INVENTEURS DU MONDE NUMERIQUE

BeDoP: Beyond Double Precision

Paul Zimmermann ANR FastRelax, Lyon, 27 May 2015

The BeDoP project
Research project written in 2014, after interaction with many
colleagues (including those involved in FastRelax)

Timeframe over 2016-2020 with one junior researcher, 3 PhD
students, 2 post-doctoral students, one development engineer.

Submitted to the European Research Council (ERC) Advanced
Grant proposal

Did not pass Step 1 of the evaluation (score B, ranking range
62-74%)

Full project available on http://www.loria.fr/~zimmerma

http://www.loria.fr/~zimmerma

Motivation

Fact 1: petaflop milestone (10'® flops) reached in 2008 (IBM's
Roadrunner), expect exaflop milestone (108 flops) reached around
2020

Fact 2: hardware floating-point (double precision, about 16
decimal digits) will not change soon

Fact 3: in most applications, rounding errors can increase linearly
with the number of operations

Thus more and more applications will require beyond double
precision in software

= it is our responsibility to make those computations fast and
correct

How: using formal proof techniques

The European Exascale Software Initiative (EESI):

the ability to perform floating-point arithmetic with
different precisions (e.g., 32-, 64-, and 128-bit) will likely
be necessary in Exascale systems.

The fundamental challenge of library software design is to
develop and provide robust and reliable algorithms and
implementations that deliver accurate results or at least
compute results with accuracy estimates.

Reference: Working group report on numerical libraries, solvers and
algorithms, http://www.eesi-project.eu/, 2011.

http://www.eesi-project.eu/

Bailey, Barrio, Borwein: High-precision computation:
Mathematical physics and dynamics, Applied Mathematics and
Computation, 2012

several applications already need more than double: evolution of
the solar system over billions of years, supernova simulations,
climate modeling, studying the fine structure constant of physics,

Example

Theorem: Let x be a 5-digit decimal floating-point number.
Convert x to the nearest g-bit binary floating-point number, say y.
Convert back y to the nearest 5-digit decimal floating-point
number, say z. Then if ¢ > 18 we have z = x.

205881
32769
x =8.0003 =17 y = 12 ~ 8.000244 —5 z = 8.00024

But we also need that the conversions decimal <> binary are
correctly rounded!

Interval Arithmetic (IEEE-1788 standard)

Most likely implementations of IEEE-1788 will be in software, and
might include arbitrary precision (cf 1ibieeep1788 from Marco
Nehmeier).

Tight enclosure is not required, but directed rounding should be on
the correct side (for infsup representation)

Main target: the GNU MPFR library
e | know it well...
e already used in several applications

e formally ensuring correctness with keeping (or improving)
efficiency will be a real challenge

Why formal proof?

Why not?

Already used successfully in big projects: four-color theorem,
Feit-Thomson theorem about the classification of finite groups,
Intel and AMD hardware processors (Harrison and Russinoff),
Flocq library (Boldo and Melquiond), CompCert compiler (Leroy
and colleagues), Why3 platform (Fillidtre and colleagues), ...

Will force to simplify the code to make (formal) proof simpler:

» separate the computation of correct rounding (using
round/sticky bits)

» design new layers for operations on significands and exponents,
avoiding hard-coded bit manipulations as much as possible

Find new bugs? Remove dead code? Improve speed?

GCC Quadruple-Precision Library
Since 2008, GCC provides __float128 with +, —, x, +.

Since 2011, some mathematical functions are provided through
libquadmath (comes from FDLIBM developed by Sun around
1993): expq, logq, sing, ...

Basic arithmetic on __float128 seems correctly rounded.

Mathematical functions are not: with GCC 4.9.1, sqrtq for 2.0 is
off by one ulp. Found errors of up to 10° ulps.

Time for multiplying two 1000 x 1000 matrices, with GCC -O3
(version 4.9.1) on a 3.2Mhz Intel Core i5-4570:

53 bits double: 0.54s MPFR: 43.5s (ratio 81)
64 bits long double: 2.9s MPFR: 53.2s (ratio 18)
113 bits __float128: 38.2s MPFR: 47.1s (ratio 1.2)

Double-double arithmetic (aka expansions)

Represent x as h+ ¢ where h and ¢ are double-precision numbers.
Pros: arithmetic on h and £ is very fast
Cons: exponent limitation (107324 to 10308)

Implementations:

» QD package from Bailey and colleagues (includes also
quad-double), however no guarantee of maximal rounding
error.

