
Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

The MPFR library: well-defined semantics for
multiple-precision floating-point numbers

Paul Zimmermann

Nancy - Grand Est

SAGE Days 6, November 11, 2007

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Workshop on Open Source Computer Algebra

Lyon, France, May 21-23, 2002, 60 participants

• state of the art of the existing free CASs
• discussion about a collaborative effort for a free CAS/platform

What makes the strength of your system? Its weaknesses?

What development model was used? Encountered difficulties?

Why did your system succeed or fail? What about future?

Are you ready to distribute your system under an open source
license?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Day 1: legal issues (copyright, patent, trade mark), TeXmacs,
GINAC, GIAC, Linbox, TRIP

Day 2: OCaml, SYNAPS, Scilab, GAP, MuPAD, Magma, Axiom,
Maxima, FOC, PARI, Singular

Day 3: g++, ACE, mu-EC, main discussion

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Day 1: legal issues (copyright, patent, trade mark), TeXmacs,
GINAC, GIAC, Linbox, TRIP

Day 2: OCaml, SYNAPS, Scilab, GAP, MuPAD, Magma, Axiom,
Maxima, FOC, PARI, Singular

Day 3: g++, ACE, mu-EC, main discussion

Gabriel Dos Reis: for a CAS to be successful, give the
possibility to extend the system to the user by a sort of glue

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Day 1: legal issues (copyright, patent, trade mark), TeXmacs,
GINAC, GIAC, Linbox, TRIP

Day 2: OCaml, SYNAPS, Scilab, GAP, MuPAD, Magma, Axiom,
Maxima, FOC, PARI, Singular

Day 3: g++, ACE, mu-EC, main discussion

Gabriel Dos Reis: for a CAS to be successful, give the
possibility to extend the system to the user by a sort of glue

Jacques Laskar: I would have liked to find a system able to
access types at a very low level, a light kernel with a language
allowing to use it completely and to design specialized routines

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Day 1: legal issues (copyright, patent, trade mark), TeXmacs,
GINAC, GIAC, Linbox, TRIP

Day 2: OCaml, SYNAPS, Scilab, GAP, MuPAD, Magma, Axiom,
Maxima, FOC, PARI, Singular

Day 3: g++, ACE, mu-EC, main discussion

Gabriel Dos Reis: for a CAS to be successful, give the
possibility to extend the system to the user by a sort of glue

Jacques Laskar: I would have liked to find a system able to
access types at a very low level, a light kernel with a language
allowing to use it completely and to design specialized routines

Bill Allombert: Lots of developers of specialized system, make
a library with a small interface to incorporate all existing stuff?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Tim Daly: interaction between free software and scientific
publication: both can learn from the other. We need to develop
methods of reviewing software and standards for publication

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Tim Daly: interaction between free software and scientific
publication: both can learn from the other. We need to develop
methods of reviewing software and standards for publication

Tim Daly: we need standardized test suites. [. . .] Test suites
need to be validated by mathematicians

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Tim Daly: interaction between free software and scientific
publication: both can learn from the other. We need to develop
methods of reviewing software and standards for publication

Tim Daly: we need standardized test suites. [. . .] Test suites
need to be validated by mathematicians

Frédéric Lehobey: The main reason I did not follow an
academic carreer is that I missed a free CAS [. . .] It’s only a
question of time that a free CAS will exist, with or without this
community.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

My List of Software Publications

1991: PhD in CS (advisor Flajolet), Automatic
Average-Case Analysis of Algorithms, the ΛΥΩ system
1992: GFUN package for Maple (with B. Salvy), D-finite
functions and recurrences
1993: Combstruct package for Maple (with E. Murray),
counting and drawing combinatorial structures
1994-1995: contributions to the MuPAD CAS
1997-now: GMP-ECM, integer factorization (Elliptic Curve
Method)
1998-now: the library (this talk)
contributions to GMP (Toom-Cook 3-way, FFT
multiplication, subquadratic division and square root,
modular exponentiation, k -th integer root)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Plan of the talk

Motivation

The IEEE 754 standard

The library

Can we do better than other CAS?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Motivation

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Useful Computations Need Useful Numbers
David R. Stoutemyer
ACM Communications in Computer Algebra
September 2007.

