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Abstract

The holy grail of intelligent vehicles is to enable a zero collision mobility ex-
perience. This endeavor requires an interdisciplinary effort to understand driver
behavior and to assess risks surrounding the vehicle. A driver’s perception of
risk is a complex cognitive process that is largely manifested by the voluntary
response of the driver to external stimuli as well as the apparent attentiveness of
participants towards the ego-vehicle. In this work, we examine the problem of risk
perception and introduce a new dataset to facilitate research in this domain. Our
dataset consists of 4706 short video clips that include annotations of driver intent,
road network topology, situation (e.g., crossing pedestrian), driver response, and
pedestrian attentiveness using face annotations. We also provide a simple weakly
supervised framework to tackle this task which performs favorably against state of
the art methods.

1 Introduction

Each year, road traffic accidents are among the leading cause of non-natural death around the world.
More than 1.3 million people die in road accidents worldwide every year, approximately 3,700 people
per day [20]]. Recent research and technological progress in automated and advanced driver assistance
systems promise to significantly reduce traffic related collisions in next generation mobility systems.
One promising research direction towards the successful deployment of intelligent driving systems
is understanding and development of computational models of driver decision processes and risk
perception when interacting with surrounding traffic participants.

While risk is generally defined on the basis of collision prediction [[6] in the context of intelligent
vehicles, this definition does not explicitly capture the notion of risk from a driver’s perspective. Such
driver-centric modeling of risk has been recently proposed [7], whereby potentially risky objects are
defined as those that influence driver behavior. The authors propose a new task called risk object
identification and develop a weakly supervised computational framework to individually train and
evaluate risk using four different reactive scenarios considered in the HDD dataset [[14]]. While a
good starting point, the HDD dataset has limited number of risk situations. Additionally, developing
separate models for different risk situations is not practical in the real world. To mitigate these issues,
we make the following contributions in this work. First, to address the limitations of existing datasets,
we introduce a novel and comprehensive dataset with a diverse set of situations and annotations to
enable research for risk perception in driving scenes as shown in Table|l} Second, we provide a
weakly supervised framework for risk object identification that performs favorably against state of
the art methods and use a single model to benchmark the proposed dataset for future research.

2 Risk Object Identification with Attention (ROI-A) Dataset

The data is collected in the San Francisco Bay Area region using an instrumented vehicle equipped
with 3 Point Grey Grasshopper video cameras with a resolution of 1920 x 1200 pixels, a Velodyne
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Table 1: Comparison of our proposed ROI-A with other datasets.

‘ # Clips # Risk Driver | Driver |CAN LiDAR Contextual | Road |Pedestrian Face Pedestrian

Situations | intention | response | data elements |topology| attention |annotations | tracklets
JAAD [16]| 346 X X X v X X X 4 X v
PIE [17] - X X X v X X X 4 X v
STIP [9] | 556 X X X X X X X X X X
LOKI [2] | 644 X v X v v X X X X v
HDD [14] - 4 4 v v v X X X X X
ROI-A | 4706 10 4 v v v v v v v v

HDL-64E S2 LiDAR sensor, and high precision GPS. It captures diverse set of traffic scenes including
different environments such as urban, suburban, and highway.

2.1 Annotation Methodology

Understanding driver and pedestrian behavior is essential for development of robust intelligent driving
systems. Modeling both driver and pedestrian behavior is complex and involves different levels of
cognitive processes, particularly in complicated interactive scenes. The data selection and annotation
protocol must be carefully designed. The first step involves manual selection of short clips from
hours of recording that includes appropriate scenarios for the task. Note that automatic situation
localization [11}[22] in untrimmed videos can also be explored using the proposed dataset.

