn-
ing techniques for estimating waveform feature spaces 
and classifying overlapping spikes, which are expected to 
offer high classification accuracy due to their robustness 
to noise [23]. While these techniques show promise, their 
primary validation on simulation data, treated as ground 
truth, calls into question the applicability of such meth-
odologies in accurately capturing the complexities of 
real-world data.

In this paper, we introduce a novel approach for identi-
fying and decomposing overlapping spikes from detected 
signals, thereby isolating them into single units. Initially, 
spike snippets (waveforms) are detected by threshold 
crossing of band-pass filtered extracellular activity. Next, 
the optimal number of single units and their respec-
tive clusters is determined through subspace estimation 
from the detected snippets using LDA–GMM. An isola-
tion forest algorithm (iForest) is then applied to identify 
and eliminate anomalous spikes that may perturb spike 
template estimation within each single unit cluster (see 
Fig. 2A) [24]. The spike templates are obtained by taking 
the sample-wise median of the spike waveforms included 
in their single unit clusters. These spike templates serve 
for a dual purpose: generating synthetic extracellular 
activity (see Fig.  2B, C) and decomposing overlapping 

spikes into single unit spikes using a heuristic optimiza-
tion algorithm (see Fig. 2F).

The synthetic extracellular activity, which provides 
spike waveforms and labels for arbitrarily overlapped 
spikes, is employed to train a classifier for identifying 
overlapping spikes among the detected ones (see Fig. 2C, 
E). This arises from the fact that the label information for 
overlapping spikes cannot be directly obtained from real 
data. Based on the trained classifier, overlapping spikes 
are identified from real observed data (see Fig. 2D). These 
overlapping spikes are often either excluded from analy-
sis or separated into individual single units. Here, we 
constructed an objective function based on the overlap-
ping spike model (see Fig.  1A) and decomposed it into 
individual single units using a particle swarm optimiza-
tion (PSO) algorithm (see Fig. 2F) [25].

To examine the effects of our proposed approach, we 
primarily utilized simulation datasets through synthetic 
spike generation procedures rather than real spikes (see 
Fig.  2A, B). The reason for this choice is that synthetic 
data provides a definitive ground truth, including clear 
labels for overlapping spikes, which enables a more con-
trolled and comprehensive evaluation of the proposed 
method. Therefore, we constructed a synthetic spike 
generation pipeline based on known ground truth wave-
forms and interspike interval (ISI) distributions, mod-
eled by a gamma distribution estimated from real neural 
recordings (as shown in Fig.  2B and described in “Data 
generation for simulation” section).

While the primary focus was on synthetic datasets, 
for comparison purposes, we briefly applied the method 
to a real spike dataset. However, it is important to note 
that this real dataset was used for supplementary test-
ing, rather than for the main performance evaluation. 
Our key metrics—recall, precision, and F1 score—were 
derived mainly from synthetic spike data to investigate 
how well the method can identify overlapping spikes 
under controlled conditions. To further evaluate the per-
formance of the proposed method, considering the sen-
sitivity of neural signals to noise, we adjusted the SNR 
values of the synthesized spikes and analyzed how this 
affected the classification accuracy of overlapping spikes. 
Additionally, we explored the decomposition of overlap-
ping spikes and assessed its impact on isolated single-
unit spikes.

Methods
Data generation for simulation
The synthetic spike generation procedure can serve two 
purposes: firstly, to provide simulation data for examin-
ing the effects of the approach proposed in this study, 
and secondly, to provide training data for learning a clas-
sifier to identify overlapping spikes.
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To generate the simulation data, we first assumed that 
raw extracellular signals would be recorded through 
a single electrode at a sampling rate of 30 kHz, with a 
measurement duration limited to 60 s. We initially set 
the number of neurons to three, assuming that when 
overlapping spikes occur near this electrode, at least 
two single units would fire spikes simultaneously or 
within a short delay. Additionally, it was assumed that 
the amplitude of each neuron’s spike waveform would 
decrease according to an inverse-square law with 
increasing distance from the electrode [26, 27]. In other 
words, we determined the magnitude based on the 
inverse-square law, which is expressed as:

where Ij denotes the magnitude of the j-th neuron’s spike 
waveform, dj is the distance from the electrode tip to neu-
ron j, and I0,j is the magnitude when d = 0. The magnitude 
was set to I0 = 120 μV when fully contacting the electrode 
tip, based on the actual action potential morphology 
of the extracellular recordings. Initially, the distances 
between neurons and electrodes were randomly sampled 
between 20 and 60 µm to align with the number of spike 
templates. These distances are then randomly shuffled in 
each simulation and applied element-wise as weights to 

