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The GNU MPFR library

• a software implementation of binary IEEE-754

• variable/arbitrary precision (up to the limits of your computer)

• each variable has its own precision: mpfr_init2 (a, 35)

• global user-defined exponent range (might be huge):
mpfr_set_emin (-123456789)

• mixed-precision operations: a← b − c where a has 35 bits, b
has 42 bits, c has 17 bits

• correctly rounded mathematical functions (exp, log, sin, cos, ...)
as in Section 9 of IEEE 754-2008
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History

I 2000: first public version;
I 2008: MPFR is used by GCC 4.3.0 for constant folding:

double x = sin (3.14);

I 2009: MPFR becomes GNU MPFR;
I 2016: 4th developer meeting in Toulouse.
I Dec 2017: release 4.0.0
I mpfr.org/pub.html mentions 2 books, 27 PhD theses, 63

papers citing MPFR
I Apr 2018: iRRAM/MPFR/MPC developer meeting in

Dagstuhl
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MPFR is used by SageMath

SageMath version 8.1, Release Date: 2017-12-07

Type "notebook()" for the browser-based notebook interface.

Type "help()" for help.

sage: x=1/7; a=10^-8; b=2^24

sage: RealIntervalField(24)(x+a*sin(b*x))

[0.142857119 .. 0.142857150]
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Representation of MPFR numbers (mpfr_t)
I precision p ≥ 1 (in bits);
I sign (−1 or +1);
I exponent (between Emin and Emax), also used to represent

special numbers (NaN, ±∞, ±0);
I significand (array of dp/64e limbs), defined only for regular

numbers (neither NaN, nor ±∞ and ±0, which are singular
values).

The most significant bits are shown on the left.
Regular numbers are normalized: the most significant bit of the
most significant limb must be 1.
Example, x = 17 with a precision of 10 bits and limbs of 6 bits is
represented as follows:

10︸︷︷︸
precision

+1︸︷︷︸
sign

5︸︷︷︸
exponent

100010︸ ︷︷ ︸
limb 1

000000︸ ︷︷ ︸
limb 0
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Major new features in MPFR 4

• major speedup for add, sub, mul, div, sqrt for 1 or 2 words (up to
3 words for add, sub, mul) when all operands have same precision

• partial support of MPFR_RNDF (faithful rounding)

• new functions mpfr_fmma and mpfr_fmms to compute ab + cd
and ab − cd

• complete rewrite of mpfr_sum
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MPFR 3.1.5 compared to MPFR 4.0-dev

araignee.loria.fr, Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz,
with GMP 6.1.2 and GCC 6.3.0.
GMP and MPFR are configured with ��disable-shared.

MPFR 3.1.5
bits 53 113

mpfr_add 52 53
mpfr_sub 49 52
mpfr_mul 49 63
mpfr_sqr 74 79
mpfr_div 134 146
mpfr_sqrt 171 268

MPFR 4.0-dev
bits 53 113

mpfr_add 25 29
mpfr_sub 28 33
mpfr_mul 23 33
mpfr_sqr 21 29
mpfr_div 56 (64) 77 (102)
mpfr_sqrt 55 (56) 84 (133)

Timings are in cycles.
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Faithful Rounding

MPFR 4 also includes a new rounding mode, RNDF, for faithful
rounding.

With RNDF, the result is either that for RNDD (toward −∞) or
RNDU (toward +∞), and might depend on the platform.

In particular, when the result is exact, only this exact value is
possible.

The ternary value gives no information.
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What’s new in the development version?

• improved test coverage from 96.3% to 98.2% of code for x86_64
(and found a few bugs while doing this)

• replaced __float128 (GCC extension) by _Float128 (ISO/IEC
TS 18661)

• new function mpfr_get_str_ndigits, that gives the number of
digits output by mpfr_get_str when its digits argument is zero
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Future plans

• formally prove the low-level code, in particular the special
algorithms (and code) added in MPFR 4 for 1 and 2 limbs

• improve the test coverage to at least 99% on 64-bit ABI, and
also on other platforms (32-bit ABI)
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Small tasks
• implement a function mpfr_hash
• update the timings web page for MPFR 4.0.1
• implement new functions from the C++17 standard (see
http://en.cppreference.com/w/cpp/numeric/special_math):
assoc_laguerre, assoc_legendre, comp_ellint_1, comp_ellint_2,
comp_ellint_3, cyl_bessel_i, cyl_bessel_j, cyl_bessel_k,
cyl_neumann, ellint_1, ellint_2, ellint_3, hermite, legendre,
laguerre, sph_bessel, sph_legendre, sph_neumann
• implement mpfr_get_decimal128 and mpfr_set_decimal128
• implement mpfr_q_sub, mpfr_z_div, mpfr_q_div
• implement mpfr_pow_q and variants with two integers (native
or mpz)
• improve test coverage
• put here your favorite task
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