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Summary. The goal of this article is to construct a language of the ZF set theory
and to develop a notational and conceptual base which facilitates a convenient usage of the
language.
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The articlesl[4],[[6],[71],13], 1], [%], and[2] provide the notation and terminology for this paper.
For simplicity, we follow the rulesk, n are natural numbers, is a setD is a non empty set,
andp, q are finite sequences of elementof
The subset VAR oN is defined by:

(Def.1) VAR={k:5<k}.

Let us observe that VAR is non empty.
A variable is an element of VAR.
Let us considen. The functor ¥ yielding a variable is defined by:

(Def.2) X =5+n.

In the sequek, y, z t denote variables.
Let us consider. Then(x) is a finite sequence of elementshof
Let us consideg, y. The functorx=y yielding a finite sequence of elementshofs defined by:

(Def. 3) xay=(0)" (x) " {y).
The functorxey yielding a finite sequence of elementsNfs defined by:
(Def. 4) xey= (1)~ (X) " (y).
Next we state two propositions:
(6f] If xey = zt, thenx=zandy =t.
(7) If xey = zet, thenx=zandy =t.
Let us considep. The functor-p yields a finite sequence of elementénd is defined by:
(Def.5) —p={(2)"p.

Let us consideq. The functomp A qyielding a finite sequence of elementois defined as follows:

1 The propositions (1)-(5) have been removed.
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(Def.6) pAQ=(3)"p"Qq.

One can prove the following proposition

(10ﬂ If -p=-—q,thenp=aq.
Let us considex, p. The functorvyp yields a finite sequence of elementsffind is defined
by:
(Def. 7) Vxp={4) "~ (X" p.
One can prove the following proposition
(A2F If Vxp=Vyq, thenx=yandp=q.
The non empty set WFF is defined by the conditions (Def. 8).

(Def. 8)()) For everya such thatn € WFF holdsa is a finite sequence of elementsiof
(i) forall x, y holdsx=y € WFF andxey € WFF,
(iif)  for every p such thatp € WFF holds—p € WFF,
(iv) forall p, gsuch thatp € WFF andg € WFF holdsp A q € WFF,
(v) forall x, psuch thatp € WFF holdsvyxp € WFF, and

(vi) for everyD such that for everga such thata € D holdsa is a finite sequence of elements
of N and for allx, y holdsx=y € D andxey € D and for everyp such thatp € D holds—-p € D
and for allp, g such thatp € D andqg € D holdspA g € D and for allx, p such thatp € D
holdsVyp € D holds WFFC D.

LetI1 be a finite sequence of elementNfWe say that; is ZF-formula-like if and only if:
(Def. 9) 1 is an element of WFF.

One can check that there exists a finite sequence of elemeNtwbich is ZF-formula-like.
A ZF-formula is a ZF-formula-like finite sequence of element§lof
One can prove the following proposition

(14§ ais a zZF-formula iffa € WFF.

In the sequeF, F1, G, G, H, Hy are ZF-formulae.

Let us considek, y. Observe that=y is ZF-formula-like andkey is ZF-formula-like.

Let us consideH. Note that-H is ZF-formula-like. Let us considds. Observe thad A G is
ZF-formula-like.

Let us considex, H. Note thatvxH is ZF-formula-like.

Let us consideH. We say thaH is equality if and only if:

(Def. 10) There exisx, y such thaH = x=y.

We introduceH is an equality as a synonym bf is equality. We say tha#l is membership if and
only if:

(Def. 11) There exisx, y such thaH = xey.

We introduceH is a membership as a synonymtdfis membership. We say thit is negative if
and only if:

(Def. 12) There existsl; such thaH = —Hj.

We say thatd is conjunctive if and only if:

2 The propositions (8) and (9) have been removed.
3 The proposition (11) has been removed.
4 The proposition (13) has been removed.
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(Def. 13) There exiskE, G such thaH = F AG.
We say thaH is universal if and only if:
(Def. 14) There exisx, H; such thaH = VyH;.
One can prove the following proposition
(16Eki) H is an equality iff there exist, y such thaH = x=y,
(i) H is a membership iff there exigty such thaH = xey,
(i) H is negative iff there existll; such thaH = —Hy,

(iv) His conjunctive iff there exisE, G such thaH = F A G, and
(v) Hisuniversal iff there exist, H; such thaH = VyH;.

