A Model of ZF Set Theory Language

Grzegorz Bancerek Warsaw University Białystok

Summary. The goal of this article is to construct a language of the ZF set theory and to develop a notational and conceptual base which facilitates a convenient usage of the language.

MML Identifier: ZF_LANG.

WWW: http://mizar.org/JFM/Vol1/zf_lang.html

The articles [4], [6], [7], [3], [1], [5], and [2] provide the notation and terminology for this paper. For simplicity, we follow the rules: k, n are natural numbers, a is a set, D is a non empty set, and p, q are finite sequences of elements of \mathbb{N} .

The subset VAR of \mathbb{N} is defined by:

(Def. 1)
$$VAR = \{k : 5 \le k\}.$$

Let us observe that VAR is non empty.

A variable is an element of VAR.

Let us consider n. The functor x_n yielding a variable is defined by:

(Def. 2)
$$x_n = 5 + n$$
.

In the sequel x, y, z, t denote variables.

Let us consider x. Then $\langle x \rangle$ is a finite sequence of elements of \mathbb{N} .

Let us consider x, y. The functor x=y yielding a finite sequence of elements of \mathbb{N} is defined by:

(Def. 3)
$$x=y = \langle 0 \rangle \cap \langle x \rangle \cap \langle y \rangle$$
.

The functor $x \in y$ yielding a finite sequence of elements of \mathbb{N} is defined by:

(Def. 4)
$$x \in y = \langle 1 \rangle \cap \langle x \rangle \cap \langle y \rangle$$
.

Next we state two propositions:

(6)¹ If
$$x=y = z=t$$
, then $x = z$ and $y = t$.

(7) If
$$x \in y = z \in t$$
, then $x = z$ and $y = t$.

Let us consider p. The functor $\neg p$ yields a finite sequence of elements of \mathbb{N} and is defined by:

(Def. 5)
$$\neg p = \langle 2 \rangle \cap p$$
.

Let us consider q. The functor $p \land q$ yielding a finite sequence of elements of \mathbb{N} is defined as follows:

1

¹ The propositions (1)–(5) have been removed.

(Def. 6) $p \wedge q = \langle 3 \rangle ^{\smallfrown} p ^{\smallfrown} q$.

One can prove the following proposition

$$(10)^2$$
 If $\neg p = \neg q$, then $p = q$.

Let us consider x, p. The functor $\forall_x p$ yields a finite sequence of elements of \mathbb{N} and is defined by:

(Def. 7)
$$\forall_x p = \langle 4 \rangle \cap \langle x \rangle \cap p$$
.

One can prove the following proposition

$$(12)^3$$
 If $\forall_x p = \forall_y q$, then $x = y$ and $p = q$.

The non empty set WFF is defined by the conditions (Def. 8).

(Def. 8)(i) For every a such that $a \in WFF$ holds a is a finite sequence of elements of \mathbb{N} ,

- (ii) for all x, y holds $x=y \in WFF$ and $x \in y \in WFF$,
- (iii) for every p such that $p \in WFF$ holds $\neg p \in WFF$,
- (iv) for all p, q such that $p \in WFF$ and $q \in WFF$ holds $p \land q \in WFF$,
- (v) for all x, p such that $p \in WFF$ holds $\forall_x p \in WFF$, and
- (vi) for every D such that for every a such that $a \in D$ holds a is a finite sequence of elements of $\mathbb N$ and for all x, y holds $x=y \in D$ and $x \in y \in D$ and for every p such that $p \in D$ holds $\neg p \in D$ and for all p, q such that $p \in D$ and $q \in D$ holds $p \land q \in D$ and for all x, p such that $p \in D$ holds $\forall x p \in D$ holds $\forall x \in D$ holds

Let I_1 be a finite sequence of elements of \mathbb{N} . We say that I_1 is ZF-formula-like if and only if:

(Def. 9) I_1 is an element of WFF.

One can check that there exists a finite sequence of elements of $\mathbb N$ which is ZF-formula-like.

A ZF-formula is a ZF-formula-like finite sequence of elements of N.

One can prove the following proposition

 $(14)^4$ a is a ZF-formula iff $a \in WFF$.

In the sequel F, F_1 , G, G_1 , H, H_1 are ZF-formulae.

Let us consider x, y. Observe that x=y is ZF-formula-like and $x \in y$ is ZF-formula-like.

