Short Division of Long Integers

David Harvey and Paul Zimmermann

New York University and Inria

25 July 2011

David Harvey and Paul Zimmermann Short Division of Long Integers

Cambridge Monographs on Applied and Computational Mathematics Cambridge Monographs on Applied and Computational Mat

Modern Computer Arithmetic focuses on arbitrary-precision algorithms for efficiently
performing arithmetic operations such as addition, multiplication and division, and their
connections to topics such as modular arithmetic, greatest common divisors, the Fast
Fourier Transform (FFT), and the computation of elementaryand special functions. Brent
and present are ready inyourfavourite
Ianguage, while keeping a high-level description and avoiding too low-level or
machine-dependent detalls

The bookis intended for anyone nterested i the design and implementation of
efficient high-precision algorithms for computer arithmetic, and more generally efficient
multiple-precision numerical algorithms. It may also be used in a graduate course
in mathematics or computer science, for which exercises are included. These vary
considerably in difficulty, from easy to small research projects, and expand on topics
discussed in the text. Solutions are available from the authors.

puejuaig

uuewRWWIZ

Modern Computer
Arithmetic

Richard Brent and Paul Zimmermann

Richard Brent is a Professor of Mathematics and Computer Science atthe Australian
National University, Canberra.

Paul Zimmermann is a Researcher at the Institut National de Recherche en Informatique
eten Automatique (INRIA).

JIIBWYIIY Ja3ndwo) uIdponW

- Min/4)
M(n/4)
A(n/2)
CAMBRIDGE 1 M(n/4)
'ﬁﬁﬁiﬁg"ms

2
2
&
=
]
<
&

80521 19469

Paul Zimmerm.

The problem to be solved

Divide efficiently

a p-bit floating-point number

by another p-bit -p number
in the 100-10000 digit range

From www.mpfr.org/mpfr-3.0.0/timings.html (MS):

Mathematica Sage = GMP MPF MPFR

Maple
452 5.0.1 3.0.0

digits | 12.00 6.0.1

100
mult | 0.0020 0.0006 0.00053 0.00011 0.00012

div | 0.0029 0.0017 0.00076 0.00031 0.00032
sqrt 0.032 0.0018 0.00132 0.00055 0.00049

1000

mult | 0.0200 0.007 0.0039 0.0036 0.0028
div | 0.0200 0.015 0.0071 0.0040 0.0058
sqrt 0.160 0.011 0.0064 0.0049 0.0047

10000

mult 0.80 0.28 0.11 0.107 0.095
div 0.80 0.56 0.28 0.198 0.261
sqrt 3.70 0.36 0.224 0.179 0.176

Short Division of Long Integers

David Harvey and Paul Zimmermann

www.mpfr.org/mpfr-3.0.0/timings.html

What is GMP (GNU MP) ?

@ the most popular library for arbitrary-precision arithmetic
@ distributed under a free license (LGPL) from gmplib.org
@ main developer is Torbjérn Granlund

@ contains several layers : mpn (arrays of words), mpz
(integers), mpqg (rationals), mp £ (floating-point numbers)
@ mpn is the low-level layer, with optimized assembly code for

common hardware, and provides optimized
implementations of state-of-the-art algorithms

David Harvey and Paul Zimmermann Short Division of Long Integers

gmplib.org

Can we do better than GMP ?

An anonymous reviewer said :

What are the paper’s weaknesses ?

The resulting performance, in the
referee’s opinion, 1s only marginally
better a standard exact-quotient
algorithm in GMP. One can expect about
10% improvement. It seems to be a weak
result for the sophisticated recursive
algorithm with the big error analysis
effort.

David Harvey and Paul Zimmermann Short Division of Long Integers

What is GNU MPFR ?