Most of us have taken the exact rational and
approximate numbers in our computer algebra
systems for granted for a long time, not thinking to ask
if they could be significantly better.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-126

0.34288028340847034512 10

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-126

0.34288028340847034512 10

> Digits:=50: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-126

0.34288028340847034512 10

> Digits:=50: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-128

0.49076783443012876473973482836733778547443399549250 10

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-126

0.34288028340847034512 10

> Digits:=50: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-128

0.49076783443012876473973482836733778547443399549250 10

> Digits:=100: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Increase the precision is enough!

|\ˆ/| Maple 10 (IBM INTEL LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2005
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> evalf(Int(exp(-xˆ2)*ln(x),x=17..42));

-126
0.2604007480 10

> Digits:=20: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-126

0.34288028340847034512 10

> Digits:=50: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
-128

0.49076783443012876473973482836733778547443399549250 10

> Digits:=100: evalf(Int(exp(-xˆ2)*ln(x),x=17..42));
0.490767834430128764739734828367337785474433995492503842\

-128
1435498665013506331285359635525372050785062212 10

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

It makes me nervous to fly on airplanes, since I know
they are designed using floating-point arithmetic.

Alston Householder

(famous architect of floating-point algorithms and error analysis)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

-0.58645356896925826300

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

-0.58645356896925826300

> evalf(sin(2ˆ100),30);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

-0.58645356896925826300

> evalf(sin(2ˆ100),30);

0.199885621653625738215132811525

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

-0.58645356896925826300

> evalf(sin(2ˆ100),30);

0.199885621653625738215132811525

> evalf(sin(2ˆ100),40);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> evalf(sin(2ˆ100));

0.4491999480

> evalf(sin(2ˆ100),20);

-0.58645356896925826300

> evalf(sin(2ˆ100),30);

0.199885621653625738215132811525

> evalf(sin(2ˆ100),40);

-0.8721836054182673097807197782134705593243

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What does the documentation say?
> ?evalf
- The evalf command numerically evaluates expressions

(or subexpressions) involving constants (for
example, Pi, exp(1), and gamma) and mathematical
functions (for example, exp, ln, sin, arctan, cosh,
GAMMA, and erf).

Output
- The evalf command returns a floating-point or

complex floating-point number or expression.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What does the documentation say?
> ?evalf
- The evalf command numerically evaluates expressions

(or subexpressions) involving constants (for
example, Pi, exp(1), and gamma) and mathematical
functions (for example, exp, ln, sin, arctan, cosh,
GAMMA, and erf).

Output
- The evalf command returns a floating-point or

complex floating-point number or expression.

For detailed information including:
- Complete description of all parameters
- Controlling numeric precision of computations
- Special evaluation for user-defined constants and

functions
see the ?evalf/details (evalf,details) help page.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Look at the details

> ?evalf/details
- The evalf command numerically evaluates expressions

(or subexpressions) involving constants (for example,
Pi, exp(1), and gamma) and mathematical functions
(for example, exp, ln, sin, arctan, cosh, GAMMA, and
erf.

- You can control the precision of all numeric
computations using the environment variable Digits.
By default, Digits is assigned the value 10, so the
evalf command uses 10-digit floating-point
arithmetic.

See Also: numeric_overview

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Look at the numeric overview

> ?numeric_overview
The Maple numeric computation environment is designed
to achieve the following goals.

1. Consistency with IEEE standards.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Look at the numeric overview

> ?numeric_overview
The Maple numeric computation environment is designed
to achieve the following goals.