(1)Ij =
I0,j

(
1+ dj

)2

Fig. 2  Illustration of the process for identifying overlapping spikes through synthetic data-driven real spike classification. A Spike templates can 
be estimated by taking the sample-wise median of the single unit waveforms isolated by LDA–GMM, and then removing residual anomalies 
using the isolation forest algorithm. B The generation of synthetic spikes proceeds through the following steps: (1) random sampling of interspike 
intervals (ISIs) following a gamma distribution and cumulative summation to create spike trains. (2) Convolution of spike trains with spike templates, 
performed independently for each spike template and then summed. (3) Addition of Gaussian white noise. In the generated synthetic spike data, 
the solid magenta lines represent overlapping spikes (indicated on the far right). The far-right bottom panels represent changes in the fraction 
of overlapped spikes in the synthetic data depending on the fraction of overlapped spikes in the observed data, and changes in the estimated 
SNR as the initial SNR changes, respectively. C, D Real or synthetic spike waveforms obtained by the spike detection. E Synthetic data-driven 
classification to identify overlapping spikes from real data. Blue coloured contour represents the decision boundary determined by SVM. Magenta 
dots correspond to overlapping spikes, while dark dots denote non-overlapping spikes. G Identified non-overlapping spikes can be sorted using 
common spike sorting methods, such as LDA–GMM, F while overlapping spikes can either be removed or broken down into single units. In this 
study, they were decomposed using the particle swarm optimization algorithm, which is a type of heuristic optimization algorithm
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the spike templates, which have been rescaled between 0 
and 1. Here, we ensured that at least two neurons were 
placed a short distance apart to reproduce overlapping 
spikes. Furthermore, we assumed that the ISI of the spike 
train firing from each neuron strictly followed a gamma 
distribution [28, 29].

Spike templates, representing the action potential of an 
isolated single unit, are necessary to generate plausible 
synthetic spike trains (as detailed in “Spike template esti-
mation” section). To support this, we postulated that the 
spike templates would be the action potentials of single 
units, detectable around the electrode tip. In this study, 
initial spike templates were obtained from a real dataset 
(see “Real data acquisition” section). These spike tem-
plates were convolved with the spike timings to generate 
simulated spike trains, assuming the firing activities of an 
ideally isolated single unit. Since the ISIs of real neuronal 
spike timing are known to follow a gamma distribution, 
we generate the gamma random numbers to represent 
the ISIs. The shape and scale parameters of the gamma 
distribution define the spike firing rate, fj, using the fol-
lowing equation:

where αj represents the shape parameter and θj repre-
sents the scale parameter of the single unit j. Considering 
the refractory period for each single unit, we initialized 
α with a randomly sampled value from a uniform dis-
tribution between 1.01 and 2 [1]. The firing rates were 
set to 60  Hz to ensure that the probability of overlap-
ping spikes occurring exceeded 20%, resulting in each θ 
being approximately 0.05 (see Figure S1 in Supplemen-
tary Material). Note that the firing rate was set uniformly 
to ensure a consistent proportion of overlapping spikes 
among all detected spikes (see Figure S2 in Supplemen-
tary Material).

We generate random numbers representing ISIs fol-
lowing the gamma distribution based on these param-
eters. In this process, we use the “gamrnd” function from 
the Matlab toolbox. Following the ISI generation, sam-
ples within the 48-point refractory period are excluded, 
reflecting the physiological phenomenon where subse-
quent spikes do not occur within 2.5 ms in the same neu-
ron [1]. The spike trains are then created by taking the 
cumulative sum of the ISI samples. Spike templates are 
convolved with the spike trains randomly generated as 
the number of spike templates individually.

These ideally isolated single unit activities are then 
summed across multiple spike templates. This allows 
us to access information regarding the occurrence of 
overlapping spikes and the unit labels involved. Finally, 
Gaussian white noise with a signal-to-noise ratio (SNR) 

(2)fj =
1

αjθj

of a specific range (from 1 to 3 detailed in “Assessment” 
section) is applied. The SNR is defined as the minimum 
peak-to-peak spike waveform scale relative to the root 
mean square of the spike-free noise segment, as detailed 
in [30]. Note that in this study, we did not consider back-
ground signal drift.

Real data acquisition
A real dataset was obtained by chronically implanting a 
96-channel microelectrode array into the primary motor 
cortex (M1) of one Rhesus macaque. Spontaneous neural 
activities were recorded while the monkey freely moved 
its arm without performing any task instruction. In this 
study, we evaluated the data obtained from only channels 
in which distinct neural spikes were observed. Neural 
signals were acquired using a Cerebus system (Blackrock 
Neurotech, Salt Lake City, UT) for a duration of 180 s at a 
sampling rate of 30 kHz.

Band‑pass filtering and spike detection
The preprocessing procedures for extracellular activity in 
our proposed approach follow the traditional spike sort-
ing pipeline. We constructed a 6th-order Butterworth fil-
ter for band-pass filtering. Specifically, we filtered the raw 
extracellular signals through a 300–3000  Hz band-pass 
filter. Subsequently, for spike detection, we employed 
the method proposed by Quiroga et  al. [31]. According 
to their method, the threshold, thr, is determined based 
on the standard deviation of the background noise of the 
filtered signal, x, as defined in Eq. 3.

where the denominator, 0.6745, is derived from the 
inverse of the cumulative distribution function for the 
Gaussian distribution, and c is the constant reflect-
ing spike detection sensitivity, which can be calculated 
as std(x)/median(|x|). After the threshold was crossed, 
we stored the putative spike waveforms, U = {u1, u2, …, 
uM} ∈ ℝ44×M, with 44 samples (equal to 1.5  ms) for each 
detected spike, where M denotes the number of detected 
spikes. We aligned spike waveforms based on their mini-
mum peaks, with 10 samples preceding and 34 samples 
following its peak latency.

