Towards a correctly-rounded and fast power function in
binary64 arithmetic

Tom Hubrecht, Claude-Pierre Jeannerod, Paul Zimmermann
I . T

b psLx =12 2= 0(170

o (sl Lyon 1 UNIV=RSITE D= LYON

ENS ENS DE LYON ' S
UNIVERSITE g
DE LORRAINE

30th Arith conference, Portland, September 5th, 2023

s

7 l

Towards a correctly-rounded and fast power function in binary64 arithmetic 1/31

$ cat test.c

#include <stdio.h>

#include <math.h>

int main () {
double x = 0x1.0fbcd29b56829p-1;
double y = 0x1.57347b643eac2p-1;
printf ("x"y = %la\n", pow (x, y)); }

$ cc -fno-builtin test.c -1lm

If you get 0x1.4ed9af3eal8c3p-1, maybe you are using the GNU libc.
If you get 0x1.4ed9af3eal8c4p-1, maybe you are using the Intel math library.

(The correctly rounded result is that of GNU libc in that case, but for
x = 0x1.30b3e414e3d3bp-1 and y = 0x1.a6c0a38da8066p-1 we get the converse.)

Towards a correctly-rounded and fast power function in binary64 arithmetic 2/31

Previous Work

books of Markstein and Beebe

MathLib library (Ziv, 1991)

LIBMCR (Sun, 2004)

CRLIBM (De Dinechin, Lauter and al., 2006)

more recently RLIBM and LLVM libc, but do not provide (yet) a binary64 power
function

Towards a correctly-rounded and fast power function in binary64 arithmetic 3/31

MathLib (-1991)

Only for rounding to nearest even.

Integrated in GNU libc, slow path removed after 2.27 (2018).
Algorithm is not detailed.

No longer maintained.

Non official copies still exist, no bug found.

Towards a correctly-rounded and fast power function in binary64 arithmetic 4/31

LIBMCR (-2004)

Only for rounding to nearest even.
Algorithm is not detailed.

pow does not terminate for some inputs, for example x=0x1.470574d68e0afp+1,
y=0x1.02e0706205c0ep+1.

Wrong results for some inputs, for example x=0x1.£80b060553772p-1 and
y=0x1.99cp+13, gives 0x1.00001p+0 instead of 0x1.a2e7cca9cfd72p-297 (49
identical bits after the round bit).

No longer maintained.

Towards a correctly-rounded and fast power function in binary64 arithmetic 5/31

CRLIBM (-2006)

Experimental, and only for rounding to nearest even.
Algorithm partially detailed in Lauter's PhD thesis.

Wrong result for x=0x1.524ebae943097p+1 and y=0x1.ep-2, gives —b instead of
0x1.93bd0cd47eb5fp+0 (64 identical bits after the round bit).

No longer maintained.

Towards a correctly-rounded and fast power function in binary64 arithmetic 6/31

QOur contribution

© an open-source implementation, integrated into CORE-MATH
© covers all IEEE 754 rounding modes, not only to nearest-even
© an extended paper with full proofs of the 1st phase
@ full details of the 2nd and 3rd phases with the code

© performance: outperforms previous work, not far from incorrectly rounded math
libraries

In the Arith proceedings you find the 8-page short version, with detailed algorithms for
the 1st phase, lemmas and theorems, but without proofs.

On https://inria.hal.science/hal-04159652 you find the long version, with a
14-pages appendix containing detailed proofs. This version will be kept up-to-date
with further improvements.

Towards a correctly-rounded and fast power function in binary64 arithmetic 7/31

https://inria.hal.science/hal-04159652

Performance

Intel Core i7-8700 cycles with GCC 12.2.0, rounding to nearest-even:

| GNU libc 2.36 | MathLib LIBMCR CRLIBM this work

rec. throughput
latency

43 123 256 211 66 (60)
79 166 285 275 111 (99)

Towards a correctly-rounded and fast power function in binary64 arithmetic

8/31

How to compute x¥7

Using x¥ = 2982 (Markstein, Beebe) looks quite interesting, but the Taylor
expansions of log,(1 4+ t) and 2t at t = 0 have less simple coefficients.

