Sage: an open-source mathematics software

Paul Zimmermann

2nd SCIEnce Workshop Palaiseau, France January 19, 2009

イロト イ団ト イヨト イヨト

Disclaimer

I'm not the best person to talk about Sage

イロト イポト イヨト イヨト

Disclaimer

- I'm not the best person to talk about Sage
- I'm biased towards Sage for the following reasons:

→ E > < E >

2

< 🗇 🕨

Disclaimer

- I'm not the best person to talk about Sage
- I'm biased towards Sage for the following reasons:
 - it is open-source

イロト イポト イヨト イヨト

Disclaimer

- I'm not the best person to talk about Sage
- I'm biased towards Sage for the following reasons:
 - it is open-source
 - it uses some of the software tools I've contributed to

・ 同 ト ・ ヨ ト ・ ヨ ト

Disclaimer

- I'm not the best person to talk about Sage
- I'm biased towards Sage for the following reasons:
 - it is open-source
 - it uses some of the software tools I've contributed to
 - its developers give feedback to the "upstream" packages

★ 문 ► ★ 문 ►

Disclaimer

- I'm not the best person to talk about Sage
- I'm biased towards Sage for the following reasons:
 - it is open-source
 - it uses some of the software tools I've contributed to
 - its developers give feedback to the "upstream" packages
- I will do my best to be objective

→ Ξ → < Ξ →</p>

- Sage: a computer algebra system
- Sage: a bridge between different tools
- Sage: an active community

・ 同 ト ・ ヨ ト ・ ヨ ト

A Computer Algebra System

Paul Zimmermann Sage: an open-source mathematics software

くロト (過) (目) (日)

Sage Basics

```
bash-3.00$ sage

    Sage Version 3.2.3, Release Date: 2009-01-05

    Type notebook() for the GUI, and license() for information.

    sage: 17+42

59
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Sage Basics

```
bash-3.00$ sage
 Sage Version 3.2.3, Release Date: 2009-01-05
 Type notebook() for the GUL, and license() for information.
sage: 17+42
59
sage: l=[x,1,'a',x]
sage: l.<tab>
l.append l.extend l.insert l.remove l.sort
1.count 1.index 1.pop 1.reverse
sage: l.count?
Type:
               builtin function or method
Base Class: <tvpe 'builtin function or method'>
String Form: <built-in method count of list object at 0xb636906c>
Namespace:
             Interactive
Docstring:
   L.count(value) -> integer -- return number of occurrences of value
Class Docstring:
    <attribute '__doc__' of 'builtin_function_or_method' objects>
                                           ・ロト ・ 日 ・ モ ・ ・ モ ・ ・ 日 ・ ・ つ へ ()・
```

Sage Basics (continued)

```
sage: l.count(x)
2
sage: len(l)
4
sage: l[0:4]
[x, 1, 'a', x]
```

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Classes of Objects

```
sage: R = RealIntervalField(42)
sage: a = R((exp(1), pi))
sage: a
3.?
sage: a.lower(), a.upper()
(2.71828182845, 3.14159265360)
sage: b = sin(a)
sage: b.lower(), b.upper()
(-3.30279907449e-13, 0.410781290504)
sage: (a*b).diameter()
1.29050748448
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

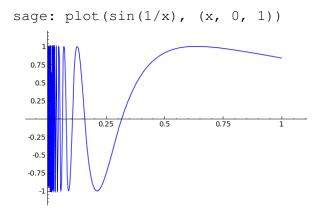
Calculus

```
sage: eg = x^{5+x+1} == 0
sage: sol = solve(eg); sol
[x == (sqrt(3) * I/2 - 1/2) / (9*(sqrt(23) / (6*sqrt(3)) - 25/54)^{(1/3)})
    + (sqrt(23)/(6*sqrt(3)) - 25/54)^{(1/3)}*(-sqrt(3)*I/2 - 1/2) + 1/3,
x == (sgrt(23)/(6*sgrt(3)) - 25/54)^{(1/3)}*(sgrt(3)*I/2 - 1/2)
+ (-sqrt(3) \times I/2 - 1/2)/(9 \times (sqrt(23)/(6 \times sqrt(3)) - 25/54)^{(1/3)}) + 1/3,
x == (sqrt(23)/(6*sqrt(3)) - 25/54)^{(1/3)} + 1/(9*(sqrt(23)/(6*sqrt(3)))
   -25/54)^{(1/3)} + 1/3,
x == (-sqrt(3) * I - 1)/2,
x == (sqrt(3) * I - 1)/2]
sage: [s.rhs().n() for s in sol]
[0.877438833123343 + 0.744861766619737*I,
 -0.754877666246686 - 4.16333634234434e-17*I,
 0.877438833123343 - 0.744861766619737*I,
 -0.5000000000000 - 0.866025403784439 \times T
 -0.50000000000000 + 0.866025403784439 \times T1
sage: eg.substitute(x=sol[0].rhs()).rhs().n()
```

```
4.52970994047064e-14 + 4.21468415723325e-14*I
```

(ロ) (同) (三) (三) (三) (○)

```
sage: [eq.substitute(x=s.rhs()).rhs().n() for s in sol]
```