Spike template estimation
To estimate the spike template, we implemented a two-
step procedure involving LDA–GMM and iForest. 
LDA–GMM is an iterative subspace learning method 
that combines LDA and GMM clustering [22]. In simple 
terms, it iteratively updates the discriminant prediction 
matrix using GMM until achieving maximum cluster 

(3)thr = c ·median

(
|x|

0.6745

)
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separability. The objective function to be maximized can 
be expressed as follows: 

where L represents the labels clustered by GMM, and 
Sb and SW are the covariance matrices representing the 
between-class and within-class variances, respectively. 
The superscript T denotes the transpose of the matrix. 
Thus, this algorithm can identify single unit spike can-
didates by detecting outliers. However, the efficacy of 
outlier detection may be affected by the initialization of 
GMM, owing to the intricate multimodal distribution 
of data within the subspace. Therefore, we additionally 
applied the iForest, which is one of the unsupervised 
anomaly detection methods, to potentially find spike 
templates close to single unit spikes, further enhancing 
the quality of the clustered spike waveforms. The iForest 
constructs an ensemble of isolation trees (iTrees) from 
the datasets, identifying anomalies as instances with 
shorter average path lengths in the iTrees [24]. With path 
lengths, h(u), anomaly score, sa, reflecting the degree of 
anomaly is given as follows:

where E(h(u)) is the average of h(u) for collected isola-
tion trees, and c(n) is the normalizing factor, which can 
be described as the average of h(u) given node n. The out-
lier score ranges between 0 and 1, with values closer to 1 
indicating a higher likelihood of being an outlier.

Initially, we differentiated each detected spike wave-
form with respect to time (du/dt), followed by the appli-
cation of LDA–GMM [22]. This approach was chosen 
because it is well-known that differentiated waveforms 
tend to outperform undifferentiated ones [22]. Each 
clustered waveform group was refined, by detecting and 
eliminating anormalies through the iForest. At this point, 
we optimized the contamination fraction of the iForest 
by calculating the unimodality of the feature distribution 
through four-fold cross-validation for each waveform 
group. The spike templates were then estimated by taking 
the median of the waveforms for each waveform group 
(see Fig. 2E).

The number of spike templates confirmed from syn-
thetic spikes can be equal to or fewer than the predefined 
number (three units in this simulation) during the gener-
ation of synthetic spike data, depending on the specified 
changes in SNR. However, to estimate spike templates 
from real neural spikes, we needed to determine the 
number of potentially valid clusters (to be used as spike 
templates). We employed the LDA–GMM method, 

(4)max
W∗L∗

Trace

(
WTSbW

WTSWW

)

(5)sa(u, n) = 2
−

E(h(u))
c(n)

gradually increasing the number of clusters (from 2 to 
5) according to the method proposed by Keshtkaran and 
Yang [22]. Subsequently, we examined whether the data 
distribution in the subspace was over-clustered using the 
Anderson–Darling test. This method aligns with optimiz-
ing the contamination fraction of the iForest. All these 
procedures were implemented based on the “iforest” 
function from the Matlab toolbox and the LDA–GMM 
toolbox available in [22].

Synthetic spike generation for classifier
When building a classifier, it is crucial to reconstruct 
synthetic spike data (or simulation data) with character-
istics as similar as possible to the observed data. Initially, 
we estimated the parameters of the gamma distribution 
representing the ISI distribution of the observed data 
using maximum likelihood estimation, performed using 
the “gamfit” function in the Matlab toolbox. However, if 
the SNR is low, fewer spikes may be detected, potentially 
leading to fitting failure. So, in this scenario, we randomly 
sampled alpha between 1.01 and 2, the same as the simu-
lation data generation process (see “Data generation for 
simulation” section). By utilizing the estimated param-
eters of the gamma distribution, we estimated the firing 
rate according to Eq.  2. Using these parameters of the 
gamma distribution and the spike templates estimated 
from the observed data, we generated synthetic spike 
data following the method mentioned in “Data genera-
tion for simulation” section. To minimize heterogeneity 
with the observed data, the proportion of overlapping 
spikes in the synthetic spike data was maintained to be 
similar to those of the observed data, and the SNR was 
set to the SNR estimated from the observed data.

Classification of overlapping spikes
To classify overlapping spikes from detected spikes, 
ground truth is necessary to train the classifier. In this 
section, we detail constructing the classifier using syn-
thetic spikes to identify overlapping spikes and its testing 
with real detected neural spikes.

Feature extraction
Projecting detected spikes into a low-dimensional sub-
space is beneficial as it efficiently summarizes essential 
information. For classifier training, we first projected the 
detected spikes into a low-dimensional space using prin-
cipal component analysis, which can be expressed as: 

where z is the score of the principal components, 
CT ∈ ℝD×M denotes the transposed loading matrix, and 
u is the centralized waveforms. We determined dimen-
sionality, D, by identifying the minimum number of 

(6)z = CT
u
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components needed to account for at least 90% of the 
data variance. This determination was based on the 
eigenvalues’ contribution the total variance of the train-
ing data, which on average results in D being 15. To 
ensure dimensional consistency across both datasets, it 
is important to perform subspace learning when the SNR 
and single unit waveforms of synthetic and real neural 
spikes are similar.

Classification
Since the principal component scores for synthetic spikes 
with the label information of overlapping spikes exhibit 
inherently non-linear class distributions, we opted to 
construct a support vector machine (SVM) with a radial 
basis function (RBF) kernel [32]. We set the box con-
straint to 1, a value optimized to achieve the highest pos-
sible classification accuracy.