We prefer to use x¥ = e”!°8% with more complex argument reduction, but simpler
Taylor expansions.

Towards a correctly-rounded and fast power function in binary64 arithmetic 9/31

Exact and midpoint cases

xY is exact if exactly representable in binary64.
x¥ is midpoint if exactly representable with 54 bits (but not with 53).
Detecting and dealing with exact/midpoint cases is crucial.

Efficient algorithms from Lauter and Lefévre (2009).

Towards a correctly-rounded and fast power function in binary64 arithmetic 10/31

Workflow

1. 1st phase computes double-double approximation; if rounding test succeeds,
return result

2. 2nd phase computes approximation with 128-bit arithmetic; if rounding test
succeeds, return result; otherwise, check for exact/midpoint cases

3. 3rd phase computes approximation with 256-bit arithmetic; if rounding test
succeeds, return result; otherwise, print error message

Towards a correctly-rounded and fast power function in binary64 arithmetic 11/31

Notations

We denote by o(a + b) or o(a- b) the correct rounding (with the current rounding
mode) of a+ b and a- b respectively.

We denote by o(a- b+ ¢) the correct rounding of a- b + ¢, which can be efficiently

computed with an FMA (fused-multiply-add) if available in hardware, or emulated in
software (__builtin_fma).

Towards a correctly-rounded and fast power function in binary64 arithmetic 12/31

Fast TwoSum

Input: a,b € F with a= 0 or |a| > |b|
Output: h, ¢ such that h+ ¢ approximates a + b

1. h<o(a+b)
2. t<—o(h—a) > always exact
3: L o(b—1t)

Theorem (Zimmermann, 2023)

Whatever the IEEE 754 rounding mode, in the absence of underflow/overflow, the
output h, ¢ of Fast TwoSum satisfies

|h+¢—(a+ b)| <271%|p|,

and if the exponents of a, b differ by at most 53, h+ ¢ = a+ b.

Towards a correctly-rounded and fast power function in binary64 arithmetic 13/31

FastSum

Input: a, by, by € F with a = 0 or |a|] > | by

Output: h, ¢ such that h+ ¢ approximates a + by, + by
1. h, t + FastTwoSum(a, bp)
2 4« O(t + bg)

Lemma

In no underflow nor overflow, the pair (h,¢) computed by Algorithm FastSum satisfies

|h+ £ — (a+ by + by)| < 271%|h| + ulp(¥).

Towards a correctly-rounded and fast power function in binary64 arithmetic 14/31

Approximation of log(1 + z) around zero

Algorithm 1 Algorithm p_1

Input: z€ T, [z| <33.2713

Output pn + pe approximating log(1 + z) — z

wh, wp < ExactMul(z, z)

t < 0(0x1.0001£0c80e8cep-3 - z 4 0x1.2494526fd4a06p-3)
u <+ o(0x1.55555553d1ebdp-3 - z 4+ 0x1.999999981f535p-3)
v < 0(0x1.0000000000003p-2 - z + 0x1.5555555555558p-2)
u < o(twp + u)

v < o(uwp + v)

u < o(vwp)

Ph < —0.5- Wh

pe < o(uz — 0.5 - wy)

© o Na RN

Towards a correctly-rounded and fast power function in binary64 arithmetic 15/31

Lemma

Given |z| < 33-2713 with z an integer multiple of 27®1, the double-double
approximation pp + py to log(1l + z) — z returned by Algorithm p_1 satisfies

lpn + pe — (log(1+ z) — 2)| < - UaARE

with |pp| < 27182 and |py| < 2725446 If z # 0, and assuming further |z| < 322713,
the relative error satisfies

Z+phtpe

c TFh T Fe 1| < 2—67.441.
log(1 + z)

Proved using the Coq proof assistant (by Laurence Rideau and Laurent Théry).

