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Notations
o t-digit base ( f-p arithmetic
e no underflow/overflow
e all roundings to nearest (even)

o(x) is the rounding to nearest of x

abb=o(a+0b), axb=o(a-b)

ulp(x) is the “unit in last place” of x:

A halp(z) < |z| < Btulp(x)
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Complex Multiplication

Zo = Qg + boi, Z1 = Q] + bll
20”1 — (CLQCL1 — bObl) + (Clobl + boal)i
29 = ((ap ® a1) © (bo @ b)) + ((a0 ® b1) & (bo ® ay))i

What is the largest relative error?

’»2’2 — 2021’

!Zozll
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e previous work

e proof of the v/5 bound

e worst-cases for base (§ = 2
e future work
References:

Rapid multiplication modulo the sum and difference of
highly composite numbers, C. Percival, Math. of Comp.,
2003.

Error bounds on complex floating-point multiplication,
R. Brent, C. Percival, P. Z., submitted to Math. of
Comp., 2005, 12 pages.
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Higham’s Bound

N. J. Higham, Accuracy and Stability of Numerical
Algorithms, Second Edition, STAM, 2002.

20 — zo21] < €V/82p24]

where € = sulp(1) = 16"
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Higham’s Bound (sketch)

‘I(ZQ — 2021)‘ S 2€ - (CLle -+ b()al)

|R(ZQ — Z()Zl)| S 2€ - (CLQCL1) + 0(62)

\/R2 + 12 S 6\/4(&0&1)2 + 4(&0[)1 + boa1)2 + 0(62)
S 6\/8(&0&1 — b0b1)2 + 8(0,0[?1 + boa1)2 + 0(62)
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A Maple Proof

> e := 8*%(al0*bl+alx*b0) "2 + 8*(al*al-b0x*bl) "2
- 4% (a0*b1+al*b0) "2 - 4x(alxal) "2:
> expand(e) ;
2 2 2 2 2 2
4 a0 bl -8 a0 bl a1l bO + 4 a1l b0 + 4 a0 al

4(&0b1 — &1[90)2 + 40,(2)&% + Sb%b%
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A 10-line but Wrong Proof

[...] we observe that if 2bgby > agay there is no
error introduced by the subtraction [6]; further, if
2bpb1 < agay then the total error introduced in

computing bob; and performing the subtraction s

bounded by e(aga; — boby).
B=2t=05,2=284171, z1 =31 +1&
Total error on byb; and subtraction: 16 — (—2) = 18
e(apa; — boby) = 17.5625
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Our Main Result

Theorem 1. Let zyp = ag + byt and z1 = a1 + by, with
ag, bo, a1, b1 floating-point values with t-digit base-3
significands, and let

29 = ((CL() Y CL1) S, (bo Y bl)) -+ ((CLQ Y b1> D (bo Y 04))2'

be computed. Providing that no overflow or underflow
occur, no denormal values are produced, arithmetic
results are correctly rounded to a nearest representable

value, z9z1 # 0, and € < 27°, the relative error

|20 (2021) " = 1

is less than e\/5 = £3'7/5.
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Symmetries

Let R(CLQ, b(), ai, bl) = (CLQ X al) S, (b() X bl) and
Z(ag, by, a1,b1) := (ag @ b1) & (bo @ a1).

The change zg — zgi gives (ag, by) — (—bp, ap), and
R — —1.,7 — R, thus the relative error on zy is

unchanged.
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1"3* z0

-10-

The same holds for z; — z;2. We can thus assume zy and

71 in the 1st quadrant:
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Similarly, (ZQ, Zl) — (i,Z_Q, 2,271) giVGS R — —R, 7 — 1.

10

1* conj(z1)

z1

0 2 4 6 8 10

We can thus assume zpz; is in the 1st quadrant:
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By exchanging zp and z;, we can assume

Then by zy — 2o - 2/ and 2; — 2z; - 2%, we can assume

In the sequel, we assume all those inequalities hold.
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Proof of Theorem 1 (sketch)
(1) bound on the imaginary part: two cases (11, 12)

’Z(ZQ — 2021)’ S € - (20,0[?1 -+ 2[90&1)

(2) bound on the real part: four cases (R1, R2, R3, R4)

’R(Zg — 2021)’ S € - ()\CLQCbl + ,ubobl) -+ ’}/62 . (&0&1 + bobl)

with different A, u, ;
(3) from (1) and (2) we deduce:

29 — z021| < ve- |zp2]
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Preliminary Lemma

Lemma. For any real x, let y = o(x), we have:

1

y —af <e-laf

First bound trivial for ulp(z) = ulp(y). Otherwise y = /3’
and |y — x| < 5zulp(y) = zulp().
The 2nd follows from the 1st, with ' tulp(z) < |z

(equality if |z| = 7 only) and e = 6"
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The Imaginary Part

|I(ZQ — Z()Zl)‘ S ‘CL() &) bl — CLob1| + ’bo &) ay — boCL1|
+ |((CLO &) b1> D (bo &) &1)) — ((10 &) bl + b() &) &1>|

Two cases:
Case I1: ulp(aobl + bgal) < UIP(CLQ &) bl + bo & al)
Case 12: U_lp(CLQ & bl -+ b() X al) S ulp(agbl -+ bgal)
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11: U_lp(&()bl + boal) < U.lp(CLO X b1 + by ® CL1)

Exceptional case.

