
iRRAM/MPFR/MPC workshop, Dagstuhl, April 18, 2018

Recent and future developments
of GNU MPFR
Paul Zimmermann

The GNU MPFR library

• a software implementation of binary IEEE-754

• variable/arbitrary precision (up to the limits of your computer)

• each variable has its own precision: mpfr_init2 (a, 35)

• global user-defined exponent range (might be huge):
mpfr_set_emin (-123456789)

• mixed-precision operations: a← b − c where a has 35 bits, b
has 42 bits, c has 17 bits

• correctly rounded mathematical functions (exp, log, sin, cos, ...)
as in Section 9 of IEEE 754-2008

2

History

I 2000: first public version;
I 2008: MPFR is used by GCC 4.3.0 for constant folding:

double x = sin (3.14);

I 2009: MPFR becomes GNU MPFR;
I 2016: 4th developer meeting in Toulouse.
I Dec 2017: release 4.0.0
I mpfr.org/pub.html mentions 2 books, 27 PhD theses, 63

papers citing MPFR
I Apr 2018: iRRAM/MPFR/MPC developer meeting in

Dagstuhl

3

mpfr.org/pub.html

MPFR is used by SageMath

SageMath version 8.1, Release Date: 2017-12-07

Type "notebook()" for the browser-based notebook interface.

Type "help()" for help.

sage: x=1/7; a=10^-8; b=2^24

sage: RealIntervalField(24)(x+a*sin(b*x))

[0.142857119 .. 0.142857150]

4

Representation of MPFR numbers (mpfr_t)
I precision p ≥ 1 (in bits);
I sign (−1 or +1);
I exponent (between Emin and Emax), also used to represent

special numbers (NaN, ±∞, ±0);
I significand (array of dp/64e limbs), defined only for regular

numbers (neither NaN, nor ±∞ and ±0, which are singular
values).

The most significant bits are shown on the left.
Regular numbers are normalized: the most significant bit of the
most significant limb must be 1.
Example, x = 17 with a precision of 10 bits and limbs of 6 bits is
represented as follows:

10︸︷︷︸
precision

+1︸︷︷︸
sign

5︸︷︷︸
exponent

100010︸ ︷︷ ︸
limb 1

000000︸ ︷︷ ︸
limb 0

5

Major new features in MPFR 4

• major speedup for add, sub, mul, div, sqrt for 1 or 2 words (up to
3 words for add, sub, mul) when all operands have same precision

• partial support of MPFR_RNDF (faithful rounding)

• new functions mpfr_fmma and mpfr_fmms to compute ab + cd
and ab − cd

• complete rewrite of mpfr_sum

6

MPFR 3.1.5 compared to MPFR 4.0-dev

araignee.loria.fr, Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz,
with GMP 6.1.2 and GCC 6.3.0.
GMP and MPFR are configured with ��disable-shared.

MPFR 3.1.5
bits 53 113

mpfr_add 52 53
mpfr_sub 49 52
mpfr_mul 49 63
mpfr_sqr 74 79
mpfr_div 134 146
mpfr_sqrt 171 268

MPFR 4.0-dev
bits 53 113

mpfr_add 25 29
mpfr_sub 28 33
mpfr_mul 23 33
mpfr_sqr 21 29
mpfr_div 56 (64) 77 (102)
mpfr_sqrt 55 (56) 84 (133)

Timings are in cycles.

7

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 20 40 60 80 100 120 140 160 180 200

add315
add11553

8

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 20 40 60 80 100 120 140 160 180 200

sub315
sub11553

9

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 20 40 60 80 100 120 140 160 180 200

mul315
mul11553

10

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200

div315
div11553

11

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

sqrt315
sqrt11553

12

Faithful Rounding

MPFR 4 also includes a new rounding mode, RNDF, for faithful
rounding.

With RNDF, the result is either that for RNDD (toward −∞) or
RNDU (toward +∞), and might depend on the platform.

In particular, when the result is exact, only this exact value is
possible.

The ternary value gives no information.

13

What’s new in the development version?

• improved test coverage from 96.3% to 98.2% of code for x86_64
(and found a few bugs while doing this)

• replaced __float128 (GCC extension) by _Float128 (ISO/IEC
TS 18661)

• new function mpfr_get_str_ndigits, that gives the number of
digits output by mpfr_get_str when its digits argument is zero

14

Future plans

• formally prove the low-level code, in particular the special
algorithms (and code) added in MPFR 4 for 1 and 2 limbs

• improve the test coverage to at least 99% on 64-bit ABI, and
also on other platforms (32-bit ABI)

15

Small tasks
• implement a function mpfr_hash
• update the timings web page for MPFR 4.0.1
• implement new functions from the C++17 standard (see
http://en.cppreference.com/w/cpp/numeric/special_math):
assoc_laguerre, assoc_legendre, comp_ellint_1, comp_ellint_2,
comp_ellint_3, cyl_bessel_i, cyl_bessel_j, cyl_bessel_k,
cyl_neumann, ellint_1, ellint_2, ellint_3, hermite, legendre,
laguerre, sph_bessel, sph_legendre, sph_neumann
• implement mpfr_get_decimal128 and mpfr_set_decimal128
• implement mpfr_q_sub, mpfr_z_div, mpfr_q_div
• implement mpfr_pow_q and variants with two integers (native
or mpz)
• improve test coverage
• put here your favorite task

16

http://en.cppreference.com/w/cpp/numeric/special_math