Particle swarm optimization algorithm
Based on the model illustrated in Fig.  1, the process of 
decomposing overlapping spikes requires the optimiza-
tion of delay time, τ, and coefficients (also known as con-
tribution index), w, for each single unit j. The objective 
function, aimed at minimizing the mean absolute error of 
this model, is formulated as: 

where J denotes the total number of the spike templates, 
uo is the observed overlapping spike. If the number of 
single units is two, overlapping spikes could be modelled 
as simple combinations based on time delay changes 
and partitioned using cross-correlation, etc. However, 
as the number of combinations increases exponentially 
with the number of single units, we estimated the vari-
ables {time delay (τ) and coefficients (w)} of the overlap-
ping spike model using Particle Swarm Optimization 
(PSO), a metaheuristic search algorithm that iteratively 
explores the solution space [25]. PSO operates based on a 
set of candidate solutions, called particles, and optimizes 
the solution by adjusting the particles’ positions and 
velocities within the search space. In each iteration, PSO 
evaluates the movement of each particle to find a better 
position, which is considered the optimal solution. The 
estimated variables include τ and w, each of which is con-
strained within a certain range. Specifically, we limited 
the τ to be between − 44 and 44, and w between 0 and 1, 
depending on the number of estimated spike templates. 
To prevent excessive exploration of the search space, 
the inertia weight damping ratio was set as 1. Addition-
ally, to limit the movement of particles in each iteration, 

(7)argmin
ω∗τ∗

1

44

∣∣∣∣∣∣

44∑

t=1

J∑

j=1

ωjuj
(
t − τj

)
− u0(t)

∣∣∣∣∣∣

the inertia weight, wχ, was set as 0.55. Additionally, the 
number of PSO particles was fixed at 100, and the algo-
rithm was repeated 1000 times for each spike. This repre-
sents the experimental number of iterations in which the 
objective function can be minimized. If the positions (or 
variables) are no longer updated, the iteration stops.

Assessment
We evaluated the proposed method’ sensitivity to noise 
by changing SNR from 1 to 3 with 0.1 interval. To assess 
the impact of noise, we iteratively regenerated simulation 
data up to 1000 times. We then compared the proposed 
method with the following approaches: “outlier detection 
using LDA–GMM (LG)”, “outlier detection using iFor-
est + LDA–GMM (IF+)”, and “testing the subspace scores 
of observed spikes using a synthetic spike subspace score-
based classifier with PCA {PCA(syn → obs)}”.

To determine iForest’s effectiveness on template 
spikes, we calculated the root-mean square error (RMSE) 
between the refined and the ground-truth spike wave-
forms and compared it to the distribution of all spike 
errors without iForest. This can be expressed in the fol-
lowing formula:

where ûm,j denotes the refined spike waveform of the 
m–th spike within the single unit j. Based on this, we 
quantified the relative iForest effect by defining it as the 
difference in RMSE between IF+ and LDA–GMM. The 
iForest effect is expressed as follows:

where IF+RMSE and LGRMSE denote the RMSE of LG and 
IF+, respectively. This effect was represented as a func-
tion of SNR.

In addition, since overlapping spikes occur in about 
20% of total spikes (see Figure S1 in Supplementary Mate-
rial), we quantified precision, which represents the ratio 
of predicted overlapping spikes among actual overlapping 
spikes. Additionally, recall, which indicates the prob-
ability that the predicted overlapping spike contains an 
actual overlapping spike, and the F1-score, which quan-
tifies performance by considering the trade-off between 
precision and recall, were also calculated. Statistical tests 
for classification performances were conducted using the 
Wilcoxon rank sum test and Kruskal–Wallis test, with a 
Tukey–Kramer correction applied for the post-hoc mul-
tiple comparison testing. In addition, we compared the 

(8)RMSEj =

√√√√ 1

M

M∑

m=1

(
uj − ûm,j

)2

(9)iForestEffect =
IF+RMSE − LGRMSE

IF+RMSE + LGRMSE
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effects of the proposed approach, and LDA–GMM across 
varying SNRs using the Friedman test.

To evaluate the decomposition of overlapping spikes, 
we calculated cluster-wise precision, recall, and F1-score 
between true spikes and those from reallocated spike 
trains of decomposed single units. We also confirmed 
the correlation between the time lags of actual spikes and 
their estimated counterparts. As matching the stochastic 
ISI distribution is crucial for assessment, we calculated 
the absolute difference between Gamma distribution 
parameters estimated from actual and estimated spike 
trains. In addition, we compared the proposed method 
to LDA–GMM by measuring event synchronization 
between single unit spike trains. Event synchronization is 
quantified by the number of nearly simultaneous occur-
rences of spike events, based on the relative timings of 
events within the time series, such as local maxima. We 
implemented this metric with Matlab toolbox for Event 
Synchronization, which is available at the [33, 34].

For real neural spikes, we have limited access to ground 
truth data. We thus perform a qualitative comparison by 
examining the change in ISI distribution of overlapping 
spikes. In the verification of the real neural data, we esti-
mated and compared the Gamma distribution param-
eters of the ISI distribution to the results of LDA–GMM, 
by referencing the refractory periods of neural spike 
trains.