Example: 2 = 0.1011 + 0.10004, z; = 0.1100 + 0.11104.
CLle + boCLl = 0.11111010

ag X bl — 01010, b() X a1 = 00110,
ao ®b1 + bo X a; = 1.000

Remark: ag ® by + by ® aq is not necessarily a power of 2.
Consider t = 5, zg = 30 + 197, 21 = 19 4 224, then
a()bl -+ boCLl = 1021, ag X bl -+ bo X a1 = 672 + 368 = 1040.
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11: ulp(aobl + b()al) < ulp(ao X bl + b() X CL1)

apbt + boar < Srulp(aghy + boar) < ag @ by + by ® aq

Thus:

(a0 ® by + by ® ay) Sulp(agby + boay)
(ag ® by + by ® a1) — (agby + boay)
[ap ® by — aghy| + [bo ® ay — boay |
€ - (agby + bpay)

Since Sulp(agbi + bpay) is representable:

|((a0®b1) P (b()@&l)) — ((l()@bl —|—bo®a1)‘ S €- (CLQb1 —|—bQCL1)
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12: U_lp(&o ® b1 + by & al) < ulp(aobl -+ boal)

Usual case.

(a0 ®b1) & (bo ® ay)) (ap ® b1 + by @ a1)
1

511110(@0 ® by + by ® ay)

1
§ulp(a0b1 -+ b()CLl)

€ - (CLle -+ bgal)
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In both cases (I1 and 12), we have

[((ag ®01) ® (b ®ay)) — (a0 @by + by ® ay)
< € (aghy + boay)

2021)| < |ag ® by — aght| + |by ® a1 — boaq|
[((ap ® b1) @ (bg ® a1)) — (ag ® by + by ® ay)]
€ - (apby) + € (boay) + € - (aghy + boay)

2¢€ - (apby + boay)

2¢ - T(zp21).
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A 6 Bound

> e := 6%(al0*bl+al*b0)~2 + 6*x(al0*xal-bOx*bl) "2
- 4% (a0*bl+al*b0) "2 - 4x(al*al) "2:
> expand(e);
2 2 2 2 2 2
2 a0 bl -8 a0 bl al b0+ 2 al b0 + 2 a0 ail

2 2
+ 6 b0 Dbl

This 1s:

2(agby — b0a1)2 + 2(apa; — 5051)2 + 4([901?1)2
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A /4 Bound?

We have:
Z (29 — z021)| < 2€ - (agby + boay)
If we had:
R (z0 — z021)| < 2€ - (aga; — boby)
we would get:
20 — z021]* < 4€2|z021 |

and thus:

|29 — z021| < 2€|202]

Instead of 2 = v/4 we get /5 only ...
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The Real Part

Let A = ulp(agayi), B = ulp(bgby),
C' =ulp(ag ® a; — by ® by). By hypothesis: B < A.

Rl: B ALC
R2: B<(C< A
R3: C<B<A
R4: C<B=A
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Case R1: B<AL(C
Example: § =2, t =4, 2p = 14 + 8i, 2, = 15 + 10i

ao X a1 — b() ® bl = 208 — 80 = 128 Aol — 210
z0*z1
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|R(ZQ — Z()Zl)‘ < € - (2&0@1 — bgbl) -+ 62 . (2CLQCL1 -+ 2b0b1)

which gives:
|20 — 2021] < €(£/32/7 4 2¢€)|2021]

For e < 27°:

\V/32/7 + 2€ = 2.138 4+ 2¢ < 2.201 < /5 ~ 2.236
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Case R2: B<(C< A
Example: 6 — 2, t = 3, 20 — 14 + 7’&, 21 — 10 4 62
bobl — 42, ag X a; — bo &) bl = 128 — 40 = 88, Aopa1 — 140,

0.8

0.7

0.6 ZO* Zl

05
0.4 Z1
0.3

0.2 ]

0.1
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R(z0 — 2021)| < €-(7/4 - apay)

which gives:

|20 — 2021 | < €4/1024/207| 2024 |

And 1/1024/207 ~ 2.224 < /5 ~ 2.236
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Case R3: C<B<A

Example: =2, t=3,20=7T+ 41, 21 =54+ Tt

ag X aq —b()@bl :32—28:4, bobl :28, Ao = 35
20071
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R(z0 — 2021)| < €-(3/2 - apay)

Since % < Z, we get a better bound than R2:

|ZQ — Z()Zl| S E\/256/55‘Z()21|

And /256/55 ~ 2.157 < /5 ~ 2.236
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Case R4:
ulp(ap ® a1 — by @ b1) < ulp(byb1) = ulp(apas)
Example: =2, t=3, 20 =7+ 41, 21 =4+ 61
ap X a; — by ® b}ZZ 28 — 24 =4, bob; = 24, aga; = 28
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Sterbenz: ag ® a1 — by ® by is exact.

