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Notations

• t-digit base β f-p arithmetic

• no underflow/overflow

• all roundings to nearest (even)

◦(x) is the rounding to nearest of x

a⊕ b = ◦(a + b), a⊗ b = ◦(a · b)

ulp(x) is the “unit in last place” of x:

βt−1ulp(x) ≤ |x| < βtulp(x)
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Complex Multiplication

z0 = a0 + b0i, z1 = a1 + b1i

z0z1 = (a0a1 − b0b1) + (a0b1 + b0a1)i

z2 = ((a0 ⊗ a1) 	 (b0 ⊗ b1)) + ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i

What is the largest relative error?

|z2 − z0z1|
|z0z1|
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Plan

• previous work

• proof of the
√

5 bound

• worst-cases for base β = 2

• future work

References:

Rapid multiplication modulo the sum and difference of

highly composite numbers, C. Percival, Math. of Comp.,

2003.

Error bounds on complex floating-point multiplication,

R. Brent, C. Percival, P. Z., submitted to Math. of

Comp., 2005, 12 pages.
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Higham’s Bound

N. J. Higham, Accuracy and Stability of Numerical

Algorithms, Second Edition, SIAM, 2002.

|z2 − z0z1| ≤ ε
√

8|z0z1|

where ε = 1

2
ulp(1) = 1

2
β1−t.
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Higham’s Bound (sketch)

|I(z2 − z0z1)| ≤ 2ε · (a0b1 + b0a1)

|R(z2 − z0z1)| ≤ 2ε · (a0a1) + O(ε2)

√
R2 + I2 ≤ ε

√

4(a0a1)2 + 4(a0b1 + b0a1)2 + O(ε2)

≤ ε
√

8(a0a1 − b0b1)2 + 8(a0b1 + b0a1)2 + O(ε2)
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A Maple Proof

> e := 8*(a0*b1+a1*b0)^2 + 8*(a0*a1-b0*b1)^2

- 4*(a0*b1+a1*b0)^2 - 4*(a0*a1)^2:

> expand(e);

2 2 2 2 2 2

4 a0 b1 - 8 a0 b1 a1 b0 + 4 a1 b0 + 4 a0 a1

2 2

+ 8 b0 b1

This is:

4(a0b1 − a1b0)
2 + 4a2

0a
2
1 + 8b2

0b
2
1
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A 10-line but Wrong Proof

[. . . ] we observe that if 2b0b1 ≥ a0a1 there is no

error introduced by the subtraction [6]; further, if

2b0b1 < a0a1 then the total error introduced in

computing b0b1 and performing the subtraction is

bounded by ε(a0a1 − b0b1).

β = 2, t = 5, z0 = 28 + 17i, z1 = 31 + 18i

Total error on b0b1 and subtraction: 16 − (−2) = 18

ε(a0a1 − b0b1) = 17.5625
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Our Main Result

Theorem 1. Let z0 = a0 + b0i and z1 = a1 + b1i, with

a0, b0, a1, b1 floating-point values with t-digit base-β

significands, and let

z2 = ((a0 ⊗ a1) 	 (b0 ⊗ b1)) + ((a0 ⊗ b1) ⊕ (b0 ⊗ a1))i

be computed. Providing that no overflow or underflow

occur, no denormal values are produced, arithmetic

results are correctly rounded to a nearest representable

value, z0z1 6= 0, and ε ≤ 2−5, the relative error

|z2(z0z1)
−1 − 1|

is less than ε
√

5 = 1

2
β1−t

√
5.
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Symmetries

Let R(a0, b0, a1, b1) := (a0 ⊗ a1) 	 (b0 ⊗ b1) and

I(a0, b0, a1, b1) := (a0 ⊗ b1) ⊕ (b0 ⊗ a1).

The change z0 → z0i gives (a0, b0) → (−b0, a0), and

R → −I, I → R, thus the relative error on z2 is

unchanged.
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i^3*z0

i^2*z0

i*z0

z0

–10

–8

–6

–4

–2

0

2

4

6

8

10

–10 –8 –6 –4 –2 2 4 6 8 10

The same holds for z1 → z1i. We can thus assume z0 and

z1 in the 1st quadrant:

a0, b0, a1, b1 ≥ 0.
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Similarly, (z0, z1) → (iz̄0, iz̄1) gives R → −R, I → I.

z0

i*conj(z1)

z1

i*conj(z0)

0

2

4

6

8

10

2 4 6 8 10

We can thus assume z0z1 is in the 1st quadrant:

b0b1 ≤ a0a1
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By exchanging z0 and z1, we can assume

b0a1 ≤ a0b1

Then by z0 → z0 · 2j and z1 → z1 · 2k, we can assume

1

2
≤ a0 < 1,

1

2
≤ a0a1 < 1.

