
Towards a correctly-rounded and fast power function in
binary64 arithmetic

Tom Hubrecht, Claude-Pierre Jeannerod, Paul Zimmermann

30th Arith conference, Portland, September 5th, 2023

Towards a correctly-rounded and fast power function in binary64 arithmetic 1/31

$ cat test.c
#include <stdio.h>
#include <math.h>
int main () {

double x = 0x1.0fbcd29b56829p-1;
double y = 0x1.57347b643eac2p-1;
printf ("x^y = %la\n", pow (x, y)); }

$ cc -fno-builtin test.c -lm

If you get 0x1.4ed9af3ea18c3p-1, maybe you are using the GNU libc.
If you get 0x1.4ed9af3ea18c4p-1, maybe you are using the Intel math library.
(The correctly rounded result is that of GNU libc in that case, but for
x = 0x1.30b3e414e3d3bp-1 and y = 0x1.a6c0a38da8066p-1 we get the converse.)

Towards a correctly-rounded and fast power function in binary64 arithmetic 2/31

Previous Work

books of Markstein and Beebe
MathLib library (Ziv, 1991)
LIBMCR (Sun, 2004)
CRLIBM (De Dinechin, Lauter and al., 2006)
more recently RLIBM and LLVM libc, but do not provide (yet) a binary64 power
function

Towards a correctly-rounded and fast power function in binary64 arithmetic 3/31

MathLib (-1991)

Only for rounding to nearest even.
Integrated in GNU libc, slow path removed after 2.27 (2018).
Algorithm is not detailed.
No longer maintained.
Non official copies still exist, no bug found.

Towards a correctly-rounded and fast power function in binary64 arithmetic 4/31

LIBMCR (-2004)

Only for rounding to nearest even.
Algorithm is not detailed.
pow does not terminate for some inputs, for example x=0x1.470574d68e0afp+1,
y=0x1.02e0706205c0ep+1.
Wrong results for some inputs, for example x=0x1.f80b060553772p-1 and
y=0x1.99cp+13, gives 0x1.00001p+0 instead of 0x1.a2e7cca9cfd72p-297 (49
identical bits after the round bit).
No longer maintained.

Towards a correctly-rounded and fast power function in binary64 arithmetic 5/31

CRLIBM (-2006)

Experimental, and only for rounding to nearest even.
Algorithm partially detailed in Lauter’s PhD thesis.
Wrong result for x=0x1.524ebae943097p+1 and y=0x1.ep-2, gives −5 instead of
0x1.93bd0cd47eb5fp+0 (64 identical bits after the round bit).
No longer maintained.

Towards a correctly-rounded and fast power function in binary64 arithmetic 6/31

Our contribution

an open-source implementation, integrated into CORE-MATH
covers all IEEE 754 rounding modes, not only to nearest-even
an extended paper with full proofs of the 1st phase
full details of the 2nd and 3rd phases with the code
performance: outperforms previous work, not far from incorrectly rounded math
libraries

In the Arith proceedings you find the 8-page short version, with detailed algorithms for
the 1st phase, lemmas and theorems, but without proofs.

On https://inria.hal.science/hal-04159652 you find the long version, with a
14-pages appendix containing detailed proofs. This version will be kept up-to-date
with further improvements.

Towards a correctly-rounded and fast power function in binary64 arithmetic 7/31

https://inria.hal.science/hal-04159652

Performance

Intel Core i7-8700 cycles with GCC 12.2.0, rounding to nearest-even:

GNU libc 2.36 MathLib LIBMCR CRLIBM this work
rec. throughput 43 123 256 211 66 (60)

latency 79 166 285 275 111 (99)

Towards a correctly-rounded and fast power function in binary64 arithmetic 8/31

How to compute x y?

Using xy = 2y log2 x (Markstein, Beebe) looks quite interesting, but the Taylor
expansions of log2(1 + t) and 2t at t = 0 have less simple coefficients.

We prefer to use xy = ey log x , with more complex argument reduction, but simpler
Taylor expansions.