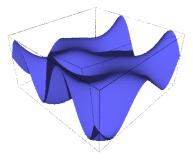

[4.52970994047064e-14 + 4.21468415723325e-14*I, 1.70974345792274e-14 - 1.91727504138695e-16*I, 4.41868763800812e-14 - 4.46309655899313e-14*I, 1.99840144432528e-15 + 6.66133814775094e-16*I, 1.99840144432528e-15 - 6.66133814775094e-16*I]

sage: diff(e^e^e^x, x, 4) $(((e^x + 1) * e^(e^x + x) + e^x) * e^(e^e^x + e^x + x)$ + $(e^{(e^{x} + x)} + e^{x} + 1)^{2} e^{(e^{e^{x}} + e^{x} + x)}$ $+ e^{(e^{x} + 2x)} + (e^{x} + 1)^{2}e^{(e^{x} + x)} + e^{x}$ $*e^{(e^{e^{x}} + e^{e^{x}} + e^{x} + x)} + 3*(e^{(e^{e^{x}} + e^{x} + e^{x})})$ $+ x) + e^{(e^{x} + x)} + e^{x} + 1) * ((e^{(e^{x} + x)}) + e^{x})$ $+ 1) * e^{(e^{-}x + e^{-}x + x)} + (e^{-}x + 1) * e^{(e^{-}x + x)}$ $+ e^{x} + x) + e^{(e^{x} + x)} + e^{x} + 1)^{3} + e^{(e^{e} - e^{x})}$ $+ e^{e^{x}} + e^{x} + x$ x), x), x), x), x)e^e^e^e^x

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の Q (>

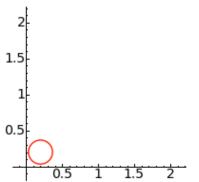
```
sage: e4 = diff(e^e^e^x, x, 4)
sage: f = lambda e: integrate(e,x)
sage: f(f(f(f(e4))))
e^e^e^e^x
```

Graphics


< < >> < </>

- イヨト イヨト - 三日

Graphics


sage: var('y');

- sage: P = plot3d(sin(x-y)*y*cos(x), (x, -3, 3), (y, -3, 3))
- sage: show(P, viewer='tachyon')

1 * * 三 * * 三 * シスペ

Graphics

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 🗇 🕨

Basic Rings

```
sage: a = ZZ(17)
sage: b = QQ(3/4)
sage: c = a+b
sage: type(c)
<type 'sage.rings.rational.Rational'>
sage: d = RR(pi)
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Polynomials

```
sage: P.<x> = PolynomialRing(GF(17))
sage: p = P.random_element(); p
16*x^2 + 6*x + 9
sage: p^3
16*x^6 + x^5 + 4*x^4 + 11*x^3 + 15*x^2 + 13*x + 15
sage: p.roots()
[(4, 1), (2, 1)]
```

Matrices

```
[ 4*x + 14 16*x^2 + 11*x + 1]
sage: m.rank()
```

```
• • •
```

NotImplementedError: echelon form over Univariate
Polynomial Ring in x over Ring of integers modulo
17 not yet implemented
sage: m.det()
4*x^4 + 2*x^3 + 6*x^2 + 12*x + 5
sage: factor(_)
(4) * (x^4 + 9*x^3 + 10*x^2 + 3*x + 14)

御 ト イヨ ト イヨ ト ・ ヨ ・ つくぐ

Useful Commands

sage: search_src ("integration", extral="numerical")
calculus/calculus.py:

numerical integration using the GSL C library. It is po functions/piecewise.py:

Riemann sums in numerical integration based on a subdiv: functions/transcendental.py:

from sage.gsl.integration import numerical_integral
gsl/all.py:

from integration import numerical_integral
interfaces/maxima.py:

Note that GP also does numerical integration, and can do ext/fast_eval.pyx:

For many applications such as numerical integration, dis gsl/integration.pyx:

that implements numerical integration using Maxima. It

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙ へ ⊙

```
sage: *integra*?
exponential_integral_1
half_integral_weight_modform_basis
integral
integral_closure
integral_numerical
integrate
is_integrally_closed
numerical integral
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

```
sage: numerical_integral(sin(1/x), 0, 1)
(0.50407021996807966, 0.00012692441400448127)
sage: numerical_integral(sin(1/x), 0, 1, max_points=100000)
(0.5040670497667491, 9.9983194154764902e-07)
```