Let us consideH. We say thaH is atomic if and only if:
(Def. 15) H is an equality and a membership.
Let us consideF, G. The functorF v G yields a ZF-formula and is defined by:
(Def. 16) F VG = —(-F A-G).
The functorF = Gyielding a ZF-formula is defined by:
(Def.17) F=G=—-(FA-G).
Let us consideF, G. The functorF < G yielding a ZF-formula is defined as follows:
(Def.18) F&G=(F=G)A(G=F).
Let us consideg, H. The functoriyH yields a ZF-formula and is defined by:
(Def. 19) IH = —Vy—H.
Let us consideH. We say thaH is disjunctive if and only if:
(Def. 20) There exisk, G suchthaH =F v G.
We say that is conditional if and only if:
(Def. 21) There exisk, GsuchthaH =F = G.
We say that is biconditional if and only if:
(Def. 22) There exisk, GsuchthaH =F < G.
We say that is existential if and only if:
(Def. 23) There exist, Hy such thaH = 3xH;.
The following proposition is true
(Zzﬂi) H is disjunctive iff there exisF, G such thaH = F v G,
(i) H is conditional iff there exisF, G such thaH =F = G,
(i) H is biconditional iff there exisF, G such thaH = F < G, and
(iv) H is existential iff there exist, H; such thaH = 3Hj.
Let us considex, y, H. The functorvyyH yielding a ZF-formula is defined as follows:

(Def. 24) VX"yH = VXVYH .

5 The proposition (15) has been removed.
6 The propositions (17)—(21) have been removed.
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The functordyyH yields a ZF-formula and is defined by:
(Def. 25) FyyH = F3H.
We now state the proposition
(23) VxyH = Vy¥yH and3cyH = J,3,H.
Let us considex, y, z, H. The functorvyy,,H yielding a ZF-formula is defined by:
(Def. 26) WyyH = Vy¥yH.
The functordyy ,H yields a ZF-formula and is defined as follows:
(Def. 27) 3xyH = F3yH.
We now state a number of propositions:
(24) VxyH = Vx¥yzH and3yyH = 3,3, H.
(25) H is an equality, a membership, negative, conjunctive, and universal.
(26) H is atomic, negative, conjunctive, and universal.
(27) If H is atomic, then lell = 3.
(28) H is atomic or there existd; such that leid; +1 < lenH.
(29) 3<lenH.
(30) IflenH = 3, thenH is atomic.
(31) Forallx, y holds(x=y)(1) = 0 and(xey)(1) = 1.
(32) ForevenH holds(—H)(1) =2.
(33) ForallF, G holds(F AG)(1) =3.
(34) Forallx, H holds(VxH)(1) = 4.
(35) IfH is an equality, thefd (1) = 0.
(36) If H is a membership, thed (1) = 1.
(37) IfHis negative, theit (1) = 2.
(38) If H is conjunctive, thetd (1) = 3.
(39) IfH is universal, theid (1) = 4.

(40)(i)) H isan equality andd(1) =0, or
(i) Hisamembership and (1) =1, or
(i)  Hisnegative andd (1) = 2, or

(iv)  His conjunctive andd (1) = 3, or
(v) Hisuniversal andi(1) = 4.

(41) IfH(1) =0, thenH is an equality.

(42) IfH(1) =1, thenH is a membership.

1=
D
(43) IfH(1) =2, thenH is negative.
(44) IfH(1) =3, thenH is conjunctive.
D

(45) IfH(1) =4, thenH is universal.
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In the seque$; denotes a finite sequence.
Next we state several propositions:

(46) IfH =F s, thenH =F.

(47) IfHAG=H1AGy, thenH =H; andG = G3.
(48) If FVG=F1V Gy, thenF =F; andG = Gy.
(49) IfF = G=F; = Gy, thenF =F; andG = G;.
(50) IfF < G=F, < Gy, thenF = F, andG = G;.
(51) If 3yH =3,G, thenx=yandH =G.

