4

& informatics g#”mathematics
R

Micro-GMP
(work in progress)

Paul Zimmermann

The GNU MP library

Created by Torbjorn Granlund.

First release GMP 1.3.2 in 1993.

GMP 2.0.2 in 1996, GMP 3.0 in 2000.

GMP 4.0 in 2001, GMP 5.0.0 in 2010.

GMP 6.0.0a in 2014, latest version is 6.1.2 (December 2016).
Now a standard. Contains several layers: mpn (internal functions),

mpz (integers), mpq (rational numbers), mpf (floating-point
numbers).

Mini-GMP

Written by Niels Méller (one of the GMP developers).

A small implementation of the basic GMP routines, in just two
files: mini-gmp.h and mini-gmp.c.

Appeared in GMP 5.1.0 (2013).
Only the mpn and mpz layers.
Only schoolbook O(n?) algorithms.

Used to bootstrap GMP.

Using MPFR with Mini-GMP

With revision 13276:

$./configure --with-mini-gmp=/tmp/gmp-6.1.2/mini-gmp

$ make

$ make check
PASS: 173
SKIP: 10

FAIL: O

Tests skipped: mpf_compat, mpfr_compat, tfprintf, tget_£f,
tget_q, tgmpop, tprintf, tset_f, tset_q, tsprintf.

Limb

A limb is a word in the GMP language.

A GMP multiple-precision number is stored in n limbs:

a=ao+aff+ - +ap18""

In Mini-GMP, a limb is defined as unsigned long.

Generic multiple-precision bugs

A generic bug is a bug in a multiple-precision algorithm that does
not depend on the limb size.

Example: Niels Méller recently found a generic bug in Algorithm
SvobodaDivision from our book Modern Computer Arithmetic

How to find generic bugs?
1. Hoping to get lucky...

2. Generating inputs with GMP's mpz_random?2 function:

void mpz_random2 (mpz_t ROP, mp_size_t MAX_SIZE)
Generate a random integer of at most MAX_SIZE limbs, with
long strings of zeros and ones in the binary representation.
Useful for testing functions and algorithms, since this kind of
random numbers have proven to be more likely to trigger
corner-case bugs.

3. Forcing a small limb size.

Micro-GMP

A modified version of Mini-GMP that enables it to work with
32-bit, 16-bit, or even 8-bit limbs.

Motivations:
e exhaustive test of the MPFR low-level routines
e exhaustive test of cryptographic libraries?

How?

1. define mp_limb_t as uint32_t, uint16_t or uint8_t

2. fix the issues, until make check from both Mini-GMP and
MPFR do pass

Difficulties

e GMP (and Mini-GMP) assume an unsigned long fits in a limb
e 27 functions from mini-gmp.c need to be modified

e even the test code of Mini-GMP had to be patched

e we also had to adapt MPFR to Micro-GMP

e need additional casts for 16- and 8-bit limbs (next slide)

$ cat e.c
#include <stdio.h>
#include <stdint.h>

int main()

{
uintl6_t x = 61270;

printf (""x = %u\n", "x);
printf ("x << 10 = %u\n", x << 10);
}

$ gcc e.c

$./a.out

“x = 4294906025

x << 10 = 62740480

10

Using Micro-GMP 16

$ cd /tmp
wget http://www.loria.fr/~zimmerma/16.tar.gz
tar xf 16.tar.gz

©%H &hH

tar xf gmp-6.1.2.tar.bz2
cd gmp-6.1.2/mini-gmp

cp /tmp/16/mini-gmp.h .
cp /tmp/16/mini-gmp.c .
cd tests

patch -i /tmp/16/patch
patching file t-div.c

$ make check

©h €H H H P P

One test (t-div) still fails, needs to investigate.

11

Using Micro-GMP 16 with MPFR

$./configure --with-mini-gmp=/tmp/16
checking for GMP_NUMB_BITS... 16 bits (from mini-gmp.h)
$ make

$ make check

[tversion] GMP_NUMB_BITS = 16, sizeof(mp_limb_t) = 2

12

Using Micro-GMP 8 with MPFR

$ cd /tmp
$ wget http://www.loria.fr/~zimmerma/8.tar.gz
$ tar xf 8.tar.gz

$./configure --with-mini-gmp=/tmp/8
checking for GMP_NUMB_BITS... 8 bits (from mini-gmp.h)
$ make

$ make check

[tversion] GMP_NUMB_BITS = 8, sizeof(mp_limb_t) = 1