Towards a correctly-rounded and fast power function in binary64 arithmetic 9/31

Exact and midpoint cases

xy is exact if exactly representable in binary64.

xy is midpoint if exactly representable with 54 bits (but not with 53).

Detecting and dealing with exact/midpoint cases is crucial.

Efficient algorithms from Lauter and Lefèvre (2009).

Towards a correctly-rounded and fast power function in binary64 arithmetic 10/31

Workflow

1. 1st phase computes double-double approximation; if rounding test succeeds,
return result

2. 2nd phase computes approximation with 128-bit arithmetic; if rounding test
succeeds, return result; otherwise, check for exact/midpoint cases

3. 3rd phase computes approximation with 256-bit arithmetic; if rounding test
succeeds, return result; otherwise, print error message

Towards a correctly-rounded and fast power function in binary64 arithmetic 11/31

Notations

We denote by ◦(a + b) or ◦(a · b) the correct rounding (with the current rounding
mode) of a + b and a · b respectively.

We denote by ◦(a · b + c) the correct rounding of a · b + c, which can be efficiently
computed with an FMA (fused-multiply-add) if available in hardware, or emulated in
software (__builtin_fma).

Towards a correctly-rounded and fast power function in binary64 arithmetic 12/31

FastTwoSum

Input: a, b ∈ F with a = 0 or |a| ≥ |b|
Output: h, ` such that h + ` approximates a + b

1: h← ◦(a + b)
2: t ← ◦(h − a) . always exact
3: `← ◦(b − t)

Theorem (Zimmermann, 2023)
Whatever the IEEE 754 rounding mode, in the absence of underflow/overflow, the
output h, ` of FastTwoSum satisfies

|h + `− (a + b)| ≤ 2−105|h|,

and if the exponents of a, b differ by at most 53, h + ` = a + b.
Towards a correctly-rounded and fast power function in binary64 arithmetic 13/31

FastSum

Input: a, bh, b` ∈ F with a = 0 or |a| ≥ |bh|
Output: h, ` such that h + ` approximates a + bh + b`

1: h, t ← FastTwoSum(a, bh)
2: `← ◦(t + b`)

Lemma
In no underflow nor overflow, the pair (h, `) computed by Algorithm FastSum satisfies∣∣h + `− (a + bh + b`)

∣∣ ≤ 2−105|h|+ ulp(`).

Towards a correctly-rounded and fast power function in binary64 arithmetic 14/31

Approximation of log(1 + z) around zero

Algorithm 1 Algorithm p_1

Input: z ∈ F, |z | ≤ 33 · 2−13

Output: ph + p` approximating log(1 + z)− z
1: wh,w` ← ExactMul(z , z)
2: t ← ◦(0x1.0001f0c80e8cep-3 · z + 0x1.2494526fd4a06p-3)
3: u ← ◦(0x1.55555553d1eb4p-3 · z + 0x1.999999981f535p-3)
4: v ← ◦(0x1.0000000000003p-2 · z + 0x1.5555555555558p-2)
5: u ← ◦(twh + u)
6: v ← ◦(uwh + v)
7: u ← ◦(vwh)
8: ph ← −0.5 · wh
9: p` ← ◦(uz − 0.5 · w`)

Towards a correctly-rounded and fast power function in binary64 arithmetic 15/31

Lemma
Given |z | ≤ 33 · 2−13 with z an integer multiple of 2−61, the double-double
approximation ph + p` to log(1 + z)− z returned by Algorithm p_1 satisfies

|ph + p` − (log(1 + z)− z)| < 2−75.492,

with |ph| < 2−16.9 and |p`| < 2−25.446. If z 6= 0, and assuming further |z | ≤ 32 · 2−13,
the relative error satisfies ∣∣∣∣z + ph + p`

log(1 + z) − 1
∣∣∣∣ < 2−67.441.

Proved using the Coq proof assistant (by Laurence Rideau and Laurent Théry).