Let us consider H. Note that $\neg H$ is ZF-formula-like. Let us consider G. Observe that $H \wedge G$ is ZF-formula-like.

Let us consider x, H. Note that $\forall_x H$ is ZF-formula-like.

Let us consider H. We say that H is equality if and only if:

(Def. 10) There exist x, y such that H = x = y.

We introduce H is an equality as a synonym of H is equality. We say that H is membership if and only if:

(Def. 11) There exist x, y such that $H = x \varepsilon y$.

We introduce H is a membership as a synonym of H is membership. We say that H is negative if and only if:

(Def. 12) There exists H_1 such that $H = \neg H_1$.

We say that H is conjunctive if and only if:

² The propositions (8) and (9) have been removed.

³ The proposition (11) has been removed.

⁴ The proposition (13) has been removed.

(Def. 13) There exist F, G such that $H = F \wedge G$.

We say that *H* is universal if and only if:

(Def. 14) There exist x, H_1 such that $H = \forall_x H_1$.

One can prove the following proposition

- (16)⁵(i) *H* is an equality iff there exist *x*, *y* such that H = x = y,
- (ii) H is a membership iff there exist x, y such that $H = x \varepsilon y$,
- (iii) H is negative iff there exists H_1 such that $H = \neg H_1$,
- (iv) H is conjunctive iff there exist F, G such that $H = F \wedge G$, and
- (v) H is universal iff there exist x, H_1 such that $H = \forall_x H_1$.

Let us consider *H*. We say that *H* is atomic if and only if:

(Def. 15) H is an equality and a membership.

Let us consider F, G. The functor $F \vee G$ yields a ZF-formula and is defined by:

(Def. 16)
$$F \vee G = \neg(\neg F \wedge \neg G)$$
.

The functor $F \Rightarrow G$ yielding a ZF-formula is defined by:

(Def. 17)
$$F \Rightarrow G = \neg (F \land \neg G)$$
.

Let us consider F, G. The functor $F \Leftrightarrow G$ yielding a ZF-formula is defined as follows:

(Def. 18)
$$F \Leftrightarrow G = (F \Rightarrow G) \land (G \Rightarrow F)$$
.

Let us consider x, H. The functor $\exists_x H$ yields a ZF-formula and is defined by:

(Def. 19)
$$\exists_x H = \neg \forall_x \neg H$$
.

Let us consider H. We say that H is disjunctive if and only if:

(Def. 20) There exist F, G such that $H = F \vee G$.

We say that *H* is conditional if and only if:

(Def. 21) There exist F, G such that $H = F \Rightarrow G$.

We say that *H* is biconditional if and only if:

(Def. 22) There exist F, G such that $H = F \Leftrightarrow G$.

We say that *H* is existential if and only if:

(Def. 23) There exist x, H_1 such that $H = \exists_x H_1$.

The following proposition is true

- (22)⁶(i) *H* is disjunctive iff there exist *F*, *G* such that $H = F \vee G$,
- (ii) H is conditional iff there exist F, G such that $H = F \Rightarrow G$,
- (iii) H is biconditional iff there exist F, G such that $H = F \Leftrightarrow G$, and
- (iv) H is existential iff there exist x, H_1 such that $H = \exists_x H_1$.

Let us consider x, y, H. The functor $\forall_{x,y}H$ yielding a ZF-formula is defined as follows:

(Def. 24)
$$\forall_{x,y} H = \forall_x \forall_y H$$
.

⁵ The proposition (15) has been removed.

⁶ The propositions (17)–(21) have been removed.

The functor $\exists_{x,y} H$ yields a ZF-formula and is defined by:

(Def. 25)
$$\exists_{x,y}H = \exists_x \exists_y H$$
.

We now state the proposition

(23)
$$\forall_{x,y}H = \forall_x \forall_y H \text{ and } \exists_{x,y}H = \exists_x \exists_y H.$$

Let us consider x, y, z, H. The functor $\forall_{x,y,z}H$ yielding a ZF-formula is defined by:

(Def. 26)
$$\forall_{x,y,z} H = \forall_x \forall_{y,z} H$$
.

The functor $\exists_{x,y,z}H$ yields a ZF-formula and is defined as follows:

(Def. 27)
$$\exists_{x,y,z}H = \exists_x \exists_{y,z}H$$
.