In the sequel, we assume all those inequalities hold.
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z1
z0*z1

z0

0
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0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2
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Proof of Theorem 1 (sketch)

(1) bound on the imaginary part: two cases (I1, I2)

|I(z2 − z0z1)| ≤ ε · (2a0b1 + 2b0a1)

(2) bound on the real part: four cases (R1, R2, R3, R4)

|R(z2 − z0z1)| ≤ ε · (λa0a1 + µb0b1) + γε2 · (a0a1 + b0b1)

with different λ, µ, γ;

(3) from (1) and (2) we deduce:

|z2 − z0z1| ≤ νε · |z0z1|
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Preliminary Lemma

Lemma. For any real x, let y = ◦(x), we have:

|y − x| ≤ 1

2
ulp(x),

|y − x| < ε · |x|.

First bound trivial for ulp(x) = ulp(y). Otherwise y = βj

and |y − x| ≤ 1

2β
ulp(y) = 1

2
ulp(x).

The 2nd follows from the 1st, with βt−1ulp(x) ≤ |x|
(equality if |x| = βj only) and ε = 1

2
β1−t.
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The Imaginary Part

|I(z2 − z0z1)| ≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|
+ |((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)|

Two cases:

Case I1: ulp(a0b1 + b0a1) < ulp(a0 ⊗ b1 + b0 ⊗ a1)

Case I2: ulp(a0 ⊗ b1 + b0 ⊗ a1) ≤ ulp(a0b1 + b0a1)
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I1: ulp(a0b1 + b0a1) < ulp(a0 ⊗ b1 + b0 ⊗ a1)

Exceptional case.

Example: z0 = 0.1011 + 0.1000i, z1 = 0.1100 + 0.1110i.

a0b1 + b0a1 = 0.11111010

a0 ⊗ b1 = 0.1010, b0 ⊗ a1 = 0.0110,

a0 ⊗ b1 + b0 ⊗ a1 = 1.000

Remark: a0 ⊗ b1 + b0 ⊗ a1 is not necessarily a power of 2.

Consider t = 5, z0 = 30 + 19i, z1 = 19 + 22i, then

a0b1 + b0a1 = 1021, a0 ⊗ b1 + b0 ⊗ a1 = 672 + 368 = 1040.
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I1: ulp(a0b1 + b0a1) < ulp(a0 ⊗ b1 + b0 ⊗ a1)

a0b1 + b0a1 < βtulp(a0b1 + b0a1) ≤ a0 ⊗ b1 + b0 ⊗ a1

Thus:

|(a0 ⊗ b1 + b0 ⊗ a1) − βtulp(a0b1 + b0a1)|
< (a0 ⊗ b1 + b0 ⊗ a1) − (a0b1 + b0a1)

≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|
≤ ε · (a0b1 + b0a1)

Since βtulp(a0b1 + b0a1) is representable:

|((a0⊗b1)⊕(b0⊗a1))−(a0⊗b1+b0⊗a1)| ≤ ε ·(a0b1 +b0a1)

Error bounds on complex floating-point multiplication, Sun Menlo Park, December 14th, 2005



I2: ulp(a0 ⊗ b1 + b0 ⊗ a1) ≤ ulp(a0b1 + b0a1)

Usual case.

|((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)|

≤ 1

2
ulp(a0 ⊗ b1 + b0 ⊗ a1)

≤ 1

2
ulp(a0b1 + b0a1)

≤ ε · (a0b1 + b0a1)
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In both cases (I1 and I2), we have

|((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)|
≤ ε · (a0b1 + b0a1)

thus:

|I(z2 − z0z1)| ≤ |a0 ⊗ b1 − a0b1| + |b0 ⊗ a1 − b0a1|
+ |((a0 ⊗ b1) ⊕ (b0 ⊗ a1)) − (a0 ⊗ b1 + b0 ⊗ a1)|
≤ ε · (a0b1) + ε · (b0a1) + ε · (a0b1 + b0a1)

