CADO-NFS: An Implementation of The

Number Field Sieve

Paul Zimmermann

INRIA Nancy - Grand Est

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

History of the CADO project

CADO is sponsored by the French Research Agency (ANR).
It started in 2008 for 3 years.
It involves 3 teams: CACAO (INRIA Nancy), TANC (INRIA
Saclay), and Gérald Tenenbaum’s team (IECN Nancy).
Objectives:

@ better understand how the Number Field Sieve works

@ publish a state-of-the art implementation, not to break new
records, but to routinely factor numbers of 155 digits

@ use that code base to try new ideas and/or new algorithms

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Download page

Snapshots of the code are available from:

http://cado.gforge.inria.fr/software.en.html

Distributed under the GNU Lesser General Public License
(LGPL), v2.1 or later

Current main contributors to the code: Jérémie Detrey, Pierrick
Gaudry, Alexander Kruppa, Frangois Morain, Emmanuel
Thomé, Paul Zimmermann.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

http://cado.gforge.inria.fr/software.en.html

Running example (c158)

158-digit cofactor of 2'1%5 — {1 from Cunningham’s project (with
GNFS):

22154364133980674336470181109040831394717683475796744
21181885667014866964155323990066535093200031258473964
9274561436457596491267605451375175915494245341824841

Factorization started May 8, 2009.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

N: number to factor

f(x): algebraic polynomial of degree d
g(x): linear polynomial
F(x,y) = y9f(x/y): homogeneous algebraic polynomial

G(x,y) = yg(x/y): homogeneous linear polynomial

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Polynomial Selection

Implements Kleinjung’s algorithm: On polynomial selection for
the general number field sieve, Math. of Computation, 2006.

Two steps: (1) find polynomials with a small norm; (2) root
sieve to improve root properties.

Sketch: choose f(x) = agx? + --- + ap, g(x) = px — m.
We want N = agm? + ag_1m?'p+ .- 4+ ayp?, thus

N = azm“ mod p.

Fix d, aq,£. Choose p = pp> ... p, with p; = 1 mod d. This
ensures that N = azx? mod p; has d solutions, and thus
N = ayzm® mod p has d‘ solutions.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Take the d' solutions which are closer to i = (N/ag)'/9. Each
solution leads to a polynomial f(x) such that p?f(m/p) = N with

|ag—1| < p+ dag(m—m)/p
and |gj| < p+mfor0<i<d-2

Similarly, Kleinjung shows that one can bound ay_» in terms of
a sum of linear terms depending on the roots of

N = ayzx? mod p;- Small values of this sum can be found in
O(d*/?) using a meet-in-the-middle algorithm.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Root Properties

A polynomial f(x) has good root properties when it has many
roots modulo small primes. This means that we can expect the
values taken by F(a, b) to have many small prime factors. The
root property is quantified by Murphy’s o (Murphy’s PhD, ANU,
1999).

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Once a polynomial pair f(x), g(x) = px — m with small norm is
found, improve the root properties with rotation by a multiple of
9(x):

f(x) + (A + p)g(x).
If A, v are not too large, this will not change much the norm of

f(x), but might improve the number of roots of f(x) for small
primes (say up to 2000).

The CADO-NFS implementation of the rotation is still very
naive. We are currently implementing a improved version
(rootsieve, Emmanuel Thomé and Antonio Vera).

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running example (2'1% — 1, ¢c158)

We searched for a polynomial of degree d = 5.
p was chosen as the product of £ = 8 primes < 1024, plus one
extra prime pg < 100000.

ay was forced to be a multiple of 60, in the range ay < 10'".
The norm bound was 2 - 1023 (as defined by Kleinjung).

The rotation was bounded by || < 218,

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Found polynomial pair

p =76851617336898833 = 13-(11-31-101-131-151-181-191-251)

f(x)

+ +

58091538480x°

1315689856261290x*

15676594604417048444x°

1042081179621456253068086 x>
2183136495145828996001649925x
11119807175646990325002164428125
76851617336898833x — 207142533167919176493695538874

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

The norm of f(x) is ~ 6.6 - 102, skewness 11372, a ~ —3.83.
One poly. with smaller norm found (5.6 - 102°), but larger a.
Many poly. with smaller « found (e.g., —6.27), but larger norm.

