
Number Theory Down Under, Newcastle, September 23, 2016

Multiple-Precision Arithmetic:
from MP to MPFR
Paul Zimmermann

ANTS-7, Berlin, July 2006

From MP ...

The MP package

A Fortran Multiple-Precision Arithmetic Package, ACM
Transactions on Mathematical Software, Richard P. Brent, 1978.

November 1973: first working version (731101)

Version 770217: matches the TOMS publication.

1978: Augment interface added

1979: storage allocation improved, rounding options implemented,
dependance on Fortran REAL eliminated, added packed numbers

Main MP Features
base b, t digits, with b ≥ 2, t ≥ 2, 8b2 − 1 representable as a
single-precision integer

wordlength b
48 bits 222 = 4194304 or 106

36 bits 216 = 65536 or 104

32 bits 214 = 16384 or 104

24 bits 210 or 1000
18 bits 27 or 100
16 bits 26 or 10
12 bits 24 or 10

Assumption 8b2 − 1 representable as a single-precision integer:
storage waste of about 50%
Exponent in [−m,m], with 4m representable as a single-precision
integer

Internal representation

sign (0, +1, -1)︸ ︷︷ ︸
word 1

exponent (base b)︸ ︷︷ ︸
word 2

fraction︸ ︷︷ ︸
word 3

· · · fraction︸ ︷︷ ︸
word t + 2

The precision t in words is global for a given MP session, thus does
not need to be represented (idem for base b).

Example: representation of 17 with b = 210 and t = 2:

+1︸︷︷︸
word 1

0︸︷︷︸
word 2

17︸︷︷︸
word 3

0︸︷︷︸
word 4

The subroutines are machine independent and the precision is
arbitrary, subject to storage limitations

We have attempted to make it efficient at a high level by
implementing good algorithms

Compressed/packed numbers to avoid the storage waste of about
50% (at the expense of increased timings by about 1.5)

Rounding in MP

RNDRL = 0 means truncated (chopped) arithmetic

RNDRL = 1 means rounded (to nearest) arithmetic

RNDRL = 2 means round down (towards −∞)

RNDRL = 3 means round up (towards +∞)

Underflow and Overflow in MP

underflow: set to zero

overflow: fatal error

no Infinity, no Not-a-Number

Implemented functions

MPROOT for x−1/n

MPEXP1 for exp(x)− 1, MPEXP for exp(x)

MPLNS for log(1 + x), MPLN for log(x)

MPSIN, MPTAN, MPATAN, MPASIN,

MPPI for π, MPEUL for γ,

MPGAM for Γ(x),

MPBERN for the Bernoulli numbers

MPEI, MPERF, MPERFC

MPBESJ

The Augment Interface

(with J. A. Hooper and J. M. Yohe)

MULTIPLE X, Y, Z

...

X = Y + Z*EXP(X+1)/Y

Applications of MP

Knuth’s constants to 1000 decimal and 1100 octal places, Richard
P. Brent, Technical Report 47, Computer Centre, Australian
National University, 1975.

The constants were computed twice, once with base 10000 and
260 floating-point digits, and once with base 11701 and 250 digits
(10000260 = 101040, 11701250 ≈ 101017).

Future plans (from June 1981)

It is also impracticable to formally prove correctness of any
nontrivial MP routines using present theorem-proving techniques.

In the future we hope to implement rounding options for more MP
routines, and write a multiple-precision interval arithmetic package
which uses MP and takes advantage of the directed rounding
options.

A never-ending project is to implement multiple-precision versions
of ever more special functions, and to improve the efficiency of
those multiple-precision routines already implemented.

Visit to ANU, February 2007

Visit to ANU, February 2007

... to MPFR

Notations

MPFR uses GMP’s mpn layer for its internal representation

limb: a GMP machine word (usually 32 or 64 bits)

For simplicity we will assume the number of bits in a limb is 64 in
this talk.

Number Representation in MPFR
I precision p ≥ 1 (in bits)
I sign (-1 or +1)
I exponent (between Emin and Emax), also used to represent

special numbers (NaN, ±∞, ±0)
I significand (array of dp/64e limbs), only defined for regular

numbers (neither NaN, nor ±∞, nor ±0)

Most significant limbs/bits will be represented left in this talk.
Regular numbers are normalized: the most significant bit of the
most significant limb should be set.
Example : x = 17 with a precision of 10 bits is stored with a 6-bit
limb as

10︸︷︷︸
precision

+1︸︷︷︸
sign

5︸︷︷︸
exponent

100010︸ ︷︷ ︸
word 1

000000︸ ︷︷ ︸
word 0

Round and sticky bit

v = xxx ...yyy︸ ︷︷ ︸
m of p bits

r︸︷︷︸
round bit

sss...︸︷︷︸
sticky bit

The round bit r is the value of bit at position p + 1.

The sticky bit s is zero iff sss... is identically zero.