1. Consistency with IEEE standards.

> Digits:=3:
> Rounding := 0:
> 1.0 - 9e-5;

1.0

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

2. Consistency across different types of numeric
computations (hardware, software, and exact).

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

2. Consistency across different types of numeric
computations (hardware, software, and exact).

> evalf(sin(2ˆ100));
0.4491999480

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

2. Consistency across different types of numeric
computations (hardware, software, and exact).

> evalf(sin(2ˆ100));
0.4491999480

> evalhf(sin(2ˆ100));
-0.872183605418267338

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What are the semantics of Maple’s
evalf(), Mathematica’s N[], Magma’s
RR(), SAGE’s n()?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

--
| SAGE Version 2.8.12, Release Date: 2007-11-06 |
Type notebook() for the GUI, and license() for information.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

--
| SAGE Version 2.8.12, Release Date: 2007-11-06 |
Type notebook() for the GUI, and license() for information.

sage: n?
Definition: n(x, prec=None, digits=None)

Return a numerical approximation of x with
at least prec bits of precision.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

--
| SAGE Version 2.8.12, Release Date: 2007-11-06 |
Type notebook() for the GUI, and license() for information.

sage: n?
Definition: n(x, prec=None, digits=None)

Return a numerical approximation of x with
at least prec bits of precision.

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: n(f, digits=15)
-1024.00000000000

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

--
| SAGE Version 2.8.12, Release Date: 2007-11-06 |
Type notebook() for the GUI, and license() for information.

sage: n?
Definition: n(x, prec=None, digits=None)

Return a numerical approximation of x with
at least prec bits of precision.

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: n(f, digits=15)
-1024.00000000000

sage: n(f, digits=30)
-0.0000000000007673861546209082007408142089844

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: f=sin(x)ˆ2+cos(x)ˆ2-1

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: f=sin(x)ˆ2+cos(x)ˆ2-1

sage: f.nintegrate(x,0,1)
(-1.1189600789284899e-18, 6.447843603224434e-18,

8379, 5)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: f=sin(x)ˆ2+cos(x)ˆ2-1

sage: f.nintegrate(x,0,1)
(-1.1189600789284899e-18, 6.447843603224434e-18,

8379, 5)

sage: f.nintegrate?
OUTPUT:

-- float: approximation to the integral
-- float: estimated absolute error of the approximation
-- the number of integrand evaluations
-- an error code:

0 -- no problems were encountered
1 -- too many subintervals were done
2 -- excessive roundoff error
3 -- extremely bad integrand behavior
4 -- failed to converge
5 -- integral is probably divergent or slowly convergent
6 -- the input is invalid

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: f.nintegrate(x,0,1)
(-480.00000000000011, 5.3290705182007538e-12, 21, 0)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: f=exp(pi*sqrt(163))-262537412640768744
sage: f.nintegrate(x,0,1)
(-480.00000000000011, 5.3290705182007538e-12, 21, 0)

Is this a bug?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What you should have learned so far. . .

no specification =⇒ no bug

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What you should have learned so far. . .

no specification =⇒ no bug

. . . but useless

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What you should have learned so far. . .

no specification =⇒ no bug

. . . but useless

well-defined semantics

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

What you should have learned so far. . .

no specification =⇒ no bug

. . . but useless

well-defined semantics
=⇒ maybe useful

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

The IEEE standard

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

The IEEE standard

Approved in 1985

four different binary formats (single, single extended,
double, double extended)

four rounding modes

requires correct rounding for +, −, ×, ÷,
√·

exceptions (underflow, overflow, inexact, invalid)

well supported by modern processors

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Sterbenz Lemma

Lemma If x and y are two floating-point numbers such that
y/2 < x < 2y, then:

◦(x − y)

is exact.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: R=RealField(42)
sage: x=R(catalan)
sage: y=R(euler_gamma)
sage: x, y
(0.915965594177, 0.577215664902)
sage: z=x-y
sage: z
0.338749929276
sage: x.exact_rational() - y.exact_rational()
1489837944587/4398046511104
sage: z.exact_rational()
1489837944587/4398046511104

