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Summary. The goal of this article is to construct a language of the ZF set theory
and to develop a notational and conceptual base which facilitates a convenient usage of the
language.
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The articles [4], [6], [7], [3], [1], [5], and [2] provide the notation and terminology for this paper.
For simplicity, we follow the rules:k, n are natural numbers,a is a set,D is a non empty set,

andp, q are finite sequences of elements ofN.
The subset VAR ofN is defined by:

(Def. 1) VAR= {k : 5≤ k}.

Let us observe that VAR is non empty.
A variable is an element of VAR.
Let us considern. The functor xn yielding a variable is defined by:

(Def. 2) xn = 5+n.

In the sequelx, y, z, t denote variables.
Let us considerx. Then〈x〉 is a finite sequence of elements ofN.
Let us considerx, y. The functorx=y yielding a finite sequence of elements ofN is defined by:

(Def. 3) x=y = 〈0〉a 〈x〉a 〈y〉.

The functorxεy yielding a finite sequence of elements ofN is defined by:

(Def. 4) xεy = 〈1〉a 〈x〉a 〈y〉.

Next we state two propositions:

(6)1 If x=y = z=t, thenx = z andy = t.

(7) If xεy = zεt, thenx = z andy = t.

Let us considerp. The functor¬p yields a finite sequence of elements ofN and is defined by:

(Def. 5) ¬p = 〈2〉a p.

Let us considerq. The functorp∧q yielding a finite sequence of elements ofN is defined as follows:

1 The propositions (1)–(5) have been removed.
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(Def. 6) p∧q = 〈3〉a pa q.

One can prove the following proposition

(10)2 If ¬p = ¬q, thenp = q.

Let us considerx, p. The functor∀xp yields a finite sequence of elements ofN and is defined
by:

(Def. 7) ∀xp = 〈4〉a 〈x〉a p.

One can prove the following proposition

(12)3 If ∀xp = ∀yq, thenx = y andp = q.

The non empty set WFF is defined by the conditions (Def. 8).

(Def. 8)(i) For everya such thata∈WFF holdsa is a finite sequence of elements ofN,

(ii) for all x, y holdsx=y∈WFF andxεy∈WFF,

(iii) for every p such thatp∈WFF holds¬p∈WFF,

(iv) for all p, q such thatp∈WFF andq∈WFF holdsp∧q∈WFF,

(v) for all x, p such thatp∈WFF holds∀xp∈WFF, and

(vi) for everyD such that for everya such thata∈ D holdsa is a finite sequence of elements
of N and for allx, y holdsx=y∈D andxεy∈D and for everyp such thatp∈D holds¬p∈D
and for all p, q such thatp∈ D andq∈ D holds p∧q∈ D and for allx, p such thatp∈ D
holds∀xp∈ D holds WFF⊆ D.

Let I1 be a finite sequence of elements ofN. We say thatI1 is ZF-formula-like if and only if:

(Def. 9) I1 is an element of WFF.

One can check that there exists a finite sequence of elements ofN which is ZF-formula-like.
A ZF-formula is a ZF-formula-like finite sequence of elements ofN.
One can prove the following proposition

(14)4 a is a ZF-formula iffa∈WFF.

In the sequelF , F1, G, G1, H, H1 are ZF-formulae.
Let us considerx, y. Observe thatx=y is ZF-formula-like andxεy is ZF-formula-like.
Let us considerH. Note that¬H is ZF-formula-like. Let us considerG. Observe thatH ∧G is

ZF-formula-like.
Let us considerx, H. Note that∀xH is ZF-formula-like.
Let us considerH. We say thatH is equality if and only if:

(Def. 10) There existx, y such thatH = x=y.

We introduceH is an equality as a synonym ofH is equality. We say thatH is membership if and
only if:

(Def. 11) There existx, y such thatH = xεy.

We introduceH is a membership as a synonym ofH is membership. We say thatH is negative if
and only if:

(Def. 12) There existsH1 such thatH = ¬H1.

We say thatH is conjunctive if and only if:

2 The propositions (8) and (9) have been removed.
3 The proposition (11) has been removed.
4 The proposition (13) has been removed.
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(Def. 13) There existF , G such thatH = F ∧G.

We say thatH is universal if and only if:

(Def. 14) There existx, H1 such thatH = ∀xH1.

One can prove the following proposition

(16)5(i) H is an equality iff there existx, y such thatH = x=y,

(ii) H is a membership iff there existx, y such thatH = xεy,

(iii) H is negative iff there existsH1 such thatH = ¬H1,

(iv) H is conjunctive iff there existF , G such thatH = F ∧G, and

(v) H is universal iff there existx, H1 such thatH = ∀xH1.