Towards a correctly-rounded and fast power function in binary64 arithmetic 16/31

Approximation of log x

Algorithm 2 Algorithm log_1
Input: a binary64 value x ∈ [α,Ω]
Output: h + ` approximating log x

1: write x = t · 2e with t ∈ (1/
√
2,
√
2) and e ∈ Z

2: i ← b28tc . i integer, 181 ≤ i ≤ 362
3: r ← INVERSEi , `1, `2 ← LOGINVi
4: z ← ◦(rt − 1) . exact, |z | ≤ 33 · 2−13

5: th ← ◦(e LOG2H + `1)
6: t` ← ◦(e LOG2L + `2)
7: h, `← FastSum(th, z , t`)
8: ph, p` ← p_1(z)
9: h, `← FastSum(h, ph, ◦(`+ p`))

10: if e = 0 and |`| > 2−24|h| then h, `← FastTwoSum(h, `)

Towards a correctly-rounded and fast power function in binary64 arithmetic 17/31

Lemma
Given x ∈ [α,Ω], Algorithm log_1 computes (h, `) such that |`| ≤ 2−23.89|h|, and

|h + `− log x | ≤ εlog · | log x | (1)

with εlog = 2−73.527 if x 6∈ (1/
√
2,
√
2), and εlog = 2−67.0544 otherwise.

Proved using the Coq proof assistant (by Laurence Rideau and Laurent Théry).

Towards a correctly-rounded and fast power function in binary64 arithmetic 18/31

Multiplication by y

Input: a double-double value h + `, and a double y
Output: rh + r` approximating y(h + `)

1: rh, s ← ExactMul(y , h)
2: r` ← ◦(y`+ s)

Lemma
If x , h, ` are as in previous Lemma and if 2−969 ≤ |yh| ≤ 709.7827, then (rh, r`) satisfy
|rh| ∈ [2−970, 709.79], |r`| ≤ 2−14.4187, |r`/rh| ≤ 2−23.8899, |rh + r`| ≤ 709.79, and

|rh + r` − y log x | ≤ εmul

with εmul = 2−63.799 if x 6∈ (1/
√
2,
√
2), and εmul = 2−57.580 otherwise.

Towards a correctly-rounded and fast power function in binary64 arithmetic 19/31

Final exponentiation

See proceedings for details of Algorithm exp_1.

Lemma
In the case ρ1 ≤ rh ≤ ρ2, if |r`/rh| < 2−23.8899 and |r`| < 2−14.4187, then the value
eh + e` returned by Algorithm exp_1 satisfies∣∣∣∣ eh + e`

exp(rh + r`) − 1
∣∣∣∣ < 2−74.16.

Moreover, |e`/eh| ≤ 2−41.7.

Towards a correctly-rounded and fast power function in binary64 arithmetic 20/31

Main algorithm for 1st phase

Input: two binary64 numbers x , y with x > 0
Output: the correct rounding of xy , or FAIL

1: `h, `` ← log_1(x)
2: rh, r` ← mul_1(`h, ``, y)
3: eh, e` ← exp_1(rh, r`)
4: if

√
2/2 < x <

√
2 then ε← RU(2−57.579) else ε← RU(2−63.797)

5: u ← ◦(eh + ◦(e` − εeh)), v ← ◦(eh + ◦(e` + εeh))
6: if u = v then return u else return FAIL

Theorem
The value returned by Algorithm phase_1 (if not FAIL) is correctly rounded.

Towards a correctly-rounded and fast power function in binary64 arithmetic 21/31

Main achievements
Our algorithms work for all IEEE 754 rounding modes.

Heavy use of FMA (either in hardware or emulated).

Crucial usage of FastTwoSum, with error bound for directed rounding modes.

Hardest to round inputs are not known for pow: 3rd phase might return an error
message, but will not deliver any incorrectly-rounded result.

Code 2x to 4x faster than previous work.

All IEEE 754 specials cases are dealt with.

Very detailed proofs.

A major achievement since pow is the most difficult binary64 function.
Towards a correctly-rounded and fast power function in binary64 arithmetic 22/31

Further work

The algorithms and code can be improved further (and we work on it).

Formal proof of the 1st phase in progress, thanks to Laurence Rideau and Laurent
Théry, using the Coq proof assistant.