Programming in Sage

```
sage: def isprime(p):
    i = 2
    while i*i <= p:
        if p % i == 0:
            return False
        i = i + 1
    return True
for p in range(1000):
    if isprime(p) <> is_prime(p):
        raise ValueError, p
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

A useful command when programming:

sage: attach xxx.sage

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Building »The Car«

A Bridge Between Different Tools

»Every free computer algebra system I've tried has reinvented many times the wheel without being able to build the car.«

Paul Zimmermann Sage: an open-source mathematics software

< 🗇 🕨

→ Ξ → < Ξ →</p>

http://www.sagemath.org/links-components.html:

ATLAS, BLAS, Bzip2, Cddlib, Common Lisp, CVXOPT, Cython, mwrank, F2c, Flint, FpLLL, FreeType, G95, GAP, GD, Genus2reduction, Gfan, Givaro, GMP, GMP-ECM, GNU TLS, GSL, JsMath, IML, IPython, LAPACK, Lcalc, Libgcrypt, Libgpg-error, Linbox, M4RI, Matplotlib, Maxima, Mercurial, MoinMoin Wiki, MPFI, MPFR, ECLib, NetworkX, NTL, Numpy, OpenCDK, PALP, PARI/GP, Pexpect, PNG, PolyBoRi, PyCrypto, Python, Qd, R, Readline, Rpy, Scipy, Singular, Scons, SQLite, Sympow, Symmetrica, Sympy, mpmath, Tachyon, Termcap, Twisted, Weave, Zlib, ZODB.

イロト イポト イヨト イヨト 一座

```
sage: P.<x> = PolynomialRing(GF(17))
sage: m = Matrix(P,2,2)
sage: m.randomize(); m
[ 8*x^2 + 7*x + 4 2*x^2 + 16*x + 11]
[ 7*x + 4 16*x^2 + 5*x + 9]
sage: m.change_ring(FractionField(P)).rank()
2
```

```
sage: z = gp(m)
sage: z
[Mod(8, 17)*x^2 + Mod(7, 17)*x + Mod(4, 17),
Mod(2, 17)*x^2 + Mod(16, 17)*x + Mod(11, 17);
Mod(7, 17)*x + Mod(4, 17),
Mod(16, 17)*x^2 + Mod(5, 17)*x + Mod(9, 17)]
sage: type(z)
<class 'sage.interfaces.gp.GpElement'>
sage: z.matrank()
2
```

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の Q (>

```
sage: gp.eval('intnum(x=1,[1],sin(x)/x^2)')
'0.5072074420174738883608862513'
sage: res = eval(_); res
0.50720744201747392
```

```
sage: s = gp.eval('Mod(8,17)'); s
'Mod(8, 17)'
sage: a = eval(s); a
8
sage: a.parent()
Ring of integers modulo 17
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Command-Line Interface

sage: %gp

--> Switching to GP/PARI interpreter <--

, ,

gp: $a = factorint(2^{128+1})$

[59649589127497217 1]

[5704689200685129054721 1]

gp: quit

--> Exiting back to SAGE <--

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

```
sage: m = gp('a'); m
[59649589127497217, 1; 5704689200685129054721, 1]
sage: m * m
[3558073483084938890843851471799810,
            59649589127497218;
340282366920938469168063808116897266178,
            5704689200685129054722]
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using two different packages

```
sage: %maple
maple: m := linalg[hilbert](5);
m := matrix([[1, 1/2, 1/3, 1/4, 1/5], [1/2, 1/3, 1/4,
1/5, 1/6], [1/3, 1/4, 1/5, 1/6, 1/7], [1/4, 1/5, 1/6,
1/7, 1/8], [1/5, 1/6, 1/7, 1/8, 1/9]])
maple: d := linalg[charpoly](m, x);
d := x^{5-563/315 \times x^{4+735781/2116800 \times x^{3-852401/315}}
222264000*x^2+61501/53343360000*x-1/266716800000
maple: quit
sage: d = maple('d')
sage: d = qp(d)
sage: d.polroots()
[0.000003287928772171862957115004760 + 0.E-28*I,
0.0003058980401511917268794978407 + 0.E-28*I,
0.01140749162341980655945145887 + 0.E-28*I,
0.2085342186110133359050025101 + 0.E-28*I,
1.567050691098230795533011006 + 0.E-28*I]~
```

An Active Community

Paul Zimmermann Sage: an open-source mathematics software

くロト (過) (目) (日)

The Sage Web Page

sagemath.org

French mirror: sagemath.fr

Paul Zimmermann Sage: an open-source mathematics software

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The trac server

http://trac.sagemath.org/sage_trac

Paul Zimmermann Sage: an open-source mathematics software

The Review Process

- bug reported by say A
- a patch is proposed by say B (might be A) [with patch, needs review]
- a review is done by C (different from B)

[with patch, with negative review]
[with patch, with positive review]

・同・・モー・ モー・ 王

Fix a Bug and Rebuild Sage

Paul Zimmermann Sage: an open-source mathematics software

ヘロン ヘアン ヘビン ヘビン

æ

Submit a Patch

Cf calculus.py: line 1372: algorithm \rightarrow algorithm Line 1389: suitible \rightarrow suitable Line 6551: tahn \rightarrow tanh

・ 同 ト ・ ヨ ト ・ ヨ ト

The Sage Days

http://wiki.sagemath.org/SageDays

Paul Zimmermann Sage: an open-source mathematics software

イロト 不同 とくほ とくほ とう

Bug and Doc Days

Coding Sprints

Paul Zimmermann Sage: an open-source mathematics software

프 > 프

< ∃ > <

< 🗇 🕨

Now Try Yourself!

Paul Zimmermann Sage: an open-source mathematics software

ヘロア 人間 アメヨア ヘヨア