Results
Estimation of spike templates
We initially investigated the synergistic impact of com-
bining LDA–GMM and iForest on spike template esti-
mation. Figure 3 illustrates the performance comparison 
between LG (Fig. 3A) and IF+ (Fig. 3B), utilizing simula-
tion data derived from three distinct single unit models. 
IF+, integrating LDA–GMM and iForest, was effective 
at identifying outliers surrounding the unit clusters and 
detecting anomalous spikes inside the cluster. In particu-
lar, we were able to remove spikes suspected to be over-
lapping spikes and estimate a waveform close to the real 
spike of a single unit through the average of the refined 
waveforms (Fig.  3C, D). Figure  3E shows the RMSE of 

the real and estimated spike waveforms according to 
changes in SNR of each unit for each method. Although 
the spike templates estimated by each method appeared 
visually similar in mimicking the actual spike waveform, 
the IF+ exhibited a statistically significantly lower RMSE 
compared to LG, particularly when the SNR ≥ 2 (p < 0.01, 
according to the Wilcoxon rank sum test). Under these 
conditions, the iForest effect showed a strong lin-
ear correlation with SNR increases (r2 = 0.98, p < 0.01, 
F-value = 7056.6), confirmed by a linear regression anal-
ysis between SNR and the iForest effect across repeated 
trials (see Fig. 3F). We also measured cosine similarity to 
assess the match between spike templates estimated by 
each method and the true spike waveforms. For SNR val-
ues ≥ 2, IF+ scored 0.19 higher than LG (p < 0.05).

Classification of overlapping spikes
We examined the impact of implementing the proposed 
method on the training of the overlapping spike classifier, 
following the generation of synthetic data using the esti-
mated spike templates. In this context, we considered the 
effects of IF+ as well, since not only outliers detected by 
LDA–GMM but also their anomalies detected by iForest 
are likely to be overlapping spikes. All comparative analy-
sis was rigorously and repeatedly conducted by divid-
ing them into training and testing datasets for all SNR 
conditions.

The left panel in Fig. 4 illustrates the changes in F1 score 
as a function of SNR variations. For each SNR ≥ 1.8, the 
proposed method demonstrated a significantly higher F1 
score (p < 0.01, Kruskal–Wallis test, post hoc analysis for 
multiple comparison testing with a Tukey–Kramer cor-
rection) compared to both IF+ and LG. At an SNR < 1.8, 
however, the proposed method did not significantly differ 
from IF+ (p = 0.43) but was significantly higher compared 
to LG (p < 0.01). F1 score of IF+ was a higher F1 score 
than that of LG for all SNR conditions (p < 0.01). Based 
on these results, we performed a Friedman test to com-
pare methods while accounting for the effects of factors 
related to changes in SNR. All methods showed signifi-
cance for F1 score (p < 0.01), with a calculated χ2 = 697.2. 
A post hoc analysis for multiple comparison test with a 

(See figure on next page.)
Fig. 3  The effects of the combination of LDA–GMM and iForest algorithm on finding spike templates. A, B Visualization of feature spaces for LG 
and IF+. Grey dots denote outliers, including overlapping spikes, detected by only LDA–GMM, and the dark gray dots indicate anomalies additionally 
detected by iForest. Other colors (orange, yellow, and purple) dots denote the single units. C Single unit waveforms corresponding to LG in A. 
Each column corresponds to each single unit. Solid blue lines denote spike templates obtained by LG. Solid dark line represent the true spike 
waveforms. The m represents the number of spikes. D Single unit waveforms corresponding to IF+. Solid magenta lines denote spike templates 
obtained by IF+, the rest is the same as in C. E RMSEs between true and estimated spike templates in the SNR conditions. The inset shows changes 
in RMSE over time, averaged for SNR > 2. Blue solid line corresponds LG, the orange solid line denotes IF+. The light-green solid line at the bottom 
of the panel indicates a significant difference (p < 0.05, Wilcoxon rank sum test). F iForest effects in SNR condition changes, which denotes 
the difference between the RMSEs of LG and those of IF+
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Fig. 3  (See legend on previous page.)
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Tukey–Kramer correction revealed that the proposed 
method had the highest performance (p < 0.01).

The middle panel of Fig. 4 illustrates the precision. The 
proposed method yielded a significantly higher precision 
at SNR > 2.5 (p < 0.01, Kruskal–Wallis test, post hoc anal-
ysis with Tukey–Kramer correction) compared to both 
IF+ and LG. Meanwhile, the proposed method showed 
a lower precision compared to IF+ when SNR < 1.25 
(p < 0.01). Both the proposed method and IF+ yielded a 
higher precision than that of LG for all SNR conditions 
(SNR ≥ 1: p < 0.01). The Friedman test for all SNR condi-
tions produced χ2 = 628.3, and was significant for each of 
the methods (p < 0.01). A post hoc analysis using Tukey–
Kramer correction revealed that the proposed method 
had significantly higher precision relative to both IF+ and 
LG (p < 0.01).

Recall, shown in the right panel of Fig. 4, indicates that 
the proposed method does not significantly differ from 
LG when SNR > 1.38. However, the proposed method was 

maintained at a consistently higher level compared to IF+ 
and LG for all SNR conditions. Meanwhile, IF+ yielded a 
significantly lower recall compared to both the proposed 
method and LG. The Friedman test yielded χ2 = 712.2, 
showing significance for each of the methods (p < 0.01). 
A post hoc analysis using Tukey–Kramer correction 
revealed no significant difference between the proposed 
method and LG (p = 0.47) for all SNR conditions, while 
the proposed method and LG showed significant differ-
ences with IF+ (p < 0.01). We also examined the effects of 
the classifier’ self- calibration on synthetic “syn → syn” 
and observed (for test) datasets “obs → obs” with to 
verify whether the results of the proposed method 
are overfitting through a fourfold cross validation (see 
Fig.  5). If the performance of the proposed method 
yields a significantly lower than that of both “syn → syn” 
and “obs → obs”, then it is likely to be overfitted. This 
is because if the generative conditions of spike trains 
change, the properties of the synthetic and observed 

