
A GMP-based implementation of Schönhage-Strassen’s

large integer multiplication algorithm

Paul Zimmermann

INRIA Lorraine/LORIA, Nancy, France

(joint work with Torbjörn Granlund, Alexander Kruppa and Pierrick Gaudry)

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007

Context

Question: Given two N -bit integers, how fast can we multiply them?

complex floating-point FFT: O(n log∗ n) where

log∗ n = log(n) log log(n) log log log(n) . . .

FFT mod 2N + 1 (called SSA here): O(n log(n) log log(n))

Schnelle Multiplikation großer Zahlen, A. Schönhage and V. Strassen, Computing, 1971.

transform length coeff size transform cost pointwise cost

K ` K log KM(`) KM(`)

complex FFT n
log n log n nM(log n) n

log nM(log n)

SSA
√

n
√

n
√

n log(n)O(
√

n)
√

nM(
√

n)

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 2/30

Complex FFT

Efficient implementations in Prime95 (G. Woltman, GIMPS), Glucas (G. Ballester Valor).

Used to find/check the 44th (known) Mersenne prime:

232,582,657 − 1 (9,808,358 digits)

The Electronic Frontier Foundation (EFF) offers $100,000 to the first individual or group who

discovers a prime number with at least 10,000,000 decimal digits.

If coefficients are represented in signed-digit notations:

A =
n−1
∑

i=0

aiβ
i,

where−β/2 < ai ≤ β/2, then a product coefficient:

ck =
∑

i+j=k

aibj

exceed αnβ2 with small probability.
Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 3/30

Motivation

SSA is implemented in GNU MP since version 3.1 (released in August 2000).

In July 2005, Allan Steel published a web page

http://magma.maths.usyd.edu.au/users/allan/intmult.html:

Magma V2.12-1 is up to 2.3 times faster than GMP 4.1.4 for large integer

multiplication

Visits of Torbjörn Granlund in March-April, November-December 2006.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 4/30

Schönhage-Strassen’s Algorithm

Z

⇓
RN := Z/(2N + 1)Z

⇓
Z[x] mod (xK + 1)

⇓
Rn[x] mod (xK + 1)

⇓
Rn

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 5/30

From RN to Z[x] mod (xK + 1)

Write N = K · ` where K = 2k (transform length).

Interpret a ∈ [0, 2N] as A(2`) where:

A(x) =

K−1
∑

i=0

aix
i.

Idem for b ∈ [0, 2N]:

B(x) =

K−1
∑

i=0

bix
i.

a = A(2`) and b = B(2`) thus ab ≡ C(2`) mod (2N + 1) where

C(x) = A(x)B(x) mod (xN + 1).

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 6/30

From Z[x] mod (xK + 1) to Rn[x] mod (xK + 1)

C(x) := A(x)B(x) mod (xK + 1)

= (c0 − cK) + (c1 − cK+1)x + · · ·+ (cK−2 − c2K−2)x
K−2 + cK−1x

K−1

where:

cm =
∑

i+j=m

aibj

The coefficients of C(x) take at most 2k · 22` values: it suffices to compute them mod

2n + 1 with:

n ≥ 2` + k.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 7/30

Arithmetic modulo 2n + 1

A residue modulo 2n + 1 is represented by:

a = (am, am−1, . . . , a0),

with 0 ≤ ai < 2w for 0 ≤ i < m, and 0 ≤ am ≤ 1 (w = 32 or w = 64).

GMP syntax:

c = a[m] + b[m] + mpn_add_n (r, a, b, m);

r[m] = (r[0] < c);

MPN_DECR_U (r, m + 1, c - r[m]);

c = a[m] - b[m] - mpn_sub_n (r, a, b, m);

r[m] = (c == 1);

MPN_INCR_U (r, m + 1, r[m] - c);

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 8/30

Cache locality in the Fourier transforms

The basic operation is the butterfly :

a ← a + ωb

b ← a− ωb
or

a ← a + b

b ← (a− b)ω

• the Belgian transform

• higher radix transform

• Bailey’s 4-step algorithm

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 9/30

The Belgian Transform

Parametrizable behavioral IP module for a data-localized low-power FFT, E. Brockmeyer,

C. Ghez, J. D’Eer, F. Catthoor and H. De Man, IEEE Workshop on Signal Processing

Systems, 1999. (thanks Markus!)