@ a widely used library for arbitrary-precision floating-point
arithmetic

@ distributed under a free license (LGPL) from mpfr.org

@ main developers are Guillaume Hanrot, Vincent Lefévre,
Patrick Pélissier, Philippe Théveny and Paul Zimmermann

@ contrary to GMP mp £, implements correct rounding and
mathematical functions (exp, log, sin, ...)
@ implements Sections 3.7 (Extended and extendable

precisions) and 9.2 (Recommended correctly rounded
functions) of IEEE 754-2008

@ aims to be (at least) as efficient than other
arbitrary-precision floating-point without correct rounding

David Harvey and Paul Zimmermann Short Division of Long Integers

mpfr.org

The problem to be solved (binary fp division)

Assume we want to divide a > 0 of p bits by b > 0 of p bits,
with a quotient ¢ of p bits.

First write @a = m, - 2% and b = my, - 2% such that :
@ my has exactly p bits
@ 21 <my/my < 2P (m, has 2p — 1 or 2p bits)

The problem reduces to finding the p-bit correct rounding of
mg/my, with the given rounding mode.

We do not assume that the divisor b is invariant, thus we do not
allow precomputations involving b.

David Harvey and Paul Zimmermann Short Division of Long Integers

Division routine mpfr_div in MPFR 3.0.x

The MPFR division routine relies on the (GMP) low-level
division with remainder mpn_divrem.

mpn_divrem computes g and r such that

mg=qmp+r with 0 < r < m,.

Since 2P~1 < m,/my < 2P, q has exactly p bits.

The correct rounding of the quotient is g or g + 1 depending on
the rounding mode.

For rounding to nearest, if r < my/2, the correct rounding is g ;
if r > my/2, the correct rounding is g + 1.

David Harvey and Paul Zimmermann Short Division of Long Integers

What’s new with GMP 5 ?

In GMP 5, the floating-point division (mpf_div) calls
mpn_div_g, which only computes the (exact) quotient, and is
faster (on average) than mpn_divrem or its equivalent
mpn_tdiv_gr.

This is based on an approximate Barrett’s algorithm, presented
at ICMS 2006.

In most cases computing one more word of the quotient is
enough to decide the correct rounding :

@ pad the dividend with two zero low words
@ pad the divisor with one zero low word
@ one will obtain one extra quotient low word

David Harvey and Paul Zimmermann Short Division of Long Integers

Design an approximate division routine for arrays of n words

An array of nwords [a,_1, ..., a1,] represents the integer
an 1"+t afta

with 3 = 264

We want a rigorous error analysis and a O(n) error

David Harvey and Paul Zimmermann Short Division of Long Integers

Plan of the talk

@ Mulders’ short product
@ Mulders’ short division
@ Barrett’s algorithm

@ (-fold Barrett’s algorithm (cf Hasenplaugh, Gaubatz, Gopal,
Arith’18)

David Harvey and Paul Zimmermann Short Division of Long Integers

Mulders’ short product for polynomials (2000)

Short product : compute the upper half of U - V, U and V
having n terms (degree n — 1)

,Q@m;\

With Karatsuba’s
multiplication,

can save 20%
over a full product.

David Harvey and Paul Zimmermann Short Division of Long Integers

Our variant of Mulders’s algorithm for integers

Algorithm ShortMul.
Input: U =" ug', V=" v#, integer n
Output: an integer approximation W of UV3~"
1: if n < ng then
2 W «— ShortMulNaive(U, V, n)
3: else
4: choose a parameter k, n/2+1 < k<n {—n—k
5. write U= Ui+ Uy, V= V18 + W
6: write U= U;gk+ Uj, V= V|pK+ V
7: Wiq — Mul(U1, Vi, k) > 2k words
8 Wio < ShortMul(U5, Vo, £) > ¢ most significant words
9 Wo1 < ShortMul(Uy, V7, £) > £ most significant words
0 W — [W11825"] + Wio + Wor

David Harvey and Paul Zimmermann Short Division of Long Integers

The output of Algorithm ShortMul satisfies

uvp™ —(n-1) < W< Uuvp™".