We now state a number of propositions:

(24)
$$\forall_{x,y,z}H = \forall_x \forall_{y,z}H \text{ and } \exists_{x,y,z}H = \exists_x \exists_{y,z}H.$$

- (25) *H* is an equality, a membership, negative, conjunctive, and universal.
- (26) *H* is atomic, negative, conjunctive, and universal.
- (27) If H is atomic, then len H = 3.
- (28) *H* is atomic or there exists H_1 such that $len H_1 + 1 \le len H$.
- (29) $3 \leq \operatorname{len} H$.
- (30) If len H = 3, then H is atomic.
- (31) For all x, y holds (x=y)(1) = 0 and $(x \in y)(1) = 1$.
- (32) For every *H* holds $(\neg H)(1) = 2$.
- (33) For all F, G holds $(F \wedge G)(1) = 3$.
- (34) For all x, H holds $(\forall_x H)(1) = 4$.
- (35) If *H* is an equality, then H(1) = 0.
- (36) If *H* is a membership, then H(1) = 1.
- (37) If *H* is negative, then H(1) = 2.
- (38) If *H* is conjunctive, then H(1) = 3.
- (39) If *H* is universal, then H(1) = 4.
- (40)(i) H is an equality and H(1) = 0, or
- (ii) H is a membership and H(1) = 1, or
- (iii) H is negative and H(1) = 2, or
- (iv) H is conjunctive and H(1) = 3, or
- (v) H is universal and H(1) = 4.
- (41) If H(1) = 0, then H is an equality.
- (42) If H(1) = 1, then H is a membership.
- (43) If H(1) = 2, then H is negative.
- (44) If H(1) = 3, then H is conjunctive.
- (45) If H(1) = 4, then H is universal.

In the sequel s_1 denotes a finite sequence.

Next we state several propositions:

- (46) If $H = F \cap s_1$, then H = F.
- (47) If $H \wedge G = H_1 \wedge G_1$, then $H = H_1$ and $G = G_1$.
- (48) If $F \vee G = F_1 \vee G_1$, then $F = F_1$ and $G = G_1$.
- (49) If $F \Rightarrow G = F_1 \Rightarrow G_1$, then $F = F_1$ and $G = G_1$.
- (50) If $F \Leftrightarrow G = F_1 \Leftrightarrow G_1$, then $F = F_1$ and $G = G_1$.
- (51) If $\exists_x H = \exists_y G$, then x = y and H = G.

Let us consider H. Let us assume that H is atomic. The functor $Var_1(H)$ yields a variable and is defined by:

(Def. 28)
$$Var_1(H) = H(2)$$
.

The functor $Var_2(H)$ yielding a variable is defined by:

(Def. 29)
$$Var_2(H) = H(3)$$
.

Next we state three propositions:

- (52) If H is atomic, then $Var_1(H) = H(2)$ and $Var_2(H) = H(3)$.
- (53) If H is an equality, then $H = (Var_1(H)) = Var_2(H)$.
- (54) If H is a membership, then $H = (Var_1(H)) \varepsilon Var_2(H)$.

Let us consider H. Let us assume that H is negative. The functor Arg(H) yields a ZF-formula and is defined by:

(Def. 30)
$$\neg Arg(H) = H$$
.

Let us consider H. Let us assume that H is conjunctive and disjunctive. The functor LeftArg(H) yields a ZF-formula and is defined as follows:

- (Def. 31)(i) There exists H_1 such that LeftArg $(H) \wedge H_1 = H$ if H is conjunctive,
 - (ii) there exists H_1 such that LeftArg $(H) \lor H_1 = H$, otherwise.

The functor RightArg(H) yielding a ZF-formula is defined as follows:

- (Def. 32)(i) There exists H_1 such that $H_1 \wedge \text{RightArg}(H) = H$ if H is conjunctive,
 - (ii) there exists H_1 such that $H_1 \vee \text{RightArg}(H) = H$, otherwise.

One can prove the following propositions:

- (56)⁷ If H is conjunctive, then F = LeftArg(H) iff there exists G such that $F \wedge G = H$ and F = RightArg(H) iff there exists G such that $G \wedge F = H$.
- (57) If H is disjunctive, then F = LeftArg(H) iff there exists G such that $F \vee G = H$ and F = RightArg(H) iff there exists G such that $G \vee F = H$.
- (58) If *H* is conjunctive, then $H = \text{LeftArg}(H) \land \text{RightArg}(H)$.
- (59) If *H* is disjunctive, then $H = \text{LeftArg}(H) \vee \text{RightArg}(H)$.