Let us consideH. Let us assume that is atomic. The functor VafH) yields a variable and is
defined by:

(Def. 28) Var(H)=H(2).
The functor Vag(H) yielding a variable is defined by:
(Def. 29) Vap(H)=H(3).
Next we state three propositions:
(52) IfH is atomic, then VarfH) = H(2) and Vap(H) = H(3).
(53) If H is an equality, thetd = (Vari(H))=Vara(H).
(54) IfH is a membership, theid = (Vary(H))eVary(H).

Let us consideH. Let us assume thai is negative. The functor Af¢H) yields a ZF-formula
and is defined by:

(Def. 30) —Arg(H) =H.

Let us consideH. Let us assume thét is conjunctive and disjunctive. The functor LeftAH))
yields a ZF-formula and is defined as follows:

(Def. 31)()) There existsl; such that LeftArgH) AH, = H if H is conjunctive,
(i) there existdH; such that LeftArgH) v H; = H, otherwise.

The functor RightArgH) yielding a ZF-formula is defined as follows:

(Def. 32)()) There existsl; such thatH; A RightArg(H) = H if H is conjunctive,
(i) there existdH; such thaH; v RightArg(H) = H, otherwise.

One can prove the following propositions:

(56 If H is conjunctive, therF = LeftArg(H) iff there existsG such thatF AG =H and
F = RightArg(H) iff there existsG such thaGAF = H.

(57) If H is disjunctive, ther = LeftArg(H) iff there existsG such that- VG =H andF =
RightArg(H) iff there existsG such thaGVv F = H.

(58) If H is conjunctive, thetd = LeftArg(H) A RightArg(H).
(59) If H is disjunctive, thed = LeftArg(H) v RightArg(H).

Let us consideH. Let us assume théi is universal and existential. The functor Bo(hkd
yielding a variable is defined by:

" The proposition (55) has been removed.
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(Def. 33)(1) There existsl; such thatgyngn)H1 = H if H is universal,
(i)  there existsH; such thatlgoyngH)H1 = H, otherwise.

The functor Scop@H) yields a ZF-formula and is defined by:

(Def. 34)()) There existg such that'y Scopg¢H) = H if H is universal,
(i) there existsx such thaflx Scopg¢H) = H, otherwise.

One can prove the following four propositions:

(60) If H is universal, thex = BoundH) iff there existsH; such thatvyH; = H andH; =
Scopé€H) iff there existsx such that/'xH; = H.

(61) If H is existential, thenx = BoundH) iff there existsH; such thatiyH; = H andH; =
Scopé€H) iff there existsx such thaiyH; = H.

(62) IfH is universal, them = VgounqH) SCOp&H ).
(63) IfH is existential, themd = JgoynqH) ScopéH ).

Let us consideH. Let us assume thadd is conditional. The functor Anteced€ht) yields a
ZF-formula and is defined by:

(Def. 35) There existbl; such thaH = AntecedentH) = Hs.
The functor Consequefit) yields a ZF-formula and is defined as follows:
(Def. 36) There existbl; such thaH = H; = Consequerit).

The following propositions are true:

(64) If H is conditional, therF = Anteceden(H) iff there existsG such thatH = F = G and
F = ConsequertH) iff there existsG such thaH = G = F.

(65) If H is conditional, therH = AntecedentH) = ConsequertiH).

Let us consideH. Let us assume thad is biconditional. The functor LeftSidel) yields a
ZF-formula and is defined by:

(Def. 37) There existbl; such thaH = LeftSidgH) < Hj.
The functor RightSid@H ) yielding a ZF-formula is defined as follows:
(Def. 38) There existbl; such thaH = H; < RightSidéH).

We now state two propositions:

(66) Supposé is biconditional. Then
(i) F = LeftSidgH) iff there existsG such thaH = F < G, and
(i) F =RightSidgH) iff there existsG such thaH = G < F.

(67) If H is biconditional, thetH = LeftSidegH) < RightSid€H).
Let us consideH, F. We say thaH is an immediate constituent &fif and only if:

(Def. 39) F = —H or there exist$l; such thaF = H AH; or F = Hy A H or there existx such that
F = \VIXH .

One can prove the following propositions:

(69@ H is not an immediate constituent xfy.

8 The proposition (68) has been removed.
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(70) H is not an immediate constituent xdy.

(71) F is animmediate constituent eH iff F = H.

(72) F is animmediate constituent &AH iff F=GorF =H.

(73) F is animmediate constituent gfH iff F = H.