(In other words, the error is less than n ulps.)

David Harvey and Paul Zimmermann Short Division of Long Integers

Mulders’ short division (2000)

o ——

|

‘.\ -I.:)m

‘ U is unknown
(V is known
W = UV is known

i

1. estimate Uyigh from Vhigh and Whign, subtract Unigh Vhign from W
2. compute Uy, Viow and subtract from W

3. estimate Uy from Vi, and the remainder W

David Harvey and Paul Zimmermann Short Division of Long Integers

Our variant of Mulders’ short division for integers

Algorithm ShortDiv.
Input: W =S"2"""w,g, V=" v, with V > 57/2
Output: an integer approximation U of Q= |W/V|
1: if n < ny then
2 U — Div(W, V) > Returns |W/ V|
3: else
4: choose a parameter k, n/2 < k <n,{—n—k
5. write W= W52 + Wy, V= V4B + Vo, V = V(3K + V]
6: (U1 , Ry) — DivRem(Wi, Vi)
7. write Uy = U pF“ + Swith0 < S < gh~*
8: T « ShortMul(Uj, Vo, £)
o: Wot — R3¢ + (W div B%) — T3¥
10: while Wyy < 0do (Uy, Wy1) — (Uy — 1, Wyt + V)
11: Up < ShortDiv(Wo div 85—, Vi, ¢)
12: return Ui ¢ + Uy

David Harvey and Paul Zimmermann Short Division of Long Integers

The output U of Algorithm ShortDiv satisfies, with Q = |[W/V| :

Q<U<Q+2(n—1).

(In other words, the error is less than 2n ulps.)

David Harvey and Paul Zimmermann Short Division of Long Integers

The optimal cutoff k in ShortMul and ShortDiv heavily depends
on n. There is no simple formula. Instead, we determine the
best k(n) by tuning, for say n < 1000 words (about 20000
digits).

For ShortMul the best k varies between 0.5n and 0.64n, for
ShortDiv it varies between 0.54n and 0.88n (for a particular
computer and a given version of GMP).

David Harvey and Paul Zimmermann Short Division of Long Integers

Barrett’s Algorithm (1987)

Goal : given W and V, compute quotient Q and remainder R :

W=QV+R

@ compute an approximation / of 1/V
© compute an approximation Q = W/ of the quotient
© (optional) compute the remainder R = W — QV and adjust
if necessary
When V is not invariant, computing 1/V is quite expensive :

@ (-fold reduction from Hasenplaugh, Gaubatz, Gopal
(Arith’18, 2007) (LSB variant)

e for ¢ = 2, HGG is exactly Karp-Markstein division (1997)

David Harvey and Paul Zimmermann Short Division of Long Integers

2-fold division (Karp-Markstein)

@ compute an approximation / of 1/V to n/2 words

@ deduce the upper n/2 words Q; = ShortMul(W, I, n/2)
© subtract Q; V from W, giving W’

@ deduce the lower n/2 words Qp = ShortMul(W’, I, n/2)
In step 3, @1V is a (n/2) x n multiplication, giving a 3n/2
product.

However, we know the upper n/2 words match with W, and we
are not interested in the lower n/2 words.

This is exactly a middle product (Hanrot, Quercia,
Zimmermann, 2004) :

middle \Jower
Qr product

upper

4

David Harvey and Paul Zimmermann Short Division of Long Integers

The 3-fold division algorithm

()

David Harvey and Paul Zimmermann Short Division of Long Integers

The integer middle product (Harvey 2009)

Input : X of mwords and Y of nwords, with m > n

m—1 _ n—1 _
X=2 xf, Y= yb
i=0 j=0

Output :MPp, n(X, Y) = Z Xy =t

0<i<m,0<j<n
n—1<i+j<m—1

(XY — 8" "MPp (X, Y)) mod ™| < (n—1)3"

Classical case : m = 2n — 1 with n? word-products.
Quadratic-time algorithms : n?.
Karatsuba-like middle product : O(n'-58).