Fig. 4  Comparison of the classification performance for identifying overlapping spikes. The F1 score, precision, and recall are displayed from left 
to right. Each solid line represents the median performance of each method for identifying overlapping spikes. Shaded regions denote 25% 
and 75% of the measurement distribution. The purple, green, and gray solid lines at the bottom of the panel indicates a significant difference 
(p < 0.05, Kruskal–Wallis test)

Fig. 5  Comparison of synthetic and observed data sets’ combinations. The F1 score, precision, and recall are displayed from left to right. 
Each solid line represents the median performance of each method for identifying overlapping spikes. Shaded regions denote 25% and 75% 
of the measurement distribution. The “(proposed) syn → obs” is consistent with the “proposed” in Fig. 4
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datasets may become disparate, potentially leading to a 
degradation in the performance of “syn → obs” instead. 
Figure  5 shows that the proposed method produced a 
similar performance for all SNR conditions. The Fried-
man test yielded χ2 = 532.6, showing signfiicance for 
each of the combinations (p < 0.01). A post hoc analysis 
using Tukey–Kramer correction revealed not sigifii-
cant difference among all combinations {“obs → obs” vs. 
the proposed method: p = 0.85, “syn → syn” vs. the pro-
posed method: p = 0.91, and “syn → syn” vs. “obs → obs”: 
p = 0.32}.

Decomposition of overlapping spikes
We can either exclude identified overlapping spikes 
from our analysis or decompose them into single units 
to enrich the neural information. We used the PSO to 
decompose overlapping spikes into single units based 
on the objective function of the overlapping spike model 
shown in Fig.  1. Here, spike generation and its decom-
position processes were repeated 500 times. Figure  6A 
illustrates the F1 scores comparing decomposed single 
units derived from overlapping spikes with the ground 
truth. Significance levels were determined via 10,000 
non-replacement samplings, presenting the follow-
ing quantiles for each unit: 25% quantile = 0.85, median 
(50%) = 0.86, 75% quantile = 0.87 for unit 1; 25% = 0.91, 
50% = 0.92, 75% = 0.92 for unit 2; 25% = 0.76, 50% = 0.77, 
75% = 0.78 for unit 3 in Fig.  6A. Each decomposed unit 
significantly matched its corresponding actual unit in 
terms of precision {25% = 0.87, 50% = 0.87, 75% = 0.88 
for unit 1; 25% = 0.92, 50% = 0.93, 75% = 0.93 for unit 2; 
25% = 0.75, 50% = 0.76, 75% = 0.77 for unit 3 in Fig.  6B} 
and recall {25% = 0.84, 50% = 0.85, 75% = 0.86 for unit 
1; 25% = 0.90, 50% = 0.91, 75% = 0.92 for unit 2; simi-
lar results were obtained for 25% = 0.78, 50% = 0.79, 
75% = 0.80 for unit 3 in Fig.  6C}. Figure  6D illustrates 
the correlation between the time-lag of the actual single 
unit and the decomposed single unit, showing a strong 
positive correlation for each single unit, with a relatively 
high error variance observed for unit 3 {42.6, 31.3, 78.3 
for each unit}. Further post hoc analysis revealed sig-
nificant differences among all combinations of methods. 
The shape parameters estimated by each method and 

the ground truth are as follows: LG: 1.63, 1.73, 0.87 for 
each unit; PSO: 0.17, 0.16, 0.47 for each unit; ground 
truth: 0.81, 0.77, 0.84 for each unit. Meanwhile, for the 
scale parameter θ, PSO exhibited a relatively lower error 
rate compared to LG (p < 0.01, χ2 = 5,156, Friedman test). 
Further post hoc analysis revealed significant differences 
among all combinations of methods. The scale parame-
ters for each method and the ground truth are as follows: 
LG: 0.01, 0.01, 0.23 for each unit; PSO: 0.09, 0.09, 0.08 for 
each unit; ground truth: 0.02, 0.02, 0.02 for each unit.

Additionally, we conducted comparative analysis 
between the spike trains reallocated the decomposed 
overlapping spikes into corresponding clusters and the 
spike trains excluded the overlapping spikes, by meas-
uring spike synchronization between sorted single units 
(see Fig.  7). Figure  7A shows examples of spike trains 
excluding times considered as overlapping spikes. Fig-
ure 7B depicts examples of spike trains reallocating times 
of decomposed overlapping spikes into single unit spikes 
from equal datasets. The spike synchronization distri-
bution of PSO closely resembled that of the actual spike 
trains for all unit combinations. The median difference 
between unit 1 and 2 was 0.1 (p < 0.01, Wilcoxon rank 
sum test). Similarly, between unit 1 and 3, the median 
difference was 0.09 (p < 0.01), and between unit 2 and 3, it 
was 0.08 (p < 0.01) (see Fig. 7C).

Effects on real data
We assessed the effectiveness of our proposed method by 
analyzing neural signals from the M1 area of rhesus mon-
keys. Four single units were estimated from this data, and 
a total of 4794 spikes were detected. Figure 8A illustrates 
the distribution of features across spike clusters and out-
liers identified by LG, detailing the spike counts per unit 
as follows: 879 (17.7%), 1636 (32.9%), 897 (18.0%), 1165 
(23.4%), with 217 (8%) of the spikes categorized as out-
liers. Figure  8B shows the feature distribution of spikes 
refined using IF+, where the number of spikes for each 
unit was 735 (14.8%), 1466 (29.5%), 759 (15.3%), and 983 
(19.8%), respectively, whereas those of outliers was 1031 
(20.7%) (see Table 1).