We propose a 4-layer representation, i.e. Driver Intention, Topology, Situation, Driver Response,
to describe driver behavior for risk assessment. Note that the proposed representation is different from
the one proposed in [[14] since the labeling structure is designed explicitly for the risk assessment
task. For Driver Intention, we focus on three classes, i.e., Left-Turn, Right-Turn and Go-Straight.
While navigating towards their goal (e.g., reach an intersection), drivers encounter different driving
situations (e.g., a bicyclist is crossing the street and a truck is parked near the ego-lane). Drivers are
also perceptive of the road topology and situation of scene as part of their planning and decision
making. The underlying road topology network is annotated in the Topology layer that includes
4-Way, 3-Way, and Straight. While navigating in a road topology network, drivers react to certain
agents or objects on the road (e.g, slowing for a stop sign or yielding to a crossing pedestrian). The
road agents that directly impact driver behavior are annotated in the Situation layer. Specifically, we
select a comprehensive set of situations, i.e., Stop Sign, Traffic Light, Crossing Pedestrian, Crossing
vehicle, Car Blocking Ego Lane, Congestion, JayWalking, Car Backing Into Parking Space, Car
on Shoulder Open Door, and Cut In. Then, the response of driver to these road agents is labeled in
the Driver Response layer. In this work, two types of decision are annotated, i.e., Influenced and
Non-influenced. Here Influenced means whenever the driver alters behavior from its regular course.
For e.g. deviate from parked vehicle, yield to crossing pedestrian or vehicle, or stop for stop sign or
traffic light.

For pedestrian attentiveness, we focus on the attention of pedestrians when the ego-vehicle is
approaching. We explicitly select a subset of scenes, i.e., 854 videos, from the larger dataset used for
the risk object identification tasks, where the subset includes scenes in which the driver is influenced
by pedestrians. This enables the dataset to be studied for jointly analysing pedestrian attention in
the context of risk. The pedestrian attentiveness labels are i.e., Looking, Not Looking, and Not
Sure. Specifically, we label bounding boxes and occlusion flags around pedestrian faces as well as
pedestrian bodies. The design enables to reason pedestrian attentiveness from both faces and bodies
instead of purely using body poses as in [[16,117]]. Past research has shown that faces play a significant
role in understanding pedestrian attentiveness [, [15]].

3 Methodology

Motivated by [7]], we formulate the risk object identification problem as a cause and effect prob-
lem [12]. Figure[T|depicts the overview of the proposed framework. Given a sequence of video frames
observed in the past, the framework extracts image-level and object-level features for objects of
interest. An ego-centric spatio-temporal graph is constructed using these features as the representation
of the various nodes in the graph.
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Figure 1: Proposed Network Architecture. The proposed algorithm takes as input a sequence of
RGB frames, a sequence of binary masks for partial convolution and a set of object tracklets. These
inputs are then passed on to the graph convolutional network for getting the scene representation to
predict the driver decision of either getting Influenced or Non-influenced which in turn is used to
identify risk objects.

_

3.1 Graph Based Reasoning

Node Feature Extraction. To obtain node features, Mask R-CNN [33]] pretrained on COCO dataset [8]]
and Deep SORT [19] is applied to detect and track every object. ResNet-50 pretrained for panoptic
segmentation on a driving scene dataset [13] along with partial convolution [10] and RoIAlign [3] is
used to extract the corresponding object and image level representation. The ego node feature, i.e.
representation of the ego-vehicle, is obtained by the same procedure using a frame-size bounding box.
This also enables us to capture the scene context. Driving scenes are complicated, and not all objects
in the scene influence the driver. Therefore, we limit the objects of interest in our implementation to
the following classes: person, bicycle, car, motorcycle, bus,truck, traffic-light, and stop-sign. Similar
to [7]], we make use of partial convolution layers [10] to simulate a situation without the presence of
an object.

Graph Definition. We utilize the graph structure to explicitly model pair-wise relations between
different agents in the driving scene to understand and describe the activities. While previous graph
based works [T}, 21]] consider objects in the graph independently, we make use of tracking to form our
graph. Given a set of N agents in the traffic scene with their corresponding tracklets, we construct
a spatio-temporal graph G, = (V;, A;), where V; = {v{|Vi € {1,...., N}} is the set of vertices of
graph Gy and A; = {a’|Vi,j € {1,...., N}} is the adjacency matrix V¢ € {1,...., Z}. In our graph,
a;’ models the appearance relation between two agents at time ¢ and is formally defined as:

aij _ fp(v,f,vg)e:_rp(fa(vé,vg)) _
S Lo v exp(fo (v, v])

ey

where f,(vi,v]) indicates the appearance relation between agents i and j at time ¢, and Ip(vE, vl)
is an indicator function which determines the presence of a tracklet. Softmax function is used to
normalize the influence on agent ¢ from other objects. The appearance relation is calculated as below:

T (4]
fa(vzavi) — a(vt) (b(vt) (2)
VD

where 0(v{) = wo! and ¢(v]) = w’v]. Both we RP*D and w’e RP*P are learnable parameters
which map appearance features to a subspace and enable learning the correlation of two objects, and
VD is a normalization factor. While [T, 21]] can fill the graph with any random node at time ¢, we
need to take into account missing nodes due to both inconsistencies in tracking and agents entering
and leaving the traffic scene at different times. In order to mitigate this issue, we set adjacency matrix
values to zero when an object is missing using indicator function f,, as:

fo(vl,v]) = I(vi = present and v] = present) 3)

Once the nodes and adjacency matrix values are defined, we reason over the Graph Convolutional
Network (GCN) [4]. GCN takes a graph as input, performs computations over the structure, and



Table 2: Comparison with baseline methods on the HDD dataset (left) and ROI-A dataset (right).

Crossing Crossing Parked Cong- Crossing Crossing Car Blocking Cong- Cut- Jay- Traffic Stop mAce

Method Vehicle Pedestrian Vehicle estion mAce Method Pedestrian Vehicle Ego Lane estion In walking Light Sign

Random 14.78 6.32 721 674 8.6 Random  5.90 9.56 7.38 742 1026 440 294 567 699
7] 2540  19.88  21.02 18.58 21.22 [7] 13.96 24.01 15.68 30.46 33.66 11.28 4.32 8.00 17.67
[18 26.52 17.50  22.20 45.05 27.81 [18] 13.27 24.17 14.42 41.58 32.30 12.37 2.02 6.53 18.33
Ours  48.97 18.21  35.58 58.88 40.41 Ours 15.64  31.05 34.48 27.3527.69 342 283 11.76 19.28

returns a graph as output. For a target node ¢ in the graph, it aggregates features from all neighbor
nodes according to values in the adjacency matrix. Formally, one layer of GCN can be written as:

ASEIEEY VAUL1 40 4)
where A € RV#*XNZ js the adjacency matrix for appearance model. Z! € RN4*P i the feature
representations of nodes in the Ith layer. W' € RP*P is the layer-specific learnable weight matrix.
o(.) denotes an activation function, and we adopt ReLU in this work. This layer-wise propagation

can be stacked into multi-layers.
Loss Function. We train the network using a standard cross entropy loss given by:

R
1
L=—% yilog(py) + (1 = y)log(1 = p(y)), ®)
i=1
where y is the label, p(y) is the predicted probability and R is the batch size.

4 Experiments

4.1 Dataset and Metrics

In addition to showing results on our proposed dataset, we also show results on the publicly available
HDD dataset [14]]. We don’t report results on the two classes of Car Backing Into Parking Space
and Car on Shoulder Open Door from ROI-A as they don’t have enough samples for training and
evaluation when sampled at 3fps. We use the same accuracy metric for evaluation used in [7], i.e., the
number of correct predictions over the number of ground truth samples. A prediction is considered
accurate if the Intersection over Union (IoU) score is greater than a certain threshold. We report mean
accuracy mAcc, which is the average accuracy at 10 IoU thresholds evenly distributed from 0.5 to
0.95 [23]].

4.2 Results and Analysis

Baselines. We choose 7, [18]] for comparison, in addition to having a random baseline where the risk
object is randomly picked. While [7] is the only method which directly deals with our final task and
we use their original code, we re-implement [[18] to align with our task. Specifically, an object-centric
driving model is designed in [18] by learning object level attention weights, which we use as an
object selector for identifying risk object.