Main idea: when we perform a butterfly, we reuse at least one of the two outputs in the next

butterfly.

Guarantees less than 50% cache misses.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 10/30

The Belgian Transform

void fft(int n_stage) {

int size = 1<<(n_stage-1);

for (int i=0; i<size/2; i++) { /* initial 2 stage 0 butterflies */

int stage0_bf = bitrev(i, n_stage-2);

Radix2Butterfly(&mem[stage0_bf], &mem[stage0_bf+size]);

stage0_bf += (size/2);

Radix2Butterfly(&mem[stage0_bf], &mem[stage0_bf+size]);

if ((stage0_bf-size/2) >= 0) {

unsigned int branch_ref = 1;

int offset = 0, upper = stage0_bf;

for (;branch_reg != 0;){

/* upper branches */

for (;((size>1)&&((upper-size/2)>=0));){

size /= 2;

Radix2Butterfly(&mem[offset+upper-size],

&mem[offset+upper]);

upper -= size;

branch_reg = (branch_reg << 1)|1;

}

for (;((branch_reg&1)==0);){ /* trace back */

branch_reg = branch_reg >> 1;

upper += size;

size *= 2;

offset -= (size);

}

branch_reg ^= 1; /* lower branches */

if (branch_reg != 0){

offset += size*2;

Radix2Butterfly(&mem[offset+upper],

&mem[offset+upper+size]);

}}}}}

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 11/30

The Belgian Transform (recursive version)

BelgianFFT(A, k)

K = 2^{k-1}

for i := 0 to K-1

TreeBfy(A, BitReverse(i, k-1), 1+ord_2(i+1), K)

TreeBfy(A, index, depth, stride)

Bfy(A[index], A[index+stride])

if depth > 1

TreeBfy(A, index-stride/2, depth-1, stride/2)

TreeBfy(A, index+stride/2, depth-1, stride/2)

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 12/30

The FFT circuit of length 8

a7

a6

a5

a4

a3

a2

a1

a0

Step 1 Step 2 Step 3

a7

a3

a5

a1

a6

a2

a4

a0

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 13/30

Radix 4

Radix4FFT(A, index, k, omega)

if k == 0

return;

if k == 1

Bfy(A[index], A[index+1], 1);

return;

K1 = 2^{k-1}

K2 = 2^{k-2}

for j = 0 to K2-1 do

Bfy(A, index+j, index+j+K1, omega^j);

Bfy(A, index+j+K2, index+j+K1+K2, omega^(j+K2));

Bfy(A, index+j, index+j+K2, omega^(2*j));

Bfy(A, index+j+K1, index+j+K1+K2, omega^(2*j));

end for;

Radix4FFTrec(A, index, k-2, omega^4);

Radix4FFTrec(A, index+K2, k-2, omega^4);

Radix4FFTrec(A, index+K1, k-2, omega^4);

Radix4FFTrec(A, index+K1+K2, k-2, omega^4);

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 14/30

Higher Radix Transform

Classical FFT: radix 2, 2 inputs/outputs, 1 butterfly:

Radix 4: 4 inputs/outputs, 2× 2 butterflies.

Radix 2t: 2t inputs/outputs, t× 2t−1 butterflies.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 15/30

Bailey’s 4-step Algorithm

Let K = 2k be the FFT length, where k = k1 + k2:

1. Perform 2k2 transforms of length 2k1 ;

2. Multiply the data by weights;

3. Perform 2k1 transforms of length 2k2 .

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 16/30

Bailey’s 4-step Algorithm

Bailey(A, k, k1, k2, omega)

K1 = 2^k1;

K2 = 2^k2;

// Phase 1:

for i = 0 to K2-1 do

for j := 0 to K1-1 do

B[j] = A[i+K2*j]

twistedFFT(B, i, k1, k, omega);

for j = 0 to K1-1 do

A[i+K2*j] = B[j];

// No Phase 2!

// Phase 3:

for j := 0 to K1-1 do

for i = 0 to K2-1 do

B[i] = A[i+K2*j]

FFT(B, k2, omega^K1);

for i = 0 to K2-1 do

A[i+K2*j] = B[i];

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 17/30

Fermat and Mersenne Transforms

Fermat Transform: modulo 2N + 1 (negacyclic convolution).

	 weighted transform: slightly more expensive.

