
How Fast Can We Multiply Over GF(2)[x]?

Paul Zimmermann

INRIA Lorraine/LORIA, Nancy, France

(thanks to Richard Brent, Pierrick Gaudry, Samuli Larvala, Emmanuel Thomé)

Algorithmic Number Theory Conference, Turku, May 10, 2007



Followup to Mika’s talk (preproceedings, p. 25)

Theorem. The first digit of F5·1087 is 1.

Proof:

bash-3.00$ time ./fib 5e87

n=5000000000000000000000000000000000000000000\

000000000000000000000000000000000000000000000

prec=302

length of Fib(n) in base 3 is

2190089397429712060570026179560455216382019945\

882232014510953225378415664943464622853621

first digit is 1

user 0m0.004s

Credits: (www.mpfr.org), MPFI.

Algorithmic Number Theory Conference, Turku, May 10, 2007 – p. 2/49



Followup to Mika’s talk (preproceedings, p. 25)

Theorem. The first digit of F5·1087 is 1.

Proof:

bash-3.00$ time ./fib 5e87

n=5000000000000000000000000000000000000000000\

000000000000000000000000000000000000000000000

prec=302

length of Fib(n) in base 3 is

2190089397429712060570026179560455216382019945\

882232014510953225378415664943464622853621

first digit is 1

user 0m0.004s

Credits: (www.mpfr.org), MPFI.

Algorithmic Number Theory Conference, Turku, May 10, 2007 – p. 2/49



Plan of the talk

Theory

Algorithms

Numbers

Algorithmic Number Theory Conference, Turku, May 10, 2007 – p. 3/49



Plan of the talk

Theory

Algorithms

Numbers

Algorithmic Number Theory Conference, Turku, May 10, 2007 – p. 3/49



Plan of the talk

Theory

Algorithms

Numbers

Algorithmic Number Theory Conference, Turku, May 10, 2007 – p. 3/49



Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5) over

GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

x859433 + x288477 + 1.

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a

search in 2000 . . .

June 26, 2000:

x859433 + x170340 + 1

Motivation – p. 4/49



Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5) over

GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

x859433 + x288477 + 1.

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a

search in 2000 . . .

June 26, 2000:

x859433 + x170340 + 1

Motivation – p. 4/49



Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5) over

GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

x859433 + x288477 + 1.

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a

search in 2000 . . .

June 26, 2000:

x859433 + x170340 + 1

Motivation – p. 4/49



Status so far

xr + xs + 1

r s when

756839 215747, 267428, 279695 June 2000

859433 170340, 288477 June 2000

3021377 361604, 1010202 July 2000 to April 2001: 13 GIPS-years

6972593 3037958 Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

x6972593 + x3037958 + 1

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.
Motivation – p. 5/49



Status so far

xr + xs + 1

r s when

756839 215747, 267428, 279695 June 2000

859433 170340, 288477 June 2000

3021377 361604, 1010202 July 2000 to April 2001: 13 GIPS-years

6972593 3037958 Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

x6972593 + x3037958 + 1

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.
Motivation – p. 5/49



Status so far

xr + xs + 1

r s when

756839 215747, 267428, 279695 June 2000

859433 170340, 288477 June 2000

3021377 361604, 1010202 July 2000 to April 2001: 13 GIPS-years

6972593 3037958 Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

x6972593 + x3037958 + 1

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.
Motivation – p. 5/49



THEORY

Theory – p. 6/49



GF(2)

Field with two elements: {0, 1}.

Addition table:

+ 0 1

0 0 1

1 1 0

Multiplication table:

× 0 1

0 0 0

1 0 1

Theory – p. 7/49



GF(2)

Field with two elements: {0, 1}.

Addition table:

+ 0 1

0 0 1

1 1 0

Multiplication table:

× 0 1

0 0 0

1 0 1

Theory – p. 7/49



GF(2)

Field with two elements: {0, 1}.

Addition table:

+ 0 1

0 0 1

1 1 0

Multiplication table:

× 0 1

0 0 0

1 0 1

Theory – p. 7/49



GF(2)[x]

Polynomial ring:

a(x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0,

where ai ∈ {0, 1}.

If ad 6= 0, d = deg(a).

Theory – p. 8/49



GF(2)[x]

Polynomial ring:

a(x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0,

where ai ∈ {0, 1}.

If ad 6= 0, d = deg(a).

Theory – p. 8/49



Irreducible Polynomial

Definition. a(x) ∈ GF(2)[x] is irreducible if

a(x) = b(x)c(x)

implies b(x) = 1 or c(x) = 1.

Example 1. x3 + x + 1 is irreducible.

Example 2. x3 + 1 is not:

x3 + 1 = (x2 + x + 1)(x + 1)

Example 3. x4 + x2 + x + 1 is not either (irreducible over Q):

x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1)

Theory – p. 9/49



Irreducible Polynomial

Definition. a(x) ∈ GF(2)[x] is irreducible if

a(x) = b(x)c(x)

implies b(x) = 1 or c(x) = 1.

Example 1. x3 + x + 1 is irreducible.

Example 2. x3 + 1 is not:

x3 + 1 = (x2 + x + 1)(x + 1)

Example 3. x4 + x2 + x + 1 is not either (irreducible over Q):

x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1)

Theory – p. 9/49



Irreducible Polynomial

Definition. a(x) ∈ GF(2)[x] is irreducible if

a(x) = b(x)c(x)

implies b(x) = 1 or c(x) = 1.

Example 1. x3 + x + 1 is irreducible.

Example 2. x3 + 1 is not:

x3 + 1 = (x2 + x + 1)(x + 1)

Example 3. x4 + x2 + x + 1 is not either (irreducible over Q):

x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1)

Theory – p. 9/49



Irreducible Polynomial

Definition. a(x) ∈ GF(2)[x] is irreducible if

a(x) = b(x)c(x)

implies b(x) = 1 or c(x) = 1.

Example 1. x3 + x + 1 is irreducible.

Example 2. x3 + 1 is not:

x3 + 1 = (x2 + x + 1)(x + 1)

Example 3. x4 + x2 + x + 1 is not either (irreducible over Q):

x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1)

Theory – p. 9/49



Why trinomials?

We search simple irreducible polynomials over GF(2).

=⇒ efficient way