Total polynomial selection time about 30 cpu days (2.4Ghz
Opteron).

Wall-clock time was about 34 hours.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Implements Continued Fractions and Lattice Sieving, Jens
Franke and Thorsten Kleinjung, Proceedings of SHARCS 2005.

(We first had a line siever implemented by Alexander Kruppa.)

Take a prime q (special-q), and a root p of f(x) mod g. The
pairs (a, b) where (q, p) divides F(a, b) form a lattice

a=iq+jp,b=j

Find a “reduced basis” of that lattice (taking into account the
skewness):
a=iap + jay, b = iby + jb1.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Sieving Region for 3 special-g’s for RSA-155

250000 -

200000 -

1000Q0

50000

—2e+09 e+0%e+0%e+0Be+091e+10 1.4e+10

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

The sieving region is now a rectangle —//2 < i < 1/2,
0<j< /2.

F(a, b) becomes F'(i,j), where for each i, j, q divides F'(i,j)
(thus we can consider F'(i,j)/q). Note that F’ is not skewed
any more.

We split factor base primes:
@ small primes (p < /): they are sieved with classical (line)
sieving
@ medium primes (p > /): they are sieved with a special
algorithm.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Sieving Medium Factor Base Primes p > /

In the (i,) sieving rectangle —//2 < i< 1/2,0 <j < /2, the
(i,]) pairs divisible by an ideal (p, r) form themselves a lattice.

p < I: there is at least one match per line j = j, = line sieving

p > I: only O or 1 sieved point per line j = jo. Franke and
Kleinjung show that one can compute an unique basis
{(a, B), (7y,9)} of the p-sublattice with:

6,6>0 —I<a<0<y<!l, v—a>I

such that one jumps from (i,) to (7', /'):

(a, 8) ifi+a>—1/2
(".J) =,)+q (7,9) if i+ < 1/2
(a,3) + (,0) ifi+a<—I/2and /2 <i+~

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Franke-Kleinjung’s Lattice Sieving

Especially interesting for p > |

Counterpart: the initialization (computing «, 3,7, §) is quite
expensive. It amounts to an additive Euclidean sequence
starting from —p and r, stopping as soon as both numbers are
smaller than /

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Sieving: the CADO-NFS implementation

We use buckets (corresponding to the L1 cache) to store the
sieve locations:

@ the sieving itself fills the buckets

@ then we apply the buckets to the sieve array, one bucket
(local region) at a time

We use a quite precise estimation of the norm of F(a, b) and
G(a, b), which is quite expensive.

Once the sieving is done, the division by factor base elements
and the cofactorization (finding large primes) are done using
algorithms and code developed by Alexander Kruppa (will be
described in his PhD thesis).

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running Example (c158): Sieving Parameters

Factor base bound: 20M on the rational side, 40M on the
algebraic side.

Large prime bound: 23° on both sides.

Cofactor bound: 260 on rational side (two large primes), 2% on
algebraic side (three large primes).

Sieving region | = 24 (sieve array of 227 points).

Special-q range: 40M to about 105M.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running Example (c158): Sample of Sieving Results

Sieving for 42,900,000 < g < 43,000,000 on a 2.833Ghz
Core 2.

Total 5638 special-g’s sieved.
Average J (height of sieving region) is 6599.

Total sieving time 43791.7 seconds for 188860 reports
(0.232s/r, 33.5r/sq).

Norm computation 7%, sieving 54% (medium primes 45%),
cofactorization 39%.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running Example (c158): Sieving Time

(Timings on 2.833Ghz Core 2.)

Sieving rate is 0.232s/r around 43M, goes down to 0.277s/r
around 103M.

Consider “average” of 0.255s/r.
Found about 100M relations: about 10 cpu months.

Sieving started May 9, ended May 29: wall clock time 20 days.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Duplicate Removal

We use the approximate algorithm already used for RSA-155:
On the Number Field Sieve Integer Factorisation Algorithm,
Stefania Cavallar, PhD thesis, University of Leiden, 2002.