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

FastTwoSum

Theorem If |a| ≥ |b|, and:
s ← ◦(a + b)
t ← ◦(s − a)
u ← ◦(b − t)
then we have

a + b = s + u.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: R=RealField(53,sci_not=1)
sage: a=R(pi)
sage: b=R(exp(1))
sage: s=a+b
sage: t=s-a
sage: u=b-t
sage: s, u
(5.85987448204884e0, 4.44089209850063e-16)
sage: a.exact_rational()+b.exact_rational()\

-s.exact_rational()-u.exact_rational()
0

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

The following code returns the internal base:

sage: A = 1.0
sage: B = 1.0
sage: while ((A + 1.0) - A) - 1.0 == 0.0:
....: A = 2.0 * A
sage: while ((A + B) - A) - B <> 0.0:
....: B = B + 1.0
sage: B
2.00000000000000

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

> A := 1.0:
> B := 1.0:
> while (evalf(A + 1.0) - A) - 1.0 = 0.0 do

A := 2.0 * A
od:

> while ((A + B) - A) - B <> 0.0 do
B := B + 1.0

od:
> B;

10.0

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

The MPFR library
www.mpfr.org

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

A lot of code involving a little floating-point will be written by
many people who have never attended my (nor anyone else’s)
numerical analysis classes. We had to enhance the likelihood
that their programs would get correct results. At the same

time we had to ensure that people who really are expert in
floating-point could write portable software and prove that it
worked, since so many of us would have to rely upon it. There
were a lot of almost conflicting requirements on the way to a

balanced design.
William Kahan, An Interview with the Old Man of Floating-Point,

February 1998.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

History of MPFR

Nov 1998: founding text (G. Hanrot, J.-M. Muller, J. van der
Hoeven, PZ)

early 1999: first lines of code (Hanrot, PZ)

Dec 2000: V. Lefèvre joins the “MPFR-team”

2001: postdoc David Daney

2003-2005: Patrick Pélissier

Oct 2004: version 2.1.0, gfortran uses MPFR

Oct 2005: MPFR wins the Many Digits competition

2007: GCC 4.3 uses MPFR, version 2.3.0, article in ACM
TOMS

2007-2009: Philippe Théveny

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Computing Model

Extension of IEEE 754 to arbitrary precision:

formats: arbitrary precision p

x = ±0. b1b2 . . . bp
︸ ︷︷ ︸

p bits

·2e

with Emin ≤ e ≤ Emax;

5 special numbers ±0, ±∞, NaN;

rounding modes: four IEEE 754 modes.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

radix is fixed (2);

precision p ≥ 2;

Emin and Emax are global (default Emin = −230 + 1,
Emax = 230 − 1);

no denormal/subnormal numbers (but
mpfr subnormalize);

operations are atomic (like IEEE 754).

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Differences with IEEE 754

each variable has its own precision:
mpfr_init2 (a, 17);
mpfr_init2 (b, 42);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Differences with IEEE 754

each variable has its own precision:
mpfr_init2 (a, 17);
mpfr_init2 (b, 42);

mixed operations are allowed:

mpfr_sqrt (a, b, GMP_RNDN);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Differences with IEEE 754

each variable has its own precision:
mpfr_init2 (a, 17);
mpfr_init2 (b, 42);

mixed operations are allowed:

mpfr_sqrt (a, b, GMP_RNDN);

in-place operations are allowed:

mpfr_sqrt (a, a, GMP_RNDN);

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Correct rounding

For any operation, MPFR guarantees correct rounding:

basic arithmetic operations (+,−,×,÷);

algebraic functions
√·,

√

x2 + y2, xn, . . .;

elementary and special functions: exp, log, sin, . . ., erf,
Bessel, . . .

conversions (types long, char*, double, long
double, mpz t, mpq t).