Towards a correctly-rounded and fast power function in binary64 arithmetic 16/31

Approximation of log x

Algorithm 2 Algorithm log_1

Input: a binary64 value x € [«, Q]
Output h + ¢ approximating log x

._.
=4

© e N TR W

write x = t - 2¢ with t € (1/v2,v/2) and e € Z

i+ [28¢] > i integer, 181 < i < 362
r < INVERSE,‘, El,gg — LOGINV,
z<+o(rt—1) > exact, |z| < 33-2713

th < o(e LOG2H + El)

ty < o(e LOG2L + /5)

h, £ < FastSum(tp, z, t)

Phs pe < p_1(2)

h, £ < FastSum(h, pp, o(¢ + pr))

if e=0 and |/| > 272%|h| then h,{ + FastTwoSum(h, £)

Towards a correctly-rounded and fast power function in binary64 arithmetic

17/31

Given x € [,], Algorithm log_1 computes (h,) such that |¢| < 27238%|h|, and
|h+ € — log x| < €log - | log x| (1)
with eog = 2773527 if x & (1/v/2,1/2), and £1oq = 27570544 otherwise.

Proved using the Coq proof assistant (by Laurence Rideau and Laurent Théry).

Towards a correctly-rounded and fast power function in binary64 arithmetic 18/31

Multiplication by y

Input: a double-double value h+ ¢, and a double y
Output: r, + r, approximating y(h + ¢)

1: rpy, s < ExactMul(y, h)

2: g+ o(yl+s)

Lemma

If x, h, { are as in previous Lemma and if 279%° < |yh| < 709.7827, then (ry, r) satisfy
\rh\ € [2_970,709.79], rg| < 2_14'4187, |rg/rh] < 2_23'8899, |rh aF rg| < 709.79, and

|rh 4 re — ylog x| < €y

With €y = 275379 if x & (1/v/2,V/2), and €y = 2757580 otherwise.

Towards a correctly-rounded and fast power function in binary64 arithmetic 19/31

Final exponentiation

See proceedings for details of Algorithm exp_1.

Lemma

In the case p1 < ry < po, if |rg/ry| < 27238899 and |r,| < 27144187 then the value
en + e returned by Algorithm exp_1 satistfies

e+ €
exp(rh + 17)

—1‘<2—”19

Moreover, |e;/ep| < 27417,

Towards a correctly-rounded and fast power function in binary64 arithmetic 20/31

Main algorithm for 1st phase

Input: two binary64 numbers x, y with x > 0

Output: the correct rounding of x¥, or FAIL

: Ly, Ly < log_1(x)

rhy re < mul_1(¢p, £y, y)

en, e < exp_1(rp, ro)

if V/2/2 < x < /2 then £ <~ RU(27%7579) else ¢ < RU(2793797)
u < o(ep +o(e; —eep)), v < o(ep + o(er + cep))

if v = v then return u else return FAIL

The value returned by Algorithm phase_1 (if not FAIL) is correctly rounded.

AU

Towards a correctly-rounded and fast power function in binary64 arithmetic 21/31

Main achievements

Our algorithms work for all IEEE 754 rounding modes.
Heavy use of FMA (either in hardware or emulated).
Crucial usage of FastTwoSum, with error bound for directed rounding modes.

Hardest to round inputs are not known for pow: 3rd phase might return an error
message, but will not deliver any incorrectly-rounded result.

Code 2x to 4x faster than previous work.
All IEEE 754 specials cases are dealt with.
Very detailed proofs.

A major achievement since pow is the most difficult binary64 function.

Towards a correctly-rounded and fast power function in binary64 arithmetic 22/31

Further work

The algorithms and code can be improved further (and we work on it).

Formal proof of the 1st phase in progress, thanks to Laurence Rideau and Laurent
Théry, using the Coq proof assistant.

Simplify the formal proofs using tools presented by Paul Geneau de Lamarliére on
Monday.

Approach scales for double-extended and quadruple precision.