≤ 2ε · (a0b1 + b0a1)

= 2ε · I(z0z1).
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A
√

6 Bound

> e := 6*(a0*b1+a1*b0)^2 + 6*(a0*a1-b0*b1)^2

- 4*(a0*b1+a1*b0)^2 - 4*(a0*a1)^2:

> expand(e);

2 2 2 2 2 2

2 a0 b1 - 8 a0 b1 a1 b0 + 2 a1 b0 + 2 a0 a1

2 2

+ 6 b0 b1

This is:

2(a0b1 − b0a1)
2 + 2(a0a1 − b0b1)

2 + 4(b0b1)
2
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A
√

4 Bound?

We have:

|I(z2 − z0z1)| ≤ 2ε · (a0b1 + b0a1)

If we had:

|R(z2 − z0z1)| ≤ 2ε · (a0a1 − b0b1)

we would get:

|z2 − z0z1|2 ≤ 4ε2|z0z1|2

and thus:

|z2 − z0z1| ≤ 2ε|z0z1|

Instead of 2 =
√

4 we get
√

5 only . . .
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The Real Part

Let A = ulp(a0a1), B = ulp(b0b1),

C = ulp(a0 ⊗ a1 − b0 ⊗ b1). By hypothesis: B ≤ A.

R1: B ≤ A ≤ C

R2: B < C < A

R3: C ≤ B < A

R4: C < B = A
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Case R1: B ≤ A ≤ C

Example: β = 2, t = 4, z0 = 14 + 8i, z1 = 15 + 10i

a0 ⊗ a1 − b0 ⊗ b1 = 208 − 80 = 128, a0a1 = 210
z0*z1

z1
z0

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2
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|R(z2 − z0z1)| < ε · (2a0a1 − b0b1) + ε2 · (2a0a1 + 2b0b1)

which gives:

|z2 − z0z1| ≤ ε(
√

32/7 + 2ε)|z0z1|

For ε ≤ 2−5:

√

32/7 + 2ε ≈ 2.138 + 2ε ≤ 2.201 ≤
√

5 ≈ 2.236
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Case R2: B < C < A

Example: β = 2, t = 3, z0 = 14 + 7i, z1 = 10 + 6i

b0b1 = 42, a0 ⊗ a1 − b0 ⊗ b1 = 128 − 40 = 88, a0a1 = 140,

z1
z0

z0*z1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 1
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|R(z2 − z0z1)| < ε · (7/4 · a0a1)

which gives:

|z2 − z0z1| ≤ ε
√

1024/207|z0z1|

And
√

1024/207 ≈ 2.224 ≤
√

5 ≈ 2.236
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Case R3: C ≤ B < A

Example: β = 2, t = 3, z0 = 7 + 4i, z1 = 5 + 7i

a0 ⊗ a1 − b0 ⊗ b1 = 32 − 28 = 4, b0b1 = 28, a0a1 = 35

z1

z0

z0*z1

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1
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|R(z2 − z0z1)| < ε · (3/2 · a0a1)

Since 3

2
≤ 7

4
, we get a better bound than R2:

|z2 − z0z1| ≤ ε
√

256/55|z0z1|

And
√

256/55 ≈ 2.157 ≤
√

5 ≈ 2.236
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Case R4:

ulp(a0 ⊗ a1 − b0 ⊗ b1) < ulp(b0b1) = ulp(a0a1)

Example: β = 2, t = 3, z0 = 7 + 4i, z1 = 4 + 6i

a0 ⊗ a1 − b0 ⊗ b1 = 28 − 24 = 4, b0b1 = 24, a0a1 = 28

z0*z1

z0

z1

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1
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Sterbenz: a0 ⊗ a1 − b0 ⊗ b1 is exact.

|R(z2−z0z1)| ≤ |a0⊗a1−a0a1|+|b0⊗b1−b0b1| < ε·(a0a1+b0b1)

|z2 − z0z1| ≤
√

R(z2 − z0z1)2 + I(z2 − z0z1)2

< ε
√

(a0a1 + b0b1)2 + (2a0b1 + 2b0a1)2

= ε
√

5|z0z1|2 − (a0b1 − b0a1)2 − 4(a0a1 − b0b1)2

≤ ε
√

5|z0z1|
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Worst-Case Multiplicands for β = 2