Simplify the formal proofs using tools presented by Paul Geneau de Lamarlière on
Monday.

Approach scales for double-extended and quadruple precision.

An important step towards requiring correct rounding in IEEE 754-2029?

Towards a correctly-rounded and fast power function in binary64 arithmetic 23/31

CORE-MATH timings

The following slides give reciprocal throughput and latency of CORE-MATH (commit
81d5ea0), GNU libc 2.37, the Intel math library with icx 2023.2.0 (with
-fp-model=strict -fno-fast-math), and LLVM libc (revision d099dbb).
Hardware: Intel Xeon Silver 4214.
Compiler (except for Intel math library): gcc 13.2.0.

Towards a correctly-rounded and fast power function in binary64 arithmetic 24/31

10

20

30

40

50

60

70 core-math
glibc
intel
llvm

ac
os

f
ac

os
hf

as
in

f
as

in
hf

at
an

f
at

an
2f

at
an

hf
cb

rtf
co

sf
co

sh
f

er
ff

er
fc

f
ex

pf
ex

p2
f

ex
pm

1f
hy

po
tf

lo
gf

lo
g1

0f
lo

g1
pf

lo
g2

f
po

wf sin
f

sin
hf

ta
nf

ta
nh

f

reciprocal throughput of C99 binary32 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 25/31

50

100

150

200

250

core-math
glibc
intel
llvm

ac
os

ac
os

h
as

in
as

in
h

at
an

at
an

h
cb

rt
co

s
co

sh er
f

er
fc

ex
p

ex
p2

ex
pm

1
hy

po
t

lo
g

lo
g1

0
lo

g1
p

lo
g2 po
w sin sin
h

ta
n

ta
nh

reciprocal throughput of C99 binary64 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 26/31

0

5

10

15

20

25

30

35

40
core-math

ac
os

pi
f

as
in

pi
f

at
an

2p
if

at
an

pi
f

co
sp

if
ex

p1
0f

ex
p1

0m
1f

ex
p2

m
1f

lo
g1

0p
1f

lo
g2

p1
f

rs
qr

tf
sin

pi
f

ta
np

if
co

sp
i

ex
p1

0
ex

p2
m

1
rs

qr
t

sin
pi

ta
np

i

reciprocal throughput of new C23 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 27/31

20

40

60

80

100

120

core-math
glibc
intel
llvm

ac
os

f
ac

os
hf

as
in

f
as

in
hf

at
an

f
at

an
2f

at
an

hf
cb

rtf
co

sf
co

sh
f

er
ff

er
fc

f
ex

pf
ex

p2
f

ex
pm

1f
hy

po
tf

lo
gf

lo
g1

0f
lo

g1
pf

lo
g2

f
po

wf sin
f

sin
hf

ta
nf

ta
nh

f

latency of C99 binary32 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 28/31

50

100

150

200

250

300

350 core-math
glibc
intel
llvm

ac
os

ac
os

h
as

in
as

in
h

at
an

at
an

h
cb

rt
co

s
co

sh er
f

er
fc

ex
p

ex
p2

ex
pm

1
hy

po
t

lo
g

lo
g1

0
lo

g1
p

lo
g2 po
w sin sin
h

ta
n

ta
nh

latency of C99 binary64 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 29/31

0

10

20

30

40

50

60

70

core-math

ac
os

pi
f

as
in

pi
f

at
an

2p
if

at
an

pi
f

co
sp

if
ex

p1
0f

ex
p1

0m
1f

ex
p2

m
1f

lo
g1

0p
1f

lo
g2

p1
f

rs
qr

tf
sin

pi
f

ta
np

if
co

sp
i

ex
p1

0
ex

p2
m

1
rs

qr
t

sin
pi

ta
np

i

latency of new C23 functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 30/31

0

10

20

30

40

50
core-math
glibc
intel
llvm

ac
os

f

as
in

f

at
an

hf

co
sf

er
fc

f

sin
f

ta
nh

f

ex
p

reciprocal throughput of selected functions

Towards a correctly-rounded and fast power function in binary64 arithmetic 31/31