The waveforms from each spike cluster were averaged, 
deriving four distinct spike templates, as depicted in 

Fig. 6  Decomposition of overlapping spikes. A–C Identification performance (F1 score, precision, and recall) between true single units 
and dissociated single units. Filled grey plots denote the distribution of the shuffled data and filled orange, yellow, and purple plots represent 
the distribution of performance for each single unit. Solid red vertical line denotes the median and dashed dark vertical lines correspond 
to 25% and 75% of their distribution. Red coloured numeric above the vertical lines denotes the median value. D The correlation between true 
and estimated time-lags. Each dot indicates the individual spikes, and each coloured solid line represents the trend line fitted by the linear 
regression. E Comparison of the absolute errors between true and estimated gamma parameters, α and θ. Asterisks denote significant difference 
(***p < 0.001, Friedman test, post hoc analysis with multiple comparison based on a Tukey–Kramer correction)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Fig. 8C. These spike templates were utilized to generate 
synthetic spikes with SNRs estimated from the observed 
data. The observed data was evaluated with a classifier 
built based on these synthetic spikes to detect redundant 
spikes. The number of overlapping spikes detected by the 
proposed method was 739 (15.4%).

Next, we decomposed the identified overlapping spikes 
using the PSO. We then included the decomposed single 
units from each overlapping spike in the correspond-
ing cluster, where the number of spikes in each unit was 
increased by 3.4%, 2.6%, 4.4%, and 4.7%, respectively, 
where as those of the outliers was decreased by 15.2% 
(see Table 1).

Figure  8D displays the ISI distributions of single unit 
spike trains reconstructed through PSO and those recon-
structed by LG. Across all neurons, PSO demonstrated a 
distribution closely similar to the gamma distribution of 

LG, as shown in Fig.  8D. However, PSO allowed reallo-
cating a greater number of spikes compared to LG, while 
maintaining their refractory periods. Shape and scale 
parameters for each unit fitted by the maximum likeli-
hood estimation was {unit 1 = (1.63, 0.05), unit 2 = (1.39, 
0.03), unit 3 = (2.25, 0.03), and unit 4 = (0.96, 0.08)}. We 
also computed the median interspike intervals (ISIs) for 
four single-unit spike trains reconstructed using PSO 
and LG. The mean of these median ISIs was 0.03 ± 0.01 
for PSO and 0.04 ± 0.01 for LG, with LG being slightly 
higher by 0.01 ± 0.003. Both parametric (p = 0.06, paired 
t-test) and nonparametric (p = 0.48, Wilcoxon rank-sum 
test) analyses showed no significant difference in the 
mean ISIs between PSO and LG. However, the mean fir-
ing rate for single units was 25.3 ± 7.67 Hz for PSO and 
20.7 ± 8.01  Hz for LG, with PSO being 4.65 ± 0.41  Hz 
higher than LG. While the nonparametric test showed no 

Fig. 7  Comparison of spike train synchronization with and without overlapping spike reallocation. A Examples of spike trains after applying 
LG, excluding overlapping spikes. The dark vertical lines denote spike. The numeric values on the left represent the spike synchronization index 
between units enclosed in square brackets. B Examples of spike trains with reassigned decomposed overlapping spikes. The coloured vertical 
lines denote single units’ spikes decomposed from overlapping spikes. The rest is the same as in A. C The distribution of spike synchronization 
indices for each pair of units. The shaded blue patch and blue vertical line represents the distribution and median of the synchronization indices 
between spike trains across repetitions of 500 times, excluding overlapping spikes, after applying LG. The shaded red patch and red vertical 
line denotes the distribution and median of the synchronization indices between spike trains, reassigning decomposed overlapping spikes, 
after applying the proposed method. The shaded grey patch and dark vertical line represent the distribution and median of the synchronization 
indices between actual spike trains of single units. The numeric value at the top of the distribution indicates the absolute difference of the median 
for each distribution
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significant difference in mean firing rates (p = 0.34, Wil-
coxon rank-sum test), the parametric test revealed a sig-
nificant difference (p < 0.001, paired t-test) (see Fig. 8E).

Discussion
This study introduces a classifier based on synthetic 
spikes designed to identify overlapping spikes within 
neural data, even in the absence of a definitive ground 
truth. We proposed an approach that can be tested on 
real observation data through a systematic reconstruc-
tion of synthetic data based on the given real data. Ini-
tially, single unit spike clusters were estimated from 
observed data using LDA–GMM, followed by the detec-
tion and exclusion of residual outliers using iForest. This 
method improved the estimation of spike templates 
closer to the actual spike waveforms of single units by 
eliminating residual anomalies within the spike clusters 
in the feature distribution. While there was no signifi-
cant numerical difference compared to scenarios without 
iForest, the effect became more pronounced at higher 
SNR. This is because iForest is adept at detecting outliers 
associated with a higher rate of overlapping spikes (Fig-
ure S1 in Supplementary Material).