An important step towards requiring correct rounding in IEEE 754-20297

Towards a correctly-rounded and fast power function in binary64 arithmetic 23/31

CORE-MATH timings

The following slides give reciprocal throughput and latency of CORE-MATH (commit
81d5ea0), GNU libc 2.37, the Intel math library with icx 2023.2.0 (with
-fp-model=strict -fno-fast-math), and LLVM libc (revision d099dbb).

Hardware: Intel Xeon Silver 4214.
Compiler (except for Intel math library): gcc 13.2.0.

Towards a correctly-rounded and fast power function in binary64 arithmetic 24/31

reciprocal throughput of C99 binary32 functions

70 4 core-math

lintel

60

50 A

40 1

30 A

20 4

4 4= Y= U= Y= Y= Y= Y= Y= Y= Y= Y Y Y= Y Y Y Y Y Y Y Y Y Y Y Y
W o ccoccocnNLS £ e T OaoNAd g DO QNI C £ C C
88'G_EBCCQSSQ}téQEQQHHC\o'G_EEC
RS®8BRSEOCE 09 x5S 22043 "% g
© © © © X < =2 =2

Towards a correctly-rounded and fast power function in binary64 arithmetic ()

25/31

reciprocal throughput of C99 binary64 functions

{ core-math
{intel
250 A
200 A
150 A
100 A
50 1
TR A A T T e AT
V’_CC_CCA:tU')_Ct'}_)Q_NH"S@OQ.NEC_CC_C
SYBESJS 5930t X2 QS22 23%<c g <
© o ® 1w Z O O v 3 & > 32 o @ b
© © © X c Lo 0o
Towards a correctly-rounded and fast power function in binary64 arithmetic (&}

26/31

reciprocal throughput of new C23 functions
core-math
40 A

35 1
30 A
25 1
20
15~

10 A

acospif
asinpif
atan2pif
atanpif
cospif
explof
XplOm1f
exp2m1lf
logl0plf
log2plf
rsqrtf
sinpif
tanpif
cosp
expl0
exp2ml
rsqrt
sinpi
tanp

Towards a correctly-rounded and fast power function in binary64 aritfnetic 27/31

latency of C99 binary32 functions

] core-math
120 { intel
100 -
80 -
60 -

40 1

i | | ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | ‘ ‘ ‘

IR B T - = s - e - -
w c c c cNcCc £ uwcoc't LV onN - "6 DO o N =2 € © Cc Cc
S uwupH EM®MESC Cc g8 vwagt Xaoag O dAd g lr E 8 C
O gH ¥ @m o O Y O 0 U X - D O O & T Y ©
© U C o o v 2 > o o — —
© © © © X < L °
Towards a correctly-rounded and fast power function in binary64 arithmetic (]

28/31

latency of C99 binary64 functions

linte

29/31

yuey
ue}
yuis
uis
mod
Zboj
d1b0|
otbo
bo|
jodAy
Twdxs
zdxe
dxa
pISE}
IiC]
ysod
S0>
ii[e}e}
yueie
ueje
yuise
uise
ysooe

sooe

3SO_Ecore-math

300 1

250 1

200 -

150 1

100 1

50 1

Towards a correctly-rounded and fast power function in binary64 arithmetic

latency of new C23 functions

core-math

30/31

iduey
iduis
ubsi
Twzdxa
oTdxa
1dsod
Jiduey
Jduis
Jubs.
41dzbo
41dot6o0|
JTwzdxa .

Ic

JTwotdx
JoTdx2
Hdsod
jidueje
jidzueje
jiduise

yidsooe

70 1

60

50 1

40 1

30 1

20 1

10 ~

Towards a correctly-rounded and fast power function in binary64 aritf¥net

reciprocal throughput of selected functions

] core-math
>0] intel
40 1
30 -

20 1

LTI

©
Towards a correctly-rounded and fast power function in binary64 arithmetic

acosf
asinf

tanhf
cosf
erfcf
sinf
ex

tanhf

31/31