Let us consider H. Let us assume that H is universal and existential. The functor Bound(H) yielding a variable is defined by:

⁷ The proposition (55) has been removed.

- (Def. 33)(i) There exists H_1 such that $\forall_{\text{Bound}(H)}H_1 = H$ if H is universal,
 - (ii) there exists H_1 such that $\exists_{\text{Bound}(H)} H_1 = H$, otherwise.

The functor Scope(H) yields a ZF-formula and is defined by:

- (Def. 34)(i) There exists x such that $\forall_x \text{Scope}(H) = H \text{ if } H \text{ is universal,}$
 - (ii) there exists x such that $\exists_x \text{Scope}(H) = H$, otherwise.

One can prove the following four propositions:

- (60) If H is universal, then x = Bound(H) iff there exists H_1 such that $\forall_x H_1 = H$ and $H_1 = \text{Scope}(H)$ iff there exists x such that $\forall_x H_1 = H$.
- (61) If H is existential, then x = Bound(H) iff there exists H_1 such that $\exists_x H_1 = H$ and $H_1 = \text{Scope}(H)$ iff there exists x such that $\exists_x H_1 = H$.
- (62) If *H* is universal, then $H = \forall_{\text{Bound}(H)} \text{Scope}(H)$.
- (63) If *H* is existential, then $H = \exists_{Bound(H)} Scope(H)$.

Let us consider H. Let us assume that H is conditional. The functor Antecedent(H) yields a ZF-formula and is defined by:

(Def. 35) There exists H_1 such that $H = \text{Antecedent}(H) \Rightarrow H_1$.

The functor Consequent(H) yields a ZF-formula and is defined as follows:

(Def. 36) There exists H_1 such that $H = H_1 \Rightarrow \text{Consequent}(H)$.

The following propositions are true:

- (64) If H is conditional, then F = Antecedent(H) iff there exists G such that $H = F \Rightarrow G$ and F = Consequent(H) iff there exists G such that $H = G \Rightarrow F$.
- (65) If *H* is conditional, then $H = Antecedent(H) \Rightarrow Consequent(H)$.

Let us consider H. Let us assume that H is biconditional. The functor LeftSide(H) yields a ZF-formula and is defined by:

(Def. 37) There exists H_1 such that $H = \text{LeftSide}(H) \Leftrightarrow H_1$.

The functor RightSide(H) yielding a ZF-formula is defined as follows:

(Def. 38) There exists H_1 such that $H = H_1 \Leftrightarrow \text{RightSide}(H)$.

We now state two propositions:

- (66) Suppose H is biconditional. Then
 - (i) F = LeftSide(H) iff there exists G such that $H = F \Leftrightarrow G$, and
- (ii) F = RightSide(H) iff there exists G such that $H = G \Leftrightarrow F$.
- (67) If H is biconditional, then $H = \text{LeftSide}(H) \Leftrightarrow \text{RightSide}(H)$.

Let us consider H, F. We say that H is an immediate constituent of F if and only if:

(Def. 39) $F = \neg H$ or there exists H_1 such that $F = H \wedge H_1$ or $F = H_1 \wedge H$ or there exists X such that $F = \forall_X H$.

One can prove the following propositions:

 $(69)^8$ H is not an immediate constituent of x=y.

⁸ The proposition (68) has been removed.

- (70) H is not an immediate constituent of $x \in y$.
- (71) F is an immediate constituent of $\neg H$ iff F = H.
- (72) F is an immediate constituent of $G \wedge H$ iff F = G or F = H.
- (73) F is an immediate constituent of $\forall_x H$ iff F = H.
- (74) If H is atomic, then F is not an immediate constituent of H.
- (75) If H is negative, then F is an immediate constituent of H iff F = Arg(H).
- (76) If H is conjunctive, then F is an immediate constituent of H iff F = LeftArg(H) or F = RightArg(H).
- (77) If *H* is universal, then *F* is an immediate constituent of *H* iff F = Scope(H).

In the sequel *L* denotes a finite sequence.

Let us consider H, F. We say that H is a subformula of F if and only if the condition (Def. 40) is satisfied.

- (Def. 40) There exist n, L such that
 - (i) 1 < n,
 - (ii) len L = n,
 - (iii) L(1) = H,
 - (iv) L(n) = F, and
 - (v) for every k such that $1 \le k$ and k < n there exist H_1 , F_1 such that $L(k) = H_1$ and $L(k+1) = F_1$ and H_1 is an immediate constituent of F_1 .