Furthermore, we employed synthetic spikes to gener-
ate putative spike templates, ensuring that the synthetic 
spikes resembled the signal characteristics of observed 
data as closely as possible. Synthetic spikes were used 
to train a classifier for detecting overlapping spikes in 
the observed data. However, it is important to note that 
synthetic spikes might provide several ground truth but 
could distort feature information based on SNR and spike 
waveform structure, making them challenging for evalu-
ating real data. We generated synthetic spikes using the 
described method and trained an SVM based on the 
ground truth for overlapping spikes. We compared three 

Fig. 8  Effects of the proposed method on real data. A Feature 
distribution for LG. Light-grey dots represent outliers, and orange, 
yellow, purple, and green dots denote isolated single units, 
respectively. B Feature distribution for IF+. Data and all formats are 
the same as A. C Spike waveforms for single units sorted with IF+. 
The colours of the solid lines are identical to the specifications of A. 
Dark solid lines represent the median of the isolated spike waveforms, 
and light-gray lines denote anomalies detected by iForest. D The 
ISI distributions of spikes obtained by two methods for each single 
unit are illustrated, where the green represents PSO, and the dark 
represents LG. The solid lines corresponding to each colour depict 
the results of fitting with the gamma function. E The left panel 
represents the differences in the mean ISIs between LG and PSO, 
and the right panel denotes the difference in the mean firing rates 
between LG and PSO. Each coloured line corresponds to a single unit

◂

Table 1  The identified number of spikes for each isolated unit

Unit 1 Unit 2 Unit 3 Unit 4 Outliers

LG 735 (14.8%) 1466 (29.5%) 759 (15.3%) 983 (19.8%) 1031 (20.7%)

PSO 873 (18.2%) 1541 (32.1%) 945 (19.7%) 1173 (24.5%) 262 (5.5%)
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methods {LG, IF+, and the proposed method} under var-
ying SNR conditions. F1 score, precision, and recall were 
calculated to address imbalanced classes, given the low 
ratio of overlapping spikes to the total detected spikes. 
The proposed method exhibited high accuracy in all 
aspects, and IF+ showed a relatively better performance 
levels compared to LG, possibly due to anomalies that 
were detected by iForest could significantly correspond 
to the overlapping spikes within each cluster.

Identified overlapping spikes can be excluded from the 
analysis or decomposed into single units and added to 
the sorted spike clusters. We successfully decomposed 
overlapping spikes using the PSO algorithm, a heuristic 
optimization algorithm. Note that the key elements of the 
proposed method include the isolation forest algorithm 
and the use of synthetic spikes to effectively identify 
overlapping spikes. While PSO was utilized in this study 
to explore parameter optimization, it may not be the only 
or even the optimal approach. Alternative optimization 
methods could be considered to more effectively iden-
tify parameters that explain the overlapping spike phe-
nomena. These alternatives could potentially enhance the 
accuracy and robustness of spike decomposition. Despite 
the computational expense of PSO, it effectively esti-
mated time-lag and combinations of decomposed single 
units, providing valuable analysis opportunities (Figs.  6, 
7). Particularly, when the ISI distribution was modeled 
by including spikes from the decomposed single unit in 
the sorted spike cluster, it closely resembled the ISI of the 
ground truth single unit (Fig. 6D). This not only ensures 
reliable spike sorting but also proves useful in capturing 
neurons responding to fast stimuli.

Moreover, reassigning spikes from a decomposed 
single unit allows us to obtain accurate spike synchro-
nization measurements. We measured the spike synchro-
nization between the spike train of the actual single unit 
and the spike train of the reassigned single unit, demon-
strating that reusing the output of overlapping spikes is 
more beneficial than excluding them. Based on this, the 
proposed method could allow us to understand neuronal 
communication through spiking activities at the extracel-
lular recording level.

The effectiveness of the method proposed in this study 
was ultimately confirmed using spikes detected from 
neural data obtained from M1 of the rhesus macaque. 
Given the absence of a definite ground truth in actual 
neural data, our focus was on assessing whether the ISI 
distribution aligns with the shape and its magnitude 
of the gamma distribution. Overlapping spikes were 
detected and decomposed in a similar manner as in the 
simulation, then included in sorted spike clusters for 
ISI analysis. Our findings indicate that the ISI of spikes 
obtained through the proposed method not only more 

discovers valid spikes but also well conforms to the 
gamma function along with those obtained with LG.

Through this study, we investigated the potential 
of identifying overlapping neural spikes with a syn-
thetic data-driven classifier and leveraging them via 
a heuristic optimization algorithm. This presents an 
innovative opportunity to develop and assess models 
under conditions where ground truth is challenging to 
ascertain, such as in neural data. It will open avenues 
for uncovering hidden information that may otherwise 
go unnoticed, particularly in scenarios involving tactile 
stimulation and rapid eye movement changes. Further-
more, we introduced a method to compute spike tem-
plates by robustly estimating isolated spike clusters 
through a combination of subspace learning-based fea-
ture distribution and iForest-based waveform sample 
analysis. This approach will be applicable not only to 
the method proposed in this study but also to template 
matching-based spike sorting technologies in noisy 
environments.

Reflecting on our study, we have demonstrated a signif-
icant advancement in neural data analysis by addressing 
the challenge of identifying overlapping spikes without 
definitive ground truth. Our employment of unsuper-
vised domain adaptation and synthetic spikes has refined 
neural spike classification, contributing to the broader 
field of neural engineering. Looking forward, our find-
ings lay the groundwork for further exploration of diverse 
neural signal types, potentially enriching our understand-
ing of neural dynamics and aiding in the development of 
more sophisticated models.
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