
An Implementation of Orrick’s Algorithm

Paul Zimmermann
(with J.-a. Osborn, R. P. Brent and W. Orrick)

ANU
May 14, 2010

Supported by ANU and ANU-INRIA associate team
Algorithms, Numbers, Computers

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Reference: The maximal {−1, 1}-determinant of order 15, Will
Orrick, Metrika (2005), extended version on
arXiv:math/0401179v1.

Brute force approach:

Stage 1: Find a candidate Gram matrix M (this talk).

Stage 2: Try to decompose M into RRT or RT R (RPB’s
talk).

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Candidate Gram matrix

1 must be symmetric and positive definite
2 Mi,i = n
3 Mi,j ≡ n mod 4 for i 6= j , |Mi,j | ≤ n − 2
4 det(M) = d2

5 d ≥ dmin

Remark: since d has a factor 2n−1 we often omit this factor.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Orrick’s Algorithm (sketch)

1. start from the sub-matrix M = (n)
2. at each step, for each possible matrix Mr−1 of order r − 1,
and each admissible vector f , construct the matrix

Mr =

(

Mr−1 f
f T n

)

3. if r = n, check detMr = d2 ≥ d2
min and check Mr is

lexicographically maximal. If yes print the candidate matrix.
4. if r < n, evaluate

d =

∣

∣

∣

∣

Mr γ

γT 1

∣

∣

∣

∣

for each possible vector γ, until we find a large enough d . If no
good d is found, Mr is discarded. Otherwise continue.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Lexicographically maximal matrix

Lexicographically maximal matrix:




11 3 3
3 11 −1
3 −1 11





Equivalent non-lexicographically maximal matrix:




11 3 −1
3 11 3
−1 3 11





Discarding non-lexicographically maximal sub-matrices is
crucial (especially at small depth r < n).
But it might be expensive: up to n! permutations to try!

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Block structure













11 3 3 −1 −1
3 11 −1 −1 −1
3 −1 11 −1 −1
−1 −1 −1 11 3
−1 −1 −1 3 11

























11 3 3
3 11 −1
3 −1 11

11 3
3 11













Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

In a given block, the largest (absolute) non-diagonal element
must appear in (2, 1) position:













11 −9 3
−9 11 −1
3 −1 11

11 7
7 11













Also, that largest non-diagonal element cannot increase from
one block to the next one.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

The following matrix is lexicographically maximal:













11 −9
−9 11

11 7 3
7 11 −1
3 −1 11













The following is not:













11 −9
−9 11

11 −9 3
−9 11 −1
3 −1 11













Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Step 4

Step 4 implements the theorem of Moyssiadis and Kounias:

Theorem

Let M =

(

Dr B
BT A

)

be a symmetric, positive definite matrix of

order m, with |Mi,j | ≥ c, where Dr is a square matrix of order r ,
Ai,i = n, and the columns of B are taken from some set Γ, with
|Bi,j | ≥ c. Then

detM ≤ (n − c)m−r−1[(n − c)detDr + (m − r)max(0, d)].

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Vectors f in step 2

Due to the lexicographic condition, an appended vector f
cannot have an element larger than the previous one:





11 7 −9
7 11 −1
−9 −1 11





If f has only minimal elements, we start a new block:




11 7 −1
7 11 −1
−1 −1 11





Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Our C program algo2.c is about 2000 lines long:

rank-1 updates for the determinants and inverse matrices

uses the GMP library to avoid rounding errors in
determinants and inverse matrices (except in Step 4, but
uses a priori rigorous bound of the rounding error)

uses integer arithmetic in the bound computation to avoid
rounding errors

compute equivalent classes where two rows/columns are
equivalent if permuting them does not change the
(sub)matrix

for the IsLexMax test, first try a transposition between two
rows/columns, then uses equivalent classes, and try up to
50000 permutations

we did not implement a full IsLexMax test, thus the
program may return two equivalent matrices (but does not
miss matrices, up to bugs)

implements Will’s new bound for n = 3 mod 4

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 15

patate% time ./algo2 15 418037760
...
#1: detˆ(1/2)/2ˆ14=26244 641ms:
#2: detˆ(1/2)/2ˆ14=26244 641ms:
#3: detˆ(1/2)/2ˆ14=25515 6143ms:
#4: detˆ(1/2)/2ˆ14=25515 9963ms:
...
Total cputime = 25533ms (det=15523ms (dbl=9066ms), IsLex Max=4289ms)

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

#1: detˆ(1/2)/2ˆ14=26244 641ms:
[15, 3, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[3,15, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[3, 3,15,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,15, 3, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[-1,-1,-1, 3,15, 3,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[-1,-1,-1, 3, 3,15,-1,-1,-1,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,15, 3, 3,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1, 3,15, 3,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1, 3, 3,15,-1,-1,-1,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1,15, 3, 3,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1, 3,15, 3,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1, 3, 3,15,-1,-1,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,15, 3,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 3,15,-1],
[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,15]

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm























































15 3 3
3 15 3
3 3 15

15 3 3
3 15 3
3 3 15

15 3 3
3 15 3
3 3 15

15 3 3
3 15 3
3 3 15

15 3
3 15

15























































Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

For n = 15, dmin = 25515 = 105 · 35, our C program finds 4
candidate matrices in about 26 seconds.

In 2004, using Mathematica, Will Orrick needed 7 hours.

The speedup is about 1000.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 15: statistics

Det. tests 2233, square tests = 4/199 (2.01%)
Step 4 calls 592496, aver. len 84.19, aver. comp. 76.12
r=2: calls 7, failures 3, aver. len 49.00, aver. comp. 21.57
r=3: calls 30, failures 8, aver. len 43.33, aver. comp. 16.5 7
r=4: calls 228, failures 109, aver. len 85.52, aver. comp. 5 3.18
r=5: calls 1603, failures 994, aver. len 110.56, aver. comp . 79.91
r=6: calls 8068, failures 5419, aver. len 127.02, aver. com p. 92.63
r=7: calls 39564, failures 30371, aver. len 149.42, aver. c omp. 121.34
r=8: calls 131475, failures 112224, aver. len 154.11, aver . comp. 139.21
r=9: calls 188712, failures 165758, aver. len 84.15, aver. comp. 78.94
r=10: calls 133090, failures 116720, aver. len 39.49, aver . comp. 37.44
r=11: calls 58064, failures 51094, aver. len 18.13, aver. c omp. 16.85
r=12: calls 18042, failures 13649, aver. len 11.53, aver. c omp. 10.18
r=13: calls 7779, failures 4057, aver. len 7.22, aver. comp . 5.08
r=14: calls 5834, failures 4282, aver. len 5.76, aver. comp . 4.70
Total number of traversed nodes: Step 2=63249, Step 4=5924 96
det(M)>0 in Step 4: 592496 nodes
old test passed in Step 4: 87808 nodes
Will’s improved bound excluded 3032/3076 nodes

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 19

Ehlich’s bound is ≈ 854 · 46.

Tried 833 · 46, found 9 candidate Gram matrices (computation
done by Richard using 50 parallel jobs in about 900 hours).

More results in RPB’s talk.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 23

Ehlich’s bound is ≈ 45506 · 56.

Partial search on 45000 · 56, found no matrix so far.

Richard started a parallel search on 42411 · 56 (where one
decomposable matrix is known) found 278 matrices after 130
hours.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 27

Ehlich’s bound is ≈ 564 · 611.

Partial search on 560 · 611, found no matrix so far.

546 · 611: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 29

Complete search on 330 · 712: RPB found 5962 matrices in 542
hours (wall clock time).

329 · 712: RPB found 9587 matrices in 2800 hours (incomplete
search).

320 · 712: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 33

Complete search on 471 · 814: RPB found 9054 matrices.

464 · 814: RPB found 86279 matrices (incomplete search,
estimated 50% done).

441 · 814: one decomposable matrix known.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 37

Complete search on 648 · 916: found 807 matrices in 78 hours.

More results in RPB’s talk.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 45

Complete search on 99 · 1121: found 1495 matrices in 335
hours.

89 · 1121: new record from Will (August 2009).

83 · 1121: old record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 49

Complete search on 114 · 1223: found 168 matrices.

96 · 1223: current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 53

Complete search on 129 · 1325: found 220 matrices.

105 · 1325: current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

n = 57

Complete search on 145 · 1427: found 128 matrices.

142 · 1427: conjectured maxdet.

133 · 1427: current record.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

How to speed-up the search?

run the search in parallel: already tried (RPB). We could
however implement a checkpoint mechanism.

if only one solution is enough, we could try a randomized
search (works well for the decomposition). At each node of
the search tree, go down in a random branch. At the
bottom of the tree, do backtracking.

search only for matrices with bounded block size (already
implemented).

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Bounded block-size for n = 15

Using dmin = 105 · 35:

No bound: 4 matrices in 25.5s.
Bound 3: 2 matrices in 0.018s (both 108 · 35).
Bound 4: 3 matrices in 0.156s.
Bound 5: 3 matrices in 0.799s.
Bound 6: 4 matrices in 3.183s.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Bounded block-size for n = 19

Using dmin = 833 · 46:

No bound: 9 matrices in 188 hours.
Bound 4: 3 matrices in 3.2s.
Bound 5: 4 matrices in 41s.
Bound 6: 6 matrices in 513s.
Bound 7: ≥ 7 matrices in ≥ 800s.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

Bounded block-size for n = 57

Using dmin = 142 · 1427 (conjectured maxdet):

Bound 2: 2 matrices in 12s (144.50 and 142.02).
Bound 3: 17 matrices in 53 minutes.

Paul Zimmermann (with J.-a. Osborn, R. P. Brent and W. Orrick) An Implementation of Orrick’s Algorithm