We now state the proposition

 $(79)^9$ H is a subformula of H.

Let us consider H, F. We say that H is a proper subformula of F if and only if:

(Def. 41) H is a subformula of F and $H \neq F$.

One can prove the following propositions:

- $(81)^{10}$ If H is an immediate constituent of F, then len H < len F.
- (82) If H is an immediate constituent of F, then H is a proper subformula of F.
- (83) If *H* is a proper subformula of *F*, then len H < len F.
- (84) If H is a proper subformula of F, then there exists G which is an immediate constituent of F.
- (85) If F is a proper subformula of G and G is a proper subformula of H, then F is a proper subformula of H.
- (86) If F is a subformula of G and G is a subformula of H, then F is a subformula of H.
- (87) If G is a subformula of H and H is a subformula of G, then G = H.
- (88) F is not a proper subformula of x=y.
- (89) F is not a proper subformula of $x \in y$.
- (90) If F is a proper subformula of $\neg H$, then F is a subformula of H.

⁹ The proposition (78) has been removed.

¹⁰ The proposition (80) has been removed.

- (91) If F is a proper subformula of $G \wedge H$, then F is a subformula of G and a subformula of H.
- (92) If F is a proper subformula of $\forall_x H$, then F is a subformula of H.
- (93) If H is atomic, then F is not a proper subformula of H.
- (94) If H is negative, then Arg(H) is a proper subformula of H.
- (95) If H is conjunctive, then LeftArg(H) is a proper subformula of H and RightArg(H) is a proper subformula of H.
- (96) If H is universal, then Scope(H) is a proper subformula of H.
- (97) H is a subformula of x=y iff H=x=y.
- (98) *H* is a subformula of $x \in y$ iff $H = x \in y$.

Let us consider H. The functor Subformulae H yielding a set is defined as follows:

(Def. 42) $a \in \text{Subformula} H$ iff there exists F such that F = a and F is a subformula of H.

The following propositions are true:

- $(100)^{11}$ If $G \in \text{Subformulae } H$, then G is a subformula of H.
- (101) If *F* is a subformula of *H*, then Subformulae $F \subseteq \text{Subformulae } H$.
- (102) Subformulae $x=y = \{x=y\}.$
- (103) Subformulae $x \in y = \{x \in y\}$.
- (104) Subformulae $\neg H = \text{Subformulae } H \cup \{\neg H\}.$
- (105) Subformulae $(H \land F) = \text{Subformulae } H \cup \text{Subformulae } F \cup \{H \land F\}.$
- (106) Subformulae $\forall_x H = \text{Subformulae } H \cup \{\forall_x H\}.$
- (107) H is atomic iff Subformulae $H = \{H\}$.
- (108) If *H* is negative, then Subformulae $H = \text{Subformulae Arg}(H) \cup \{H\}$.
- (109) If H is conjunctive, then Subformulae H = Subformulae LeftArg(H) \cup Subformulae RightArg(H) \cup $\{H\}$.
- (110) If *H* is universal, then Subformulae $H = \text{Subformulae Scope}(H) \cup \{H\}$.
- (111) Suppose H is an immediate constituent of G, a proper subformula of G, and a subformula of G and $G \in \text{Subformulae } F$. Then $H \in \text{Subformulae } F$.

In this article we present several logical schemes. The scheme ZF Ind concerns a unary predicate \mathcal{P} , and states that:

For every H holds $\mathcal{P}[H]$

provided the following conditions are met:

- For every H such that H is atomic holds $\mathcal{P}[H]$,
- For every H such that H is negative and $\mathcal{P}[Arg(H)]$ holds $\mathcal{P}[H]$,
- For every H such that H is conjunctive and $\mathcal{P}[\text{LeftArg}(H)]$ and $\mathcal{P}[\text{RightArg}(H)]$ holds $\mathcal{P}[H]$, and
- For every H such that H is universal and $\mathcal{P}[\mathsf{Scope}(H)]$ holds $\mathcal{P}[H]$.

The scheme ZF CompInd concerns a unary predicate \mathcal{P} , and states that:

For every H holds $\mathcal{P}[H]$

provided the parameters satisfy the following condition:

• For every H such that for every F such that F is a proper subformula of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.

¹¹ The proposition (99) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [7] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received April 4, 1989

Published January 2, 2004