Theorem 2. Assume

|z2 − z0z1|
|z0z1|

> ε
√

5 − nε > ε ·max(
√

1024/207,
√

32/7+2ε)

for some positive integer n, then a0 6= b0, a1 6= b1, and:

a0a1 = 1/2 + (jaa + 1/2)ε + kaaε
2

a0b1 = 1/2 + (jab + 1/2)ε + kabε
2

b0a1 = 1/2 + (jba + 1/2)ε + kbaε
2

b0b1 = 1/2 + (jbb + 1/2)ε + kbbε
2

for some integers jxy, kxy satisfying:

0 ≤ jaa, jab, jba, jbb <
n

4
, |kaa|, |kbb| < n, |kab|, |kba| <

n

2
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Proof of Theorem 2 (sketch)
√

5 − nε >
√

1024/207 gives nε < 11

207
≈ 0.053

Thus 1/2 ≤ a0a1, a0b1, b0a1, b0b1 ≤≈ 1/2 + 11

828
≈ 0.513

Case R4 must hold: a0 ⊗ a1 − b0 ⊗ b1 is exact, and

ulp(b0b1) = ulp(a0a1).

We get a lower bound on |z2 − z0z1|, an upper bound on

|z0z1|, from which we deduce tight bounds:

ε/2 − (1 −
√

1 − nε)ε < |a0 ⊗ a1 − a0a1| ≤ ε/2

and similarly for |b0 ⊗ b1 − b0b1|, . . .

Conclude by noticing that a0a1 is an integer multiple of ε2
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Worst-Case in Single Precision

Corollary 4. In IEEE 754 single-precision arithmetic

(ε = 2−24), the worst-case values are:

a0 =
3

4
, b0 =

3

4
(1 − 4ε), a1 =

2

3
(1 + 11ε), b1 =

2

3
(1 + 5ε),

with a relative error ε
√

5 − 168ε ≈ ε
√

4.9999899864.
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Worst-Case in Double Precision

Corollary 5. In IEEE 754 double-precision arithmetic

(ε = 2−53), the worst-case values are:

a0 =
3

4
(1 + 4ε), b0 =

3

4
, a1 =

2

3
(1 + 7ε), b1 =

2

3
(1 + ε),

with a relative error ε
√

5 − 96ε ≈ ε
√

4.9999999999999893.
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Conjecture

For precision t large enough, the worst-cases are as in

Corollary 4 (single precision) for even precision, and as in

Corollary 5 (double precision) for odd precision.

In particular, the worst-case for quadruple precision

t = 113 would be as for double precision.
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Applications

• correctly rounded complex multiply (separate relative

error on real and imaginary parts)

• complex floating-point FFT (Percival’s paper):

Theorem. The FFT allows computation of the cyclic

convolution z = x ∗ y of two vectors of length N = 2n of

complex values such that

|z′ − z|∞ < |x| · |y| · [(1 + ε)3n(1 + ε
√

5)3n+1(1 + α)3n − 1],

where | · | denotes the Euclidean norm, and

α > |(ωk)′ − (ωk)|, ω = e
2πi

N .
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Applications (2)

If ωk = x + yi is correctly rounded, α = ε/
√

2:

err(x), err(y) ≤ 1

2
ε,

|z′−z|∞ < |x| · |y| · [(1+ ε)3n(1+ ε
√

5)3n+1(1+ ε/
√

2)3n−1]

Improvement: from 1 + 1/
√

2 +
√

8 to 1 + 1/
√

2 +
√

5,

about 13%.

Example: multiply two degree 524288 polynomials with

digits in [−5000, 5000], or 2 million digit numbers.
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Open Problems

• simplify the 3-page proof of Theorem 1

• get rid of the ε2 term in Case R1

• prove the conjecture

• find the worst-cases for any β

• get ωk correctly rounded . . .

Percival: linear-time algorithm for max error of 1.5ε
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Lemma. For any real x, let y = ◦(x), we have:

|y − x| <
ε

1 + ε
|x|.

Proof. We can assume 1 ≤ x < 2.

If 1 + ε ≤ x:

|y − x| ≤ ε ≤ ε
x

1 + ε

If x = 1 + λ with 0 ≤ λ < ε:

|y − x| = λ ≤ ε

1 + ε
(1 + λ)

Since:

λ(1 + ε) ≤ ε(1 + λ)
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