The round and sticky bits are enough to get correct rounding for
all rounding modes:

r s zero nearest away
0 0 m m m
0 1 m m m + 1
1 0 m m + (m mod 2) m + 1
1 1 m m + 1 m + 1

The mpfr_add function

The mpfr_add(a, b, c) function works as follows (a← b + c):
I first check for singular values (NaN,±Inf ,±0)

I if b and c have different signs, call mpfr_sub1
I if a, b, c have the same precision, call mpfr_add1sp
I otherwise call the generic code mpfr_add1 described in:

Vincent Lefèvre, The Generic Multiple-Precision
Floating-Point Addition With Exact Rounding (as in the
MPFR Library), 6th Conference on Real Numbers and
Computers 2004 - RNC 6, Nov 2004, Dagstuhl, Germany,
pp.135-145, 2004.

The mpfr_add1sp function

I if p < 64, call mpfr_add1sp1
I if 64 < p < 128, call mpfr_add1sp2
I else execute the generic addition code for same precision

Note: p = 64 and p = 128 will use the generic code, thus should
be avoided unless really needed.

The mpfr_add1sp1 function
Case 1, eb = ec :

b = 110100

c = 111000
ap[0] = MPFR_LIMB_HIGHBIT | ((bp[0] + cp[0]) >> 1);

e_a = e_b + 1;

rb = ap[0] & (MPFR_LIMB_ONE << (sh - 1));

ap[0] ^= rb;

sb = 0;

Since b and c are normalized, the most significant bits of bp[0]
and cp[0] are set.

Thus adding bp[0] and cp[0] will always produce a carry, and the
exponent of a will be eb + 1.

b = 110100

c = 111000
ap[0] = MPFR_LIMB_HIGHBIT | ((bp[0] + cp[0]) >> 1);

e_a = e_b + 1;

rb = ap[0] & (MPFR_LIMB_ONE << (sh - 1));

ap[0] ^= rb;

sb = 0;

The sum might have up to p + 1 bits, but since p < 64 (p < 6
here), it fits on 64 bits.

sh is the number 64− p of trailing bits, here 6− p = 2.

The round bit is the (p + 1)-th bit of the addition, the sticky bit is
always zero.

An overflow might happen, but no underflow.

The mpfr_sub function

The mpfr_sub(a, b, c) function works as follows (a← b − c):
I first check for singular values (NaN,±Inf ,±0)

I if b and c have different signs, call mpfr_add1
I if b and c have the same precision, call mpfr_sub1sp
I otherwise call the generic code mpfr_sub1

The mpfr_sub1sp function

I if p < 64, call mpfr_sub1sp1
I if 64 < p < 128, call mpfr_sub1sp2
I else execute the generic subtraction code for same precision

Note: p = 64 and p = 128 will use the generic code, thus should
be avoided unless really needed.

The mpfr_sub1sp1 function

• if the exponents differ, swap b and c so that eb > ec
• case 1: eb = ec
• case 2: eb > ec

Case 1, eb = ec :
b = 110100

c = 111000
subtract bp[0]− cp[0] and put the result in ap[0], which is
bp[0]− cp[0] mod 264

if ap[0] = 0, then the result is zero

if ap[0] > bp[0], then a borrow occurred thus |c| > |b|: change
ap[0] to −ap[0] and change the sign of a

otherwise no borrow occurred thus |c| < |b|

count the number of leading zeros in ap[0], shift ap[0] accordingly
and decrease the exponent

in that case both the round bit and the sticky bit are zero

An underflow might happen, no overflow since |a| ≤ max(|b|, |c|)

The mpfr_mul(a,b,c) function

a← ◦(b · c)

I if pa < 64 and pb, pc ≤ 64, call mpfr_mul_1
I if 64 < pa < 128 and 64 < pb, pc ≤ 128, call mpfr_mul_2
I else use the generic code

The mpfr_mul_1 function

a← ◦(b · c)

a: at most one limb (minus 1 bit); b, c: at most one limb

h · 264 + `← bp[0] · cp[0]

Since 263 ≤ bp[0], cp[0] < 264, we have 262 ≤ h

If h < 263, shift h, ` by 1 bit to the left, and decrease the exponent

The round bit is formed by the (p + 1)-th bit of h

The sticky bit is formed by the remaining bits of h, and those of `

Both underflow and overflow can happen

Warning: MPFR considers underflow after rounding (with an
infinite exponent range)

The mpfr_div(a,b,c) function

a← ◦(b/c)

I if pa < 64 and pb, pc ≤ 64, call mpfr_div_1
I if 64 < pa < 128 and 64 < pb, pc ≤ 128, call mpfr_div_2
I else use the generic code

The mpfr_div_1 function

a← ◦(b/c)

Assume pa < 64 and pb, pc ≤ 64

1. bp[0] ≥ cp[0]: one extra quotient bit
2. bp[0] < cp[0]: no extra quotient bit

Deal separately with the special case where the target precision is
less than 32, and the divisor cp[0] has at most 32 bits. Then a
single 64/32-bit division suffices. (Code used when dividing two
binary32 numbers.)

General case: perform a 128/64 integer division, calling GMP’s
udiv_qrnnd_preinv routine. This yields a quotient of 64 bits,
and a remainder, from which the round and sticky bit are deduced.

bp[0] · 264 = q · cp[0] + r

With �enable-gmp-internals, udiv_qrnnd_preinv uses GMP’s
mpn_invert_limb routine, which given 263 ≤ d < 264, returns
b(2128 − 1)/d − 264c.

i = b(2128 − 1)/cp[0]− 264c

q ≈ bp[0] + (i · bp[0]/264)

Without �enable-gmp-internals, we let d = d1232 + d0, and
perform two divisions by d1 using its pseudo-inverse
i = b(264 − 1)/d1c. This is slightly slower.

The mpfr_sqrt(r,u) function

r ← ◦(
√
u)

I if pr < 64 and pu < 64, call mpfr_sqrt1
I if 64 < pr < 128 and 64 < pu ≤ 128, call mpfr_sqrt2
I else use the generic code

The mpfr_sqrt1 function

Input: 263 ≤ u < 264 representing a p-bit number with p < 64
(thus its least significant bit is 0)

• if the exponent of u is odd, shift u by one bit to the right

Now 262 ≤ u < 264

• call mpn_sqrtrem2, a routine returning r and s such that

u · 264 = r2 + s with 0 ≤ s ≤ 2r

We have 263 ≤ r < 264 and 0 ≤ s < 265, thus s is represented by
one 64-bit word and one bit.

• deduce the round bit from r , and the sticky bit from s and the
last bits of r (if p < 63).

The mpfr_sqrtrem2 function

Input: u := u3 · 2192 + u2 · 2128 + u1 · 264 + u0 with 0 ≤ uj < 264

Output: r and s such that u = r2 + s with u < (r + 1)2.

GMP provides a mpn_sqrtrem function but it is slow.

mpfr_sqrtrem2 works as follows:

• using a bipartite table reading the leading 12 = 4 + 4 + 4 bits of
u, obtain a 17-bit approximation of u−1/2 with about 9 correct bits

u = xxxx︸︷︷︸
a

yyyy︸︷︷︸
b

zzzz︸︷︷︸
c

· · ·

x0 = T1[a, b] + T2[b, c]

• using Newton’s iteration for the inverse square root, obtain a
32-bit approximation of u−1/2 with about 19 correct bits

x1 ≈ x0 +
x
2 (1− ux2

0)

• using Newton’s iteration for the inverse square root, obtain a
41-bit approximation x of u−1/2 with about 38 correct bits,
ensuring x2 ≤ u−1/2

x2 ≈ x1 +
x
2 (1− ux2

1)

• use Karp-Markstein trick to deduce a 64-bit approximation y ′ of
u1/2

y ≈ ax2, y ′ ≈ y +
x2
2 (a − y2)

MPFR 3.1.4 against MPF (from GMP 6.1.1)

bavette.loria.fr, Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz,
running at 3.3Ghz, with GMP 6.1.1 and GCC 6.1.1.

MPFR 3.1.4
bits 24 53 113

mpfr_add 37 44 48
mpfr_sub 44 50 56
mpfr_mul 42 44 59
mpfr_div 115 116 131
mpfr_sqrt 152 153 244

MPF from GMP 6.1.1
limbs 24 53 113

mpfr_add 49 49 45
mpfr_sub 52 52 48
mpfr_mul 43 43 46
mpfr_div 81 81 146
mpfr_sqrt 236 234 339

Timings are in cycles.

MPFR 3.1.4 against MPFR 4.0-dev

MPFR 4.0-dev is configured with �enable-gmp-internals.

MPFR 3.1.4
bits 24 53 113

mpfr_add 37 44 48
mpfr_sub 44 50 56
mpfr_mul 42 44 59
mpfr_div 115 116 131
mpfr_sqrt 152 153 244

MPFR 4.0-dev
bits 24 53 113

mpfr_add 25 26 29
mpfr_sub 29 31 32
mpfr_mul 22 21 33
mpfr_div 48 57 87
mpfr_sqrt 48 72 128

Timings are in cycles.

MPFR 4.0-dev against MPF (from GMP 6.1.1)

MPFR is configured with �enable-gmp-internals.

MPFR 4.0-dev
bits 24 53 113

mpfr_add 25 26 29
mpfr_sub 29 31 32
mpfr_mul 22 21 33
mpfr_div 48 57 87
mpfr_sqrt 48 72 128

MPF from GMP 6.1.1
limbs 24 53 113

mpfr_add 49 49 45
mpfr_sub 52 52 48
mpfr_mul 43 43 46
mpfr_div 81 81 146
mpfr_sqrt 236 234 339

Timings are in cycles.

Visit to France, Ligne Maginot, April 2007