Main consequence: one and only one correct result!

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Correct rounding

For any operation, MPFR guarantees correct rounding:

basic arithmetic operations (+,−,×,÷);

algebraic functions
√·,

√

x2 + y2, xn, . . .;

elementary and special functions: exp, log, sin, . . ., erf,
Bessel, . . .

conversions (types long, char*, double, long
double, mpz t, mpq t).

Main consequence: one and only one correct result!
Corollary 1: portability of code (across platforms and versions)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Correct rounding

For any operation, MPFR guarantees correct rounding:

basic arithmetic operations (+,−,×,÷);

algebraic functions
√·,

√

x2 + y2, xn, . . .;

elementary and special functions: exp, log, sin, . . ., erf,
Bessel, . . .

conversions (types long, char*, double, long
double, mpz t, mpq t).

Main consequence: one and only one correct result!
Corollary 1: portability of code (across platforms and versions)
Corollary 2: directed rounding allows interval arithmetic (MPFI).

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

MPFR inside

3 levels of functions:

low level (addition, subtraction, multiplication, division,
square root);

basic elementary functions (exp, log, sin);

other elementary and special functions.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Low level functions

Native implementation on top of GMP’s mpn:

0. 1101011100
︸ ︷︷ ︸

10

+0. 11111011110110
︸ ︷︷ ︸

13

·2−3 → xxxxxx
︸ ︷︷ ︸

6

·2y

.1101011100
.1111011110110

.1111010111110110

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Basic elementary functions

Example: exp in precision n.

argument reduction:

x → r = x/2k

Taylor series:

exp r ≈ 1 + r +
r2

2!
+

r3

3!
+ · · ·+ r `

`!

reconstruction:

x = r2k =⇒ exp x = (exp r)2k

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Ziv’s strategy

m = ?

m = n+20

m = n+40

m = 2n

failure
success

rounded
result

if one failure, p← p + 32 or p + 64;

if two or more failures, p ← p + bp/2c.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Other mathematical functions

Reduce to basic mathematical functions, plus Ziv’s strategy;

cosh x =
ex + e−x

2

u ← ◦(ex)

v ← ◦(u−1)

w ← ◦(u + v)

s ← 1
2

w [exact]

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Tests

coverage tests

non-regression tests (fixed bugs);

random tests (each night):

y ← ◦p(f (x))

t ← ◦p+10(f (x))

z ← ◦p(t)

If no double-rounding problem, we should have y = z.

data bases (warning . . .).

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Efficiency (small precision)

Precision 53 bits on Pentium 4 and Athlon (cycles):

version machine add sub mul div sqrt
2.0.1 Pentium 4 298 398 331 1024 1211
2.1.0 Pentium 4 211 213 268 549 1084
2.0.1 Athlon 222 323 270 886 975
2.1.0 Athlon 132 151 183 477 919

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Comparison MPFR, CLN, PARI, NTL

Athlon 1.8Ghz, milliseconds, x =
√

3− 1, y =
√

5:

digits
MPFR
2.2.0

CLN
1.1.11

PARI
2.2.12-beta

NTL
5.4

x · y 102 0.00048 0.00071 0.00056 0.00079
104 0.48 0.81 0.58 0.57

x/y 102 0.0010 0.0013 0.0011 0.0020
104 1.2 2.4 1.2 1.2√

x 102 0.0014 0.0016 0.0015 0.0037
104 0.81 1.58 0.82 1.23

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Comparison MPFR, CLN, PARI, NTL

digits
MPFR
2.2.0

CLN
1.1.11

PARI
2.2.12-beta

NTL
5.4

exp x 102 0.017 0.060 0.032 0.140
104 54 70 68 1740

log x 102 0.031 0.076 0.037 0.772
104 34 79 40 17940

sin x 102 0.022 0.056 0.032 0.155
104 78 129 134 1860

atan x 102 0.28 0.067 0.076 NA
104 610 149 151 NA

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

roundoff error only for atomic operations: interval
arithmetic (MPFI), RealRAM implementation (iRRAM,
RealLib)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