» FastRelax Expansions?

correct

implementation precision rounding formal proof
hardware +, —, X, + 53 bits yes yes
libc math. functions 53 bits no/yes no
libgce 4+, —, X, =+ 113 bits yes no
libquadmath math. functions 113 bits no no
MPFR +, —, X, + arbitrary yes no
MPFR math. functions arbitrary yes no

BeDoP Scientific Roadmap

» Research Target 1: Formalising Low-Level Arbitrary-Precision
Floating-Point Arithmetic

» Research Target 2: Formalising Quadruple-Precision
Arithmetic

> Research Target 3: Formalising Arbitrary-Precision Arithmetic

Research Target 1: Formalising Low-Level
Arbitrary-Precision Floating-Point Arithmetic

» Task RT1-1: Design the MPS Language Interface
» Task RT1-2: Efficient Implementation of the MPS Language

» Task RT1-3: Formally Prove the Correctness of the MPS
Implementation

The MPS language

In GMP, large integers (mpz) are based on the basic layer mpn

The MPS layer will be similar to mpn for floating-point operations

upper bits lower guard
—~

" — —
x =0./1100110][0101001[1101101 | 011/ 0000] x 2°

p bits

void mps_add (void *a, long p,
void *b, long q, long Kk,
int *rnd, int *stck)

mps_add adds {b, g} shifted by k bits towards the least significant
bits to {a, p}:

q
At exit, rnd and stck are set to the round and sticky bits

For the (common) case where prec(b) < prec(a):

int add (mps a, mps b, mps ¢, int rnd_mode)

{
int rnd, stck;
long k = b->exp - c->exp; /* assumed non-negative */
mps_cpy (a->ptr, a->prec, b->ptr, b->prec); /* exact */
mps_add (a->ptr, a->exp, c->ptr, c->exp, k, &rnd, &stck);
return round (a, rnd, stck, rnd_mode);

}

Using GMP, mps_add might use mpn_add and mpn_rshift.

Formally Prove the Correctness of MPS

Theorem mps_add_correct :
forall a p b q k rnd stck mem mem’,
mem’ = eval mem (mps_add a p b q k rnd stck) ->
let c_exact = value mem a p + value mem b q / 27k in
no_overlap a p b q -> value mem’ a p = round (c_exact p) /\
is_round_bit (value mem’ rnd) c_exact /\
is_sticky_bit (value mem’ stck) c_exact.

Research Target 2: Formalising Quadruple-Precision
Arithmetic

» Task RT2-1: Efficient Quadruple-Precision Routines

» Task RT2-2: Formal Proof of the Quadruple-Precision
Routines

» Task RT2-3: Validate Quadruple-Precision Routines on
Large-Scale Applications

Efficient Quadruple-Precision Routines

Table Maker's Dilemma (TMD) not solved in general!

Use Ziv's onion peeling strategy, with initial precision tuned to
minimize the average time.

Implementation: either contribute to 1libquadmath, or build a
special quadruple-precision layer in MPFR:

__float128 sinq (__float128 x)

Formal Proof of the Quadruple-Precision Routines

Theorem sinqg_correct :
forall (x : binary128) rnd_mode,
sing x rnd_mode = round (sin x) binary128 rnd_mode.

Research Target 3: Formalising Arbitrary-Precision
Arithmetic

» Task RT3-1: Efficient Arbitrary-Precision Routines
» Task RT3-2: Formal Proof of Arbitrary-Precision Routines

> Task RT3-3: Validate Arbitrary-Precision Routines on
Large-Scale Applications

Efficient Arbitrary-Precision Routines

For example for the hyperbolic sine integral (Shi function):

int mpfr_shi (mpfr_t y, mpfr_t x, mpfr_rnd_t rnd_mode)

Formal Proof of Arbitrary-Precision Routines

Theorem shi_correct :
forall (x : arbitrary_fp) (y : arbitrary_fp)
rnd_mode mem mem’,
mem’ = eval mem (mpfr_shi y x rnd_mode) ->
y = round (shi x) (precision y) rnd_mode.