FFT-variant : O(M(n)).

David Harvey and Paul Zimmermann Short Division of Long Integers

¢-fold Barrett division

Algorithm FoldDiv(¢), ¢ > 2.

Input: W =>"2"""ws, V=1 vigl, with V > 57/2, W < 3"V
Output an integer approximation U of Q= | W/ V|

©

PO
RN

PPE‘F’.’S-’?#F*? !\?“

-
rQ

: if n < no then

return U < Div(W, V)
k —[n/t]

: write V = V=) 4 > V4 has k + 1 words

| — L(ﬁz(kﬂ) _ 1)/V1j

r—n W, — W, U«<0

whiler > k+1do >invariant :0 < W, < gV
Q; « ShortMul(W, div ™=+ [k + 1)
Q « min(Qy, gF1 — 1)
T, — MP,+1’k+1 (V div Bn—r7 Qr)
Wi — (W, — Trﬂn71) mods 3K
U— U+ Qp Kt
if W,_x<Othen W,_ — W,_+ 3%V, U—U—-p"*
r—r—Kk

: Q; « ShortMul(W, div g™ =+ [k 4+ 1)
U — U+ (Q div gkt1—)

David Harvey and Paul Zimmermann Short Division of Long Integers

Assuming n+ 8 < /2 and ¢ < \/n/2, Algorithm FoldDiv(¢)
returns an approximation U of Q = |W/V |, with error less than
2n.

David Harvey and Paul Zimmermann Short Division of Long Integers

Experimental results

Hardware : gccl6.fsffrance.org, 2.2Ghz AMD Opteron
8354

GMP : changeset 131005cc271b from 5.0 branch (=~ 5.0.1)

mulmid patch from David Harvey (threshold 36 words)

n 100 200 500 1000
mpn_mul_n 752 224 80.8 225
ShortMul 0.76 0.81 0.89 0.85

mpn_invert 1.21 1.32 1.59 1.57
mpnmulmidn 1.12 1.20 145 1.59
mpn_tdiv.gr 1.74 1.86 2.35 246
mpn_div_g 122 134 1.79 1.87
ShortDiv 1.34 132 1.62 1.75
FoldDiv(2) 1.37 136 1.62 1.74
Foldbiv(3) 1.34 135 1.61 1.73
Foldpiv(4) 1.35 132 1.63 1.76

David Harvey and Paul Zimmermann Short Division of Long Integers

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

T
mpn_div.q ——
ShortDiv ---
FoldDiv2(2) --------
FoldDiv2(3)
FoldDiv2(4) -——-~-

900

1000

Algorithm ShortMul is implemented in GNU MPFR since
version 2.2.0 (2005)

Extended to the MPFR squaring operation in 2010

Algorithm ShortDiv is available in GNU MPFR since revision
7191

Algorithm FoldDiv is not (yet) implemented since it requires a
middle-product routine, which is not (yet) provided by GMP

David Harvey and Paul Zimmermann Short Division of Long Integers

Conclusion

Our contributions :

@ two variants of Mulders’ short product and short division for
integers, with detailed description and rigorous error
analysis

@ a detailed description and rigorous error analysis of the
¢-fold division for integers

@ we get a 10% speedup, and more speedup can be
obtained for FoldDiv, by using a Toom-3 middle product, a
faster (approximate) inverse based on the same ideas, ...

Benchmarks are a good way to improve software tools !

Still to do : design an approximate inverse using the ¢-fold
algorithm

Adapt the FoldDiv algorithm for an approximate inverse and
update the error analysis

David Harvey and Paul Zimmermann Short Division of Long Integers

ECC 2011

15th workshop on Elliptic Curve
Cryptography
September 19-21, 2011
INRIA, Nancy, France

ECC Summer School 2011
September 12-16, 2011

http://ecc2011.loria.fr/

http://ecc2011.loria.fr/