roundoff error only for atomic operations: interval
arithmetic (MPFI), RealRAM implementation (iRRAM,
RealLib)

no automatic precision setting wrt accuracy

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

roundoff error only for atomic operations: interval
arithmetic (MPFI), RealRAM implementation (iRRAM,
RealLib)

no automatic precision setting wrt accuracy

radix is fixed to 2 (cf decNumber for radix 10)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

roundoff error only for atomic operations: interval
arithmetic (MPFI), RealRAM implementation (iRRAM,
RealLib)

no automatic precision setting wrt accuracy

radix is fixed to 2 (cf decNumber for radix 10)

no high-level numerical algorithms: polynomial equations,
linear algebra (ALGLIB.NET), quadrature (CRQ)

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Limits of MPFR

roundoff error only for atomic operations: interval
arithmetic (MPFI), RealRAM implementation (iRRAM,
RealLib)

no automatic precision setting wrt accuracy

radix is fixed to 2 (cf decNumber for radix 10)

no high-level numerical algorithms: polynomial equations,
linear algebra (ALGLIB.NET), quadrature (CRQ)

only “paper and pencil” proofs

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Your first MPFR program

#include <stdio.h>
#include "mpfr.h"

int main ()
{

unsigned long i;
mpfr_t s, t;
mpfr_init2 (s, 100); mpfr_init2 (t, 100);
mpfr_set_ui (t, 1, GMP_RNDN);
mpfr_set (s, t, GMP_RNDN);
for (i = 1; i <= 29; i++)

{
mpfr_div_ui (t, t, i, GMP_RNDN);
mpfr_add (s, s, t, GMP_RNDN);

}
mpfr_out_str (stdout, 10, 0, s, GMP_RNDN);
printf ("\n");
mpfr_clear (s); mpfr_clear (t);

}

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

#include "mpfr.h"
Includes the MPFR header file.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

#include "mpfr.h"
Includes the MPFR header file.

mpfr_t s, t;
Declares two variables s and t .

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

#include "mpfr.h"
Includes the MPFR header file.

mpfr_t s, t;
Declares two variables s and t .

mpfr_init2 (s, 100); mpfr_init2 (t, 100);
Initializes s and t , with a precision of 100 bits.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

#include "mpfr.h"
Includes the MPFR header file.

mpfr_t s, t;
Declares two variables s and t .

mpfr_init2 (s, 100); mpfr_init2 (t, 100);
Initializes s and t , with a precision of 100 bits.

mpfr_set_ui (t, 1, GMP_RNDN);
mpfr_set (s, t, GMP_RNDN);

Sets t to 1, rounded to nearest, and copies t , rounded to
nearest, into s.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

mpfr_div_ui (t, t, i, GMP_RNDN);
Divides t by i , rounded to nearest.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

mpfr_div_ui (t, t, i, GMP_RNDN);
Divides t by i , rounded to nearest.

mpfr_add (s, s, t, GMP_RNDN);
Adds t to s, with rounding to nearest.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

mpfr_div_ui (t, t, i, GMP_RNDN);
Divides t by i , rounded to nearest.

mpfr_add (s, s, t, GMP_RNDN);
Adds t to s, with rounding to nearest.

mpfr_out_str (stdout, 10, 0, s, GMP_RNDN);
Prints s in decimal, with rounding to nearest (number of digits is
deduced from precision of s).

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

mpfr_div_ui (t, t, i, GMP_RNDN);
Divides t by i , rounded to nearest.

mpfr_add (s, s, t, GMP_RNDN);
Adds t to s, with rounding to nearest.

mpfr_out_str (stdout, 10, 0, s, GMP_RNDN);
Prints s in decimal, with rounding to nearest (number of digits is
deduced from precision of s).

mpfr_clear (s); mpfr_clear (t);
Frees the memory of s and t .