‘R(ZQ_ZOZl)‘ S ]a0®a1—a0a1|+\bo®b1—bgb1\ < 6-(a0a1+bobl)

2 — 2021 < A/ Rlza — 2021)2 + (29 — 2021)?
< e/ (agay + bob1 )2 + (2agby + 2bpas)?
ev/5| 2021 |2 — (aghy — boai)? — 4(agar — boby )2
eV/5| 2021

Error bounds on complex floating-point multiplication, Sun Menlo Park, December 14th, 2005



Worst-Case Multiplicands for 5 = 2

Theorem 2. Assume

|2’2 — ZOZ1|

o > ev/5 — ne > e-max(1/1024/207, \/32/7+ 2¢)
2041

or some positive integer n, then ag # by, a1 % by, and:
f p g ) ) )
apar = 1/2+ (Jaa + 1/2)€—|—l€aa€2
apby = 1/2—|— ]ab+1/2)€—|—]€ab€2
boar = 1/24 (po + 1/2)€ + kpye’
)

(7
(
(7
(

bobi = 1/24 (jp + 1/2)€ + kppe”

Jor some integers jiy, ky,y salisfying:

0 < Jaa, Jabs Jbas Job < e Eaal, |kon| <y |Kab), [Kba| < 5
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Proof of Theorem 2 (sketch)

5 — ne > 1/1024/207 gives ne < 5= ~ 0.053
Thus 1/2 < apan, agbl, b()al, b()bl <~ 1/2 +

A~ 0.513

Case R4 must hold: ag ® a; — by ® b; is exact, and
ulp(bob1) = ulp(aopas ).

We get a lower bound on |z; — 2p21|, an upper bound on

|2021|, from which we deduce tight bounds:
€/2— (1 —+V1—ne)e < lag® a; — apay| < €/2

and similarly for |b0 &) b1 — b0b1|, “ e

Conclude by noticing that aga; is an integer multiple of €2
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Worst-Case in Single Precision

Corollary 4. In IEEE 754 single-precision arithmetic

(e = 272%), the worst-case values are:

3

2 2
apgp — ,bQ — 1(1 — 46),@1 — —(1 -+ 116),b1 — —(1 + 56),

3 3
with a relative error ex/5 — 168¢ ~ €1/4.9999899864.
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Worst-Case in Double Precision

Corollary 5. In IEEE 754 double-precision arithmetic

(e = 27°%), the worst-case values are:

3 3 2
apgp — 1(14—46),[?0 = Z,al = 3(

with a relative error ex/5 — 96€ ~ €1/4.9999999999999893.

2
3(1 —I_ 6)7

76) bl
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Conjecture

For precision t large enough, the worst-cases are as in
Corollary 4 (single precision) for even precision, and as in

Corollary 5 (double precision) for odd precision.

In particular, the worst-case for quadruple precision

t = 113 would be as for double precision.
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Applications

e correctly rounded complex multiply (separate relative
error on real and imaginary parts)

e complex floating-point FFT (Percival’s paper):
Theorem. The FF'T allows computation of the cyclic

convolution z = x xy of two vectors of length N = 2" of

complex values such that

2 = zloo < f2 - [y| - [(1+€)*" (1 +eV3)" (1 + ) — 1],

where | - | denotes the Fuclidean norm, and

271

a > [(Wh) — (WH)], w=1¢e™.
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Applications (2)

If w* = x + yi is correctly rounded, o = €/v/2:

err(x), err(y) < e,

2 = 2o <l [y|- [(1+€)" (14+ev5) (1 +e/V2)™ — 1]

Improvement: from 1 + 1/\/§+ V8 to 1+ 1/\/§+ V5.
about 13%.

Example: multiply two degree 524288 polynomials with
digits in [—5000, 5000], or 2 million digit numbers.
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Open Problems

e simplify the 3-page proof of Theorem 1
o get rid of the €2 term in Case R1

e prove the conjecture

e find the worst-cases for any

e get w” correctly rounded . ..

Percival: linear-time algorithm for max error of 1.5¢
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Lemma. For any real x, let y = o(x), we have:

€

1+|ﬂ'
€

ly — x| <

Proof. We can assume 1 < z < 2.

f14+e<ua:
x

1+ ¢

ly — x| <e<e

frxr=1+Awith0 <)\ <e
€

—zl=A< L+ A
ol =A< (14X

AM14¢€) <e(1+ )
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