H(a, b) = 314159265358979323a+ 271828182845904523b

h(a, b) = H(a, b) mod 24

Cavallar shows that a collision cannot occur in H, thus only in A.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running Example (211% — 1, ¢c158)

(Timings on 2.833Ghz Core 2.)
Input relations: 98,994,238 (almost at end of sieving).

Hash table of 148,491,367 cells (open addressing with linear
probing).

Remains 82,622,897 non-duplicates (17% duplicates).

Duplicate time is about 75 seconds (cpu).

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Singleton Removal

We use an exact scheme, where all unique ideals are removed.

Use hash-table with open addressing and linear probing for
storing ideals.

Hash-table contains p, root r mod p, and count (12 bytes per
ideal for p < 232, 20 bytes otherwise!).

Pass 1 considers only ideals above the factor base bounds.
Pass 2 considers all ideals (including very small ones!)

If at the end of Pass 2, the excess is below a given value E,
continue sieving.

Otherwise, remove relations until the excess is E1 < Es.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Running Example (211% — 1, ¢c158)

(Timings on 2.833Ghz Core 2.)

We use E; = 160 and E> = 2,000, 000.

Input: 82,622,897 unique relations (almost at end of sieving)
Hash-table of 127,241,591 entries (1456Mb).

Pass 1 takes 700 seconds and 3811Mb: 82,622, 897 relations
with initial excess —297666.

End of pass 1: remains 41,748,672 relations with excess
5,120, 161 (large primes only)

Pass 2 takes another 720 seconds and 5363Mb: remains
41,748,672 relations with excess 1,416,714 < E»: continue
sieving.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Idea: generate more relations than needed, and remove some
excess, hoping for a smaller (almost square) matrix.

A different strategy is to keep some excess for merging; in
CADO-NFS we consider all ideals and keep only a very small
excess, typically 160, that takes into account characters and
the number of wanted dependencies.

The algorithm follows Cavallar’s thesis (“clique removal”).

A “clique” is a connected set of n relations linked by n — 1
ideals appearing exactly 2 times each.

If we remove one of those relations, an ideal becomes single,
thus we can remove the whole connected set.

In CADO-NFS, we remove the sets with the largest n (and
recompute the connected components from time to time).

Different weights are possible to define “heavy” connected
components (see Cavallar’s thesis).

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

If an ideal appears in k relations, we can replace them with
k — 1 relations without this ideal. This is a “k-merge”.

Necessarily k > 2, otherwise we have missed a singleton.

For k = 2, we simply combine the two relations into a new one:
the total weight decreases.

For k > 2, there are several ways to combine the relations. For
k = 3 with relations A, B, C, one might output A+B, A+C, or
B+A, B+C, or C+A, C+B.

In general, there are kX2 ways to perform a k-merge (number
of trees with k elements, Cayley numbers).
CADO-NFS implements two variants:

@ SWAR: first perform all 2-merges, then all 3-merges, ...

@ Markowitz: choose the best merge according to Markowitz
pivoting

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Linear Algebra

CADO-NFS implements block Wiedemann, with multi-thread
and multi-processor code.

So far we have mainly used the multi-thread code with 4 cores.

This part of CADO-NFS was developed by Emmanuel Thomé
and is (almost?) state-of-the-art.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

We compute characters only after the linear algebra.
This is why we must use a slightly larger excess (say 160).

The input of the characters binary is a set of raw
dependencies, the output is a set of (hopefully) true
dependencies.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

CADO-NFS currenly implements a naive square root algorithm.

On the rational side we expand using a product-tree the
product of all G(a, b) for a given dependency, and take its
integer square root.

On the algebraic side we do the same modulo an inert prime p,
while reducing modulo the polynomial f(x), then lift to some
large enough power pX, and map to integers.

This is more expensive than state-of-the-art algorithms, but was
enough for us so far.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

Choice of Parameters

CADO-NFS contains:

@ several binaries obtained by compiling the corresponding
source files: polyselect, las, duplicates,
purge, merge, bwc, characters, allsqgrt,
algsgrt

® a cadofactor.pl Perl script, which takes as input a
parameter file (say c158 . params), a number N, a working
directory, and performs everything automagically

Several sample parameter files are included in the CADO-NFS
distribution.

Paul Zimmermann CADO-NFS: An Implementation of The Number Field Sieve