(74) If H is atomic, therF is not an immediate constituent df.

(75) If H is negative, thefr is an immediate constituent bf iff F = Arg(H).

(76) If H is conjunctive, ther is an immediate constituent &f iff F = LeftArg(H) or F =
RightArg(H).

(77) IfH is universal, thefr is an immediate constituent f iff F = ScopégH).

In the sequel denotes a finite sequence.
Let us consideH, F. We say thaH is a subformula of if and only if the condition (Def. 40)
is satisfied.

(Def. 40) There exism, L such that

() 1<n,
(i) lenL=n,
(i)  L(1)=H,

(iv) L(n)=F, and

(v) foreveryksuchthat I k andk < nthere exisHy, F; such that (k) = Hy andL(k+1) =
F1 andHj is an immediate constituent &f.

We now state the proposition
(79F] H is a subformula of.
Let us consideH, F. We say thaH is a proper subformula dF if and only if:
(Def. 41) H is a subformula ofF andH # F.
One can prove the following propositions:
(8119 If H is an immediate constituent &, then lerH < lenF.
(82) If H is an immediate constituent &f, thenH is a proper subformula d%.
(83) IfH is a proper subformula d¥, then lerH < lenF.

(84) If H is a proper subformula d%, then there exist& which is an immediate constituent of
F.

(85) If F is a proper subformula d& andG is a proper subformula dfl, thenF is a proper
subformula oH.

(86) If F is a subformula o6s andG is a subformula of, thenF is a subformula of.
(87) If Gis a subformula oH andH is a subformula o, thenG = H.

(88) F is not a proper subformula aty.

(89) F is not a proper subformula aty.

(90) If F is a proper subformula ofH, thenF is a subformula of.

9 The proposition (78) has been removed.
10 The proposition (80) has been removed.
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(91) If Fis a proper subformula @& A H, thenF is a subformula o5 and a subformula dfl.
(92) If F is a proper subformula ofyH, thenF is a subformula oH.

(93) If H is atomic, therF is not a proper subformula &f.

(94) IfH is negative, then ArdH) is a proper subformula df.

(95) If H is conjunctive, then LeftAr(H) is a proper subformula dfi and RightArdH) is a
proper subformula ofi.

(96) If H is universal, then ScopH) is a proper subformula df.
(97) H is a subformula ok=y iff H = x=y.
(98) H is a subformula okey iff H = xey.
Let us consideH. The functor Subformulde yielding a set is defined as follows:
(Def. 42) a e Subformuladi iff there exists- such thaF = a andF is a subformula oH.
The following propositions are true:
(1OOE If G € Subformulaéd, thenG is a subformula oH.
(101) IfF is a subformula oH, then Subformulaé C Subformulaéd.
(102) Subformulag=y = {x=y}.
(103) Subformulagey = {xey}.
(104) SubformulaeH = Subformulaéd U {-H}.
(105) SubformulagH AF) = Subformula¢d U Subformulaé U{H AF}.
(106) SubformulagH = Subformuladd U {VyH}.
(107) H is atomic iff Subformulaél = {H}.
(108) IfH is negative, then Subformuleke= Subformulae ArgH) U {H}.

(109) IfH is conjunctive, then Subformul&k= Subformulae LeftArgH ) U Subformulae RightArgH ) U
{H}.
(110) IfH is universal, then Subformul&k= Subformulae Scogdél) U {H}.

(111) Supposel is an immediate constituent &, a proper subformula db, and a subformula
of G andG € Subformulaé&. ThenH € Subformulaé-.

In this article we present several logical schemes. The scE&mad concerns a unary predicate
P, and states that:
For everyH holds?[H]
provided the following conditions are met:
e For everyH such thaH is atomic hold<P[H],
e For everyH such thaH is negative and’[Arg(H)] holdsP[H],
e For everyH such thatH is conjunctive andP[LeftArg(H)] and P[RightArg(H)]
holds®?[H], and
e For everyH such thaH is universal and’[ScopéH )] holds?[H].
The schem&F Complndconcerns a unary predicafe and states that:
For everyH holds?[H]
provided the parameters satisfy the following condition:
e For everyH such that for everyr such that~ is a proper subformula dfi holds
P[F] holdsP[H].

11 The proposition (99) has been removed.
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