Mersenne Transform: modulo 2N − 1 (cyclic convolution).

	 does not work recursively.

⊕ can use twice the FFT length because no 2K-th root of unity is needed

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 18/30

The
√

2 Trick

Credited to Schönhage by Bernstein.

A product modulo 2N ± 1 reduces to K = 2k products modulo 2N ′

+ 1.

ω = 22N ′/K is the primitive K th root of unity.

θ = 2N ′/K is the weight signal (Discrete Weighted Transform).

Fermat transform: K must divide N ′.

Mersenne transform: K must divide 2N ′.

(

23N ′/4 − 2N ′/4
)2

≡ 2 (mod 2N ′

+ 1).

Fermat transform: K must divide 2N ′.

Mersenne transform: K must divide 4N ′.

=⇒ smaller pointwise products.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 19/30

Integer Multiplication

Problem: multiply two m-bit numbers.

Original SSA: multiply modulo 2N + 1 for N ≥ 2m (GMP 4.1.4).

GMP 4.2.1: 22N + 1 and 23N + 1 for 5N ≥ 2m, and reconstruct by CRT.

Generalization: 2aN + 1 and 2bN − 1.

Lemma. Let a, b be two positive integers. Then at least one of gcd(2a + 1, 2b − 1) and

gcd(2a − 1, 2b + 1) is 1.

Example: gcd(217 + 1, 210 − 1) = 3, gcd(217 − 1, 210 = 1) = 1.

Proof: study the length mod 3 of the subtractive-Euclidean sequence of (a, b).

Current code uses 1 ≤ a ≤ 7, and b = 1.

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 20/30

Improved Tuning mod 2N + 1

GMP 4.2.1:

#define MUL_FFT_TABLE { 528, 1184, 2880, 5376, 11264, 36864, 114688,

327680, 1310720, 3145728, 12582912, 0 }

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 21/30

Improved Tuning mod 2N + 1

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 500 1000 1500 2000 2500

mpn_mul_fft.5
mpn_mul_fft.6
mpn_mul_fft.7

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 22/30

Improved Tuning mod 2N + 1

 0.00013

 0.00014

 0.00015

 0.00016

 0.00017

 0.00018

 0.00019

 0.0002

 700 750 800 850 900

mpn_mul_fft.5
mpn_mul_fft.6

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 23/30

Improved Tuning mod 2N + 1

#define MUL_FFT_TABLE2 {{1, 4 /*66*/}, {401, 5 /*96*/},

{417, 4 /*98*/}, {433, 5 /*96*/}, {865, 6 /*96*/},

{897, 5 /*98*/}, {929, 6 /*96*/}, {2113, 7 /*97*/},

{2177, 6 /*98*/}, {2241, 7 /*97*/}, {2305, 6 /*98*/},

{2369, 7 /*97*/}, {3713, 8 /*93*/}, ...

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 24/30

Current Timings up to 230 bits, 2.4Ghz Opteron

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07

GMP 4.1.4
Magma V2.13-6

GMP 4.2.1
new GMP code

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 25/30

Relative Timings GMP 4.1.4 vs Magma V2.13-6

1

1.2

1.4

1.6

1.8

2

2.2

0 2e+06 4e+06 6e+06 8e+06 1e+071.2e+07 1.6e+07

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 26/30

Relative Timings GMP 4.2.1 vs Magma V2.13-6

0.6

0.8

1

1.2

1.4

1.6

0 2e+06 4e+06 6e+06 8e+06 1e+071.2e+07 1.6e+07

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 27/30

Relative Timings new GMP code vs Magma V2.13-6

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+06 4e+06 6e+06 8e+06 1e+071.2e+07 1.6e+07

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 28/30

Relative Timings Magma V2.13-6 vs new GMP code

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 2e+06 4e+06 6e+06 8e+06 1e+071.2e+07 1.6e+07

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 29/30

Conclusion

every 5% gain is worthwhile

surely not the end of the story . . .

give challenges to your colleagues!

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 30/30

Conclusion

every 5% gain is worthwhile

surely not the end of the story . . .

give challenges to your colleagues!

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 30/30

Conclusion

every 5% gain is worthwhile

surely not the end of the story . . .

give challenges to your colleagues!

Second Workshop on High-Dimensional Approximation (HDA07), 19-22 February 2007 – p. 30/30