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

mpfr_div_ui (t, t, i, GMP_RNDN);
Divides t by i , rounded to nearest.

mpfr_add (s, s, t, GMP_RNDN);
Adds t to s, with rounding to nearest.

mpfr_out_str (stdout, 10, 0, s, GMP_RNDN);
Prints s in decimal, with rounding to nearest (number of digits is
deduced from precision of s).

mpfr_clear (s); mpfr_clear (t);
Frees the memory of s and t .

If one replaces GMP RNDN by GMP RNDZ, one gets a lower
bound for e =

∑

n≥0
1
n!

.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Compiling and running

$ gcc sample.c -lmpfr -lgmp

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Compiling and running

$ gcc sample.c -lmpfr -lgmp
or:
$ echo $MPFR
/usr/local/mpfr-2.3.0
$ gcc -I$MPFR/include sample.c $MPFR/lib/libmpfr.a $GMP/lib/libgmp.a

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Compiling and running

$ gcc sample.c -lmpfr -lgmp
or:
$ echo $MPFR
/usr/local/mpfr-2.3.0
$ gcc -I$MPFR/include sample.c $MPFR/lib/libmpfr.a $GMP/lib/libgmp.a
and:
$./a.out
2.7182818284590452353602874713481

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Applications

The CRQ library (L. Fousse): numerical quadrature with
rigorous bounds

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Applications

The CRQ library (L. Fousse): numerical quadrature with
rigorous bounds

FPLLL (D. Stehlé): fast lattice reduction using floating-point
numbers

µi ,j = b
bib∗

j

||b∗
j ||2
e

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Can we do better than other CAS?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

A Challenge

Prove exp 1 < 3 with your favorite CAS.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

A Challenge

Prove exp 1 < 3 with your favorite CAS.

> evalf(3-exp(1));
0.281718172

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

A Challenge

Prove exp 1 < 3 with your favorite CAS.

> evalf(3-exp(1));
0.281718172

sage: n(3-exp(1),digits=10)
0.2817181716

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

A Challenge

Prove exp 1 < 3 with your favorite CAS.

> evalf(3-exp(1));
0.281718172

sage: n(3-exp(1),digits=10)
0.2817181716

Is this a proof?

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: R = RealIntervalField(3)
sage: 3-exp(R(1))
[-0.00 .. 0.50]
sage: R = RealIntervalField(4)
sage: 3-exp(R(1))
[0.250 .. 0.500]

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

sage: R = RealIntervalField(3)
sage: 3-exp(R(1))
[-0.00 .. 0.50]
sage: R = RealIntervalField(4)
sage: 3-exp(R(1))
[0.250 .. 0.500]

sage: R = RealIntervalField(105)
sage: exp(R(pi)*sqrt(R(163)))-262537412640768744
[-0.00000000000142108547152020037174224853515625 ..
-0.000000000000582645043323282152414321899414062]

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Still from David R. Soutemyer:

The astounding increase in computer speed and
memory size since floating-point arithmetic was first
implemented makes it affordable to use interval
arithmetic and self-validating algorithms for almost all
approximate scientific computation. It should be the
default approximate arithmetic — especially in
computer algebra [. . .]

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Let’s have a dream. . .

Theorem. eπ
√

163 < 262537412640768744.

Paul Zimmermann The MPFR library

Motivation
The IEEE standard

The MPFR library
Can we do better than other CAS?

Let’s have a dream. . .

Theorem. eπ
√

163 < 262537412640768744.
Proof.
--
| SAGE Version 17.5.13, Release Date: 2011-11-11 |
Type notebook() for the GUI.

sage: f=exp(pi*sqrt(163))-262537412640768744
sage n(f, accuracy_goal = 1 digit)
[-8e-13, -7e-13]

Paul Zimmermann The MPFR library

	Motivation
	The IEEE standard
	The MPFR library
	Can we do better than other CAS?