Results. Table [2|demonstrate that our method outperforms all baselines on two different datasets,
highlighting the efficacy of the proposed method. The lower performance of all methods in Table 2]
(right) compared to Table 2] (left) also points to the challenging nature of our proposed ROI-A dataset.
We also observe that the results of traffic light and stop sign are generally quite low compared to
other categories. This is primarily because 1) the detection and tracking of these categories is not
very consistent and ii) building a reasoning module using these categories is non-trivial as these
categories do not physically lie in the path of the ego-vehicle trajectory, and therefore requires a
thorough understanding of the scene and layout.

References

[1] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori. Object Level Visual Reasoning in
Videos. In ECCYV, 2018.



[2] H. Girase, H. Gang, S. Malla, J. Li, A. Kanehara, K. Mangalam, and C. Choi. Loki: Long term
and key intentions for trajectory prediction. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9803-9812, 2021.

[3] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In ICCV, 2017.

[4] T.N. Kipf and M. Welling. Semi-supervised Classification with Graph Convolutional Networks.
ICLR, 2017.

[5] J. Kooij, N. Schneider, F. Flohr, and D. Gavrila. Context-based Pedestrian Path Prediction. In
ECCV, 2014.

[6] S. Lefevre, D. Vasquez, and C. Laugier. A Survey on Motion Prediction and Risk Assessment
for Intelligent Vehicles. ROBOMECH Journal, 1:1, 2014.

[7] C. Li, S. H. Chan, and Y.-T. Chen. Who Make Drivers Stop? Towards Driver-centric Risk
Assessment: Risk Object Identification via Causal Inference. In IROS, 2020.

[8] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick.
Microsoft COCO: Common Objects in Context. In ECCV, 2014.

[9] B. Liu, E. Adeli, Z. Cao, K.-H. Lee, A. Shenoi, A. Gaidon, and J. C. Niebles. Spatiotemporal
relationship reasoning for pedestrian intent prediction. /[EEE Robotics and Automation Letters,
5(2):3485-3492, 2020.

[10] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro. Image Inpainting for
Irregular Holes using Partial Convolutions. In ECCV.

[11] A. Narayanan, I. Dwivedi, and B. Dariush. Dynamic Traffic Scene Classification with Space-
time Coherence. In ICRA, 2019.

[12] J. Pearl. Causality. Cambridge university press, 2009.

[13] L. Porzi, S. R. Bulo, A. Colovic, and P. Kontschieder. Seamless Scene Segmentation. In CVPR,
2019.

[14] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward Driving Scene Understanding: A
Dataset for Learning Driver Behavior and Causal Reasoning. In CVPR, 2018.

[15] A.Rasouli and J. K. Tsotsos. Autonomous Vehicles that Interact with Pedestrians: A Survey of
Theory and Practice. IEEE Transactions on Intelligent Transportation Systems, 21(3):900-918,
2020.

[16] A. Rasouli, I. Kotseruba, and J. K. Tsotsos. Are They Going to Cross? A Benchmark Dataset
and Baseline for Pedestrian Crosswalk Behavior. In ICCV-W, 2017.

[17] A. Rasouli, I. Kotseruba, T. Kunic, and J. K. Tsotsos. PIE: A Large-scale Dataset and Models
for Pedestrian Intention Estimation and Trajectory Prediction. In ICCV, 2019.

[18] D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell. Deep Object-centric Policies for Au-
tonomous Driving. In ICRA, 2019.

[19] N. Wojke, A. Bewley, and D. Paulus. Simple Online and Realtime Tracking with a Deep
Association Metric. In ICIP.

[20] World Health Organization. Global Status Report on Road Safety 2018: Summary, 2018.

[21] J. Wu, L. Wang, L. Wang, J. Guo, and G. Wu. Learning actor relation graphs for group activity
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9964-9974, 2019.

[22] M. Xu, M. Gao, Y.-T. Chen, L. Davis, and D. Crandall. Temporal Recurrent Networks for
Online Action Detection. In /ICCV, 2019.

[23] Z.Zhang, C. Yu, and D. Crandall. A self validation network for object-level human attention
estimation. In NeurIPS, 2019.



	Introduction
	Risk Object Identification with Attention (ROI-A) Dataset
	Annotation Methodology

	Methodology
	Graph Based Reasoning

	Experiments
	Dataset and Metrics
	Results and Analysis


