An Implementation of Orrick’s Algorithm

Paul Zimmermann
(with J.-a. Osborn, R. P. Brent and W. Orrick)

\ WINRIA

herche NANCY - GRAND-EST

ANU
May 14, 2010
Supported by ANU and ANU-INRIA associate team
Algorithms, Numbers, Computers

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Reference: The maximal {—1, 1}-determinant of order 15, Will
Orrick, Metrika (2005), extended version on
arXiv:math/0401179v1.

Brute force approach:
@ Stage 1: Find a candidate Gram matrix M (this talk).
@ Stage 2: Try to decompose M into RRT or RTR (RPB’s
talk).

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Candidate Gram matrix

© must be symmetric and positive definite

QO Mj;=n

Q Mjj;=nmod4fori#j, [Mjj| <n-2

Q det(M) =d?

9 d> dmin

Remark: since d has a factor 2"~1 we often omit this factor.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Orrick’s Algorithm (sketch)

1. start from the sub-matrix M = (n)
2. at each step, for each possible matrix M,_; of orderr — 1,
and each admissible vector f, construct the matrix

M_, f
Mr = (frT n >
3. ifr =n, check detM; = d? > d2,, and check M, is
lexicographically maximal. If yes print the candidate matrix.
4. ifr < n, evaluate
- My v

| _‘ vl ‘
for each possible vector ~, until we find a large enough d. If no
good d is found, M; is discarded. Otherwise continue.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Lexicographically maximal matrix

Lexicographically maximal matrix:

11 3 3
3 11 -1
3 -1 11

Equivalent non-lexicographically maximal matrix:

11 3 -1
3 11 3
-1 3 11

Discarding non-lexicographically maximal sub-matrices is
crucial (especially at small depth r < n).
But it might be expensive: up to n! permutations to try!

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Block structure

11 3 3

3 11 -1

3 -1 11
11 3
3 11

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

In a given block, the largest (absolute) non-diagonal element
must appear in (2, 1) position:

11 -9 3

-9 11 -1

3 -1 11
11 7
7 11

Also, that largest non-diagonal element cannot increase from
one block to the next one.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

The following matrix is lexicographically maximal:

11 -9

-9 11
11 7 3
7 11 -1
3 -1 11

The following is not:

11 -9

-9 11
11 -9 3
-9 11 -1
3 -1 11

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Step 4

Step 4 implements the theorem of Moyssiadis and Kounias:

Theorem

D B
BT A
order m, with |M; ;| > ¢, where D, is a square matrix of order r,
A; i = n, and the columns of B are taken from some set I', with
|Bij| > c. Then

LetM = be a symmetric, positive definite matrix of

\
A/~
~_

detM < (n —¢)™ " 1[(n — c)detD; + (m — r)max(0, d)].

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Vectors f in step 2

Due to the lexicographic condition, an appended vector f
cannot have an element larger than the previous one:

11 7 -9
7 11 -1
-9 -1 11

If f has only minimal elements, we start a new block:

11 7 -1
7 11 -1
-1 -1 11

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Our C program algo2.c is about 2000 lines long:
@ rank-1 updates for the determinants and inverse matrices

@ uses the GMP library to avoid rounding errors in
determinants and inverse matrices (except in Step 4, but
uses a priori rigorous bound of the rounding error)

@ uses integer arithmetic in the bound computation to avoid
rounding errors

@ compute equivalent classes where two rows/columns are
equivalent if permuting them does not change the
(sub)matrix

@ for the IsLexMax test, first try a transposition between two
rows/columns, then uses equivalent classes, and try up to
50000 permutations

@ we did not implement a full IsLexMax test, thus the
program may return two equivalent matrices (but does not
miss matrices, up to bugs)

@ implements Will's new bound for n = 3 mod 4

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

patate% time ./algo2 15 418037760

#1: det’(1/2)/2°14=26244 641ms:
#2: det’(1/2)/2°14=26244 641ms:
#3: det’(1/2)/2°14=25515 6143ms:
#4: det’(1/2)/2°14=25515 9963ms:

Total cputime = 25533ms (det=15523ms (dbl=9066ms), IsLex Max=4289ms)

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

26244 641ms:

#1: detA(1/2)/2”14

An Implementation of Orrick’s Algorithm

e T T T T - B

e I I R I T B B s e S
_l _! _1 -1 -l _l _! _1 _1 -1 -1 _1 ' ' 5
Add A A A A A A A A A o 5
_l _l _! _7 _! _l _! _! _7 _! -! _!3 ﬁ 1—!
A g A A A A A A A A A T
_1 _1 _1 -1 -v. _1 _v. _1 _1 -l. -v. _15 3 L
dddddddd A0
_! _! _7 -1 -J _! _! _l _1 !1_.1ﬂ|__1

111

Mmoo
1111113351 111

1111111
111111__3531__11111
I I I I I — :

ol K32
1113351 111111

-1,-1
-1,-1
-1,-1
-1,-1
-1,-1
-1,-1
-1,-1
-1,-1
-1,-1
. 3,
15
3

- TelvR2)
3351 111111111

1111111111111
353.

111111111111

533111111111111

[[[[[[[[[[[[[[[

=
2
(o]
o
=
3
€
o
o
[aN
o
£
15
Qo
[
(e}
s
-
F=
g
c
[=
IS
£
9]
£
E
N
=]
3
&

153 3
3153
3 315

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick)

153 3
3153
3 315

153 3
3153
3 315

153 3
3153
3 315

153
315
15

An Implementation of Orrick’s Algorithm

For n = 15, dmin = 25515 = 105 - 3%, our C program finds 4
candidate matrices in about 26 seconds.

In 2004, using Mathematica, Will Orrick needed 7 hours.

The speedup is about 1000.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

n = 15: statistics

r=2:

1l

[uny
N = O

- = = = = = = = =

-
|

Total

HHHFHFHFFEHFFEHFEHFFEHHFR

calls

: calls
: calls

calls
calls
calls
calls

: calls
. calls
. calls
: calls
r=13:
r=14:

calls
calls

number of traversed nodes: Step 2=63249, Step 4=5924
det(M)>0 in Step 4: 592496 nodes

old test passed in Step 4: 87808 nodes

Will's improved bound excluded 3032/3076 nodes

Det. tests 2233, square tests = 4/199 (2.01%)
Step 4 calls 592496, aver. len 84.19, aver. comp. 76.12

7, failures 3, aver. len 49.00, aver. comp. 21.57
30, failures 8, aver. len 43.33, aver. comp. 16.5
228, failures 109, aver. len 85.52, aver. comp. 5
1603, failures 994, aver. len 110.56, aver. comp
8068, failures 5419, aver. len 127.02, aver. com
39564, failures 30371, aver. len 149.42, aver. c
131475, failures 112224, aver. len 154.11, aver

188712, failures 165758, aver. len 84.15, aver.

133090, failures 116720, aver. len 39.49, aver

58064, failures 51094, aver. len 18.13, aver. c
18042, failures 13649, aver. len 11.53, aver. c
7779, failures 4057, aver. len 7.22, aver. comp
5834, failures 4282, aver. len 5.76, aver. comp

7

3.18

. 79.91

p. 92.63
omp. 121.34

. comp. 139.21

comp. 78.94

. comp. 37.44

omp. 16.85
omp. 10.18
. 5.08
. 4.70

96

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orri

’s Algorithm

Ehlich’'s bound is ~ 854 - 45.

Tried 833 - 4%, found 9 candidate Gram matrices (computation
done by Richard using 50 parallel jobs in about 900 hours).

More results in RPB'’s talk.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Ehlich’s bound is =~ 45506 - 55.
Partial search on 45000 - 58, found no matrix so far.

Richard started a parallel search on 42411 - 5% (where one
decomposable matrix is known) found 278 matrices after 130
hours.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Ehlich’s bound is ~ 564 - 611,
Partial search on 560 - 611, found no matrix so far.

546 - 611: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 330 - 712: RPB found 5962 matrices in 542
hours (wall clock time).

329 . 712: RPB found 9587 matrices in 2800 hours (incomplete
search).

320 - 712: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

n =233

Complete search on 471 - 84: RPB found 9054 matrices.

464 - 81%: RPB found 86279 matrices (incomplete search,
estimated 50% done).

441 - 8'%: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 648 - 96: found 807 matrices in 78 hours.

More results in RPB'’s talk.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 99 - 1121 found 1495 matrices in 335
hours.

89 - 1121: new record from Will (August 2009).

83 -112%: old record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 114 - 1223: found 168 matrices.

96 - 1223: current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 129 - 13%°: found 220 matrices.

105 - 1325; current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Complete search on 145 - 14%7: found 128 matrices.
142 - 14?7 conjectured maxdet.

133 - 1427: current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

How to speed-up the search?

@ run the search in parallel: already tried (RPB). We could
however implement a checkpoint mechanism.

@ if only one solution is enough, we could try a randomized
search (works well for the decomposition). At each node of
the search tree, go down in a random branch. At the
bottom of the tree, do backtracking.

@ search only for matrices with bounded block size (already
implemented).

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Bounded block-size for n = 15

Using dmin = 105 - 3°:

No bound: 4 matrices in 25.5s.
Bound 3: 2 matrices in 0.018s (both 108 - 3°).
Bound 4: 3 matrices in 0.156s.
Bound 5: 3 matrices in 0.799s.
Bound 6: 4 matrices in 3.183s.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Bounded block-size forn = 19

Using dmin = 833 - 46:

No bound: 9 matrices in 188 hours.
Bound 4: 3 matrices in 3.2s.

Bound 5: 4 matrices in 41s.

Bound 6: 6 matrices in 513s.
Bound 7: > 7 matrices in > 800s.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

Bounded block-size for n = 57

Using dmin = 142 - 14?7 (conjectured maxdet):

Bound 2: 2 matrices in 12s (144.50 and 142.02).
Bound 3: 17 matrices in 53 minutes.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) | An Implementation of Orrick’s Algorithm