Let us considerH. We say thatH is atomic if and only if:

(Def. 15) H is an equality and a membership.

Let us considerF , G. The functorF ∨G yields a ZF-formula and is defined by:

(Def. 16) F ∨G = ¬(¬F ∧¬G).

The functorF ⇒G yielding a ZF-formula is defined by:

(Def. 17) F ⇒G = ¬(F ∧¬G).

Let us considerF , G. The functorF ⇔G yielding a ZF-formula is defined as follows:

(Def. 18) F ⇔G = (F ⇒G)∧ (G⇒ F).

Let us considerx, H. The functor∃xH yields a ZF-formula and is defined by:

(Def. 19) ∃xH = ¬∀x¬H.

Let us considerH. We say thatH is disjunctive if and only if:

(Def. 20) There existF , G such thatH = F ∨G.

We say thatH is conditional if and only if:

(Def. 21) There existF , G such thatH = F ⇒G.

We say thatH is biconditional if and only if:

(Def. 22) There existF , G such thatH = F ⇔G.

We say thatH is existential if and only if:

(Def. 23) There existx, H1 such thatH = ∃xH1.

The following proposition is true

(22)6(i) H is disjunctive iff there existF , G such thatH = F ∨G,

(ii) H is conditional iff there existF , G such thatH = F ⇒G,

(iii) H is biconditional iff there existF , G such thatH = F ⇔G, and

(iv) H is existential iff there existx, H1 such thatH = ∃xH1.

Let us considerx, y, H. The functor∀x,yH yielding a ZF-formula is defined as follows:

(Def. 24) ∀x,yH = ∀x∀yH.

5 The proposition (15) has been removed.
6 The propositions (17)–(21) have been removed.
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The functor∃x,yH yields a ZF-formula and is defined by:

(Def. 25) ∃x,yH = ∃x∃yH.

We now state the proposition

(23) ∀x,yH = ∀x∀yH and∃x,yH = ∃x∃yH.

Let us considerx, y, z, H. The functor∀x,y,zH yielding a ZF-formula is defined by:

(Def. 26) ∀x,y,zH = ∀x∀y,zH.

The functor∃x,y,zH yields a ZF-formula and is defined as follows:

(Def. 27) ∃x,y,zH = ∃x∃y,zH.

We now state a number of propositions:

(24) ∀x,y,zH = ∀x∀y,zH and∃x,y,zH = ∃x∃y,zH.

(25) H is an equality, a membership, negative, conjunctive, and universal.

(26) H is atomic, negative, conjunctive, and universal.

(27) If H is atomic, then lenH = 3.

(28) H is atomic or there existsH1 such that lenH1 +1≤ lenH.

(29) 3≤ lenH.

(30) If lenH = 3, thenH is atomic.

(31) For allx, y holds(x=y)(1) = 0 and(xεy)(1) = 1.

(32) For everyH holds(¬H)(1) = 2.

(33) For allF , G holds(F ∧G)(1) = 3.

(34) For allx, H holds(∀xH)(1) = 4.

(35) If H is an equality, thenH(1) = 0.

(36) If H is a membership, thenH(1) = 1.

(37) If H is negative, thenH(1) = 2.

(38) If H is conjunctive, thenH(1) = 3.

(39) If H is universal, thenH(1) = 4.

(40)(i) H is an equality andH(1) = 0, or

(ii) H is a membership andH(1) = 1, or

(iii) H is negative andH(1) = 2, or

(iv) H is conjunctive andH(1) = 3, or

(v) H is universal andH(1) = 4.

(41) If H(1) = 0, thenH is an equality.

(42) If H(1) = 1, thenH is a membership.

(43) If H(1) = 2, thenH is negative.

(44) If H(1) = 3, thenH is conjunctive.

(45) If H(1) = 4, thenH is universal.
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In the sequels1 denotes a finite sequence.
Next we state several propositions:

(46) If H = F a s1, thenH = F.

(47) If H ∧G = H1∧G1, thenH = H1 andG = G1.

(48) If F ∨G = F1∨G1, thenF = F1 andG = G1.

(49) If F ⇒G = F1 ⇒G1, thenF = F1 andG = G1.

(50) If F ⇔G = F1 ⇔G1, thenF = F1 andG = G1.

(51) If ∃xH = ∃yG, thenx = y andH = G.

Let us considerH. Let us assume thatH is atomic. The functor Var1(H) yields a variable and is
defined by:

(Def. 28) Var1(H) = H(2).

The functor Var2(H) yielding a variable is defined by:

(Def. 29) Var2(H) = H(3).

Next we state three propositions:

(52) If H is atomic, then Var1(H) = H(2) and Var2(H) = H(3).

(53) If H is an equality, thenH = (Var1(H))=Var2(H).

(54) If H is a membership, thenH = (Var1(H))εVar2(H).

Let us considerH. Let us assume thatH is negative. The functor Arg(H) yields a ZF-formula
and is defined by:

(Def. 30) ¬Arg(H) = H.

Let us considerH. Let us assume thatH is conjunctive and disjunctive. The functor LeftArg(H)
yields a ZF-formula and is defined as follows:

(Def. 31)(i) There existsH1 such that LeftArg(H)∧H1 = H if H is conjunctive,

(ii) there existsH1 such that LeftArg(H)∨H1 = H, otherwise.

The functor RightArg(H) yielding a ZF-formula is defined as follows:

(Def. 32)(i) There existsH1 such thatH1∧RightArg(H) = H if H is conjunctive,

(ii) there existsH1 such thatH1∨RightArg(H) = H, otherwise.

One can prove the following propositions:

(56)7 If H is conjunctive, thenF = LeftArg(H) iff there existsG such thatF ∧G = H and
F = RightArg(H) iff there existsG such thatG∧F = H.

(57) If H is disjunctive, thenF = LeftArg(H) iff there existsG such thatF ∨G = H andF =
RightArg(H) iff there existsG such thatG∨F = H.

(58) If H is conjunctive, thenH = LeftArg(H)∧RightArg(H).

(59) If H is disjunctive, thenH = LeftArg(H)∨RightArg(H).

Let us considerH. Let us assume thatH is universal and existential. The functor Bound(H)
yielding a variable is defined by:

7 The proposition (55) has been removed.
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(Def. 33)(i) There existsH1 such that∀Bound(H)H1 = H if H is universal,

(ii) there existsH1 such that∃Bound(H)H1 = H, otherwise.

The functor Scope(H) yields a ZF-formula and is defined by:

(Def. 34)(i) There existsx such that∀x Scope(H) = H if H is universal,

(ii) there existsx such that∃x Scope(H) = H, otherwise.

One can prove the following four propositions:

(60) If H is universal, thenx = Bound(H) iff there existsH1 such that∀xH1 = H andH1 =
Scope(H) iff there existsx such that∀xH1 = H.

(61) If H is existential, thenx = Bound(H) iff there existsH1 such that∃xH1 = H andH1 =
Scope(H) iff there existsx such that∃xH1 = H.

(62) If H is universal, thenH = ∀Bound(H) Scope(H).

(63) If H is existential, thenH = ∃Bound(H) Scope(H).

Let us considerH. Let us assume thatH is conditional. The functor Antecedent(H) yields a
ZF-formula and is defined by:

(Def. 35) There existsH1 such thatH = Antecedent(H)⇒ H1.

The functor Consequent(H) yields a ZF-formula and is defined as follows:

(Def. 36) There existsH1 such thatH = H1 ⇒ Consequent(H).

The following propositions are true:

(64) If H is conditional, thenF = Antecedent(H) iff there existsG such thatH = F ⇒ G and
F = Consequent(H) iff there existsG such thatH = G⇒ F.

(65) If H is conditional, thenH = Antecedent(H)⇒ Consequent(H).

Let us considerH. Let us assume thatH is biconditional. The functor LeftSide(H) yields a
ZF-formula and is defined by:

(Def. 37) There existsH1 such thatH = LeftSide(H)⇔ H1.

The functor RightSide(H) yielding a ZF-formula is defined as follows:

(Def. 38) There existsH1 such thatH = H1 ⇔ RightSide(H).

We now state two propositions:

(66) SupposeH is biconditional. Then

(i) F = LeftSide(H) iff there existsG such thatH = F ⇔G, and

(ii) F = RightSide(H) iff there existsG such thatH = G⇔ F.

(67) If H is biconditional, thenH = LeftSide(H)⇔ RightSide(H).

Let us considerH, F . We say thatH is an immediate constituent ofF if and only if:

(Def. 39) F = ¬H or there existsH1 such thatF = H ∧H1 or F = H1∧H or there existsx such that
F = ∀xH.

One can prove the following propositions:

(69)8 H is not an immediate constituent ofx=y.

8 The proposition (68) has been removed.
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(70) H is not an immediate constituent ofxεy.

(71) F is an immediate constituent of¬H iff F = H.

(72) F is an immediate constituent ofG∧H iff F = G or F = H.

(73) F is an immediate constituent of∀xH iff F = H.

(74) If H is atomic, thenF is not an immediate constituent ofH.

(75) If H is negative, thenF is an immediate constituent ofH iff F = Arg(H).

(76) If H is conjunctive, thenF is an immediate constituent ofH iff F = LeftArg(H) or F =
RightArg(H).

(77) If H is universal, thenF is an immediate constituent ofH iff F = Scope(H).

In the sequelL denotes a finite sequence.
Let us considerH, F . We say thatH is a subformula ofF if and only if the condition (Def. 40)

is satisfied.

(Def. 40) There existn, L such that

(i) 1≤ n,

(ii) lenL = n,

(iii) L(1) = H,

(iv) L(n) = F, and

(v) for everyk such that 1≤ k andk < n there existH1, F1 such thatL(k) = H1 andL(k+1) =
F1 andH1 is an immediate constituent ofF1.

We now state the proposition

(79)9 H is a subformula ofH.

Let us considerH, F . We say thatH is a proper subformula ofF if and only if:

(Def. 41) H is a subformula ofF andH 6= F.

One can prove the following propositions:

(81)10 If H is an immediate constituent ofF , then lenH < lenF.

(82) If H is an immediate constituent ofF , thenH is a proper subformula ofF .

(83) If H is a proper subformula ofF , then lenH < lenF.

(84) If H is a proper subformula ofF , then there existsG which is an immediate constituent of
F .

(85) If F is a proper subformula ofG andG is a proper subformula ofH, thenF is a proper
subformula ofH.

(86) If F is a subformula ofG andG is a subformula ofH, thenF is a subformula ofH.

(87) If G is a subformula ofH andH is a subformula ofG, thenG = H.

(88) F is not a proper subformula ofx=y.

(89) F is not a proper subformula ofxεy.

(90) If F is a proper subformula of¬H, thenF is a subformula ofH.

9 The proposition (78) has been removed.
10 The proposition (80) has been removed.
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(91) If F is a proper subformula ofG∧H, thenF is a subformula ofG and a subformula ofH.

(92) If F is a proper subformula of∀xH, thenF is a subformula ofH.

(93) If H is atomic, thenF is not a proper subformula ofH.

(94) If H is negative, then Arg(H) is a proper subformula ofH.

(95) If H is conjunctive, then LeftArg(H) is a proper subformula ofH and RightArg(H) is a
proper subformula ofH.

(96) If H is universal, then Scope(H) is a proper subformula ofH.

(97) H is a subformula ofx=y iff H = x=y.

(98) H is a subformula ofxεy iff H = xεy.

Let us considerH. The functor SubformulaeH yielding a set is defined as follows:

(Def. 42) a∈ SubformulaeH iff there existsF such thatF = a andF is a subformula ofH.

The following propositions are true:

(100)11 If G∈ SubformulaeH, thenG is a subformula ofH.

(101) If F is a subformula ofH, then SubformulaeF ⊆ SubformulaeH.

(102) Subformulaex=y = {x=y}.

(103) Subformulaexεy = {xεy}.

(104) Subformulae¬H = SubformulaeH ∪{¬H}.

(105) Subformulae(H ∧F) = SubformulaeH ∪SubformulaeF ∪{H ∧F}.

(106) Subformulae∀xH = SubformulaeH ∪{∀xH}.

(107) H is atomic iff SubformulaeH = {H}.

(108) If H is negative, then SubformulaeH = SubformulaeArg(H)∪{H}.

(109) IfH is conjunctive, then SubformulaeH = SubformulaeLeftArg(H)∪SubformulaeRightArg(H)∪
{H}.

(110) If H is universal, then SubformulaeH = SubformulaeScope(H)∪{H}.

(111) SupposeH is an immediate constituent ofG, a proper subformula ofG, and a subformula
of G andG∈ SubformulaeF. ThenH ∈ SubformulaeF.

In this article we present several logical schemes. The schemeZF Indconcerns a unary predicate
P , and states that:

For everyH holdsP [H]
provided the following conditions are met:

• For everyH such thatH is atomic holdsP [H],
• For everyH such thatH is negative andP [Arg(H)] holdsP [H],
• For everyH such thatH is conjunctive andP [LeftArg(H)] and P [RightArg(H)]

holdsP [H], and
• For everyH such thatH is universal andP [Scope(H)] holdsP [H].

The schemeZF CompIndconcerns a unary predicateP , and states that:
For everyH holdsP [H]

provided the parameters satisfy the following condition:
• For everyH such that for everyF such thatF is a proper subformula ofH holds

P [F ] holdsP [H].
11 The proposition (99) has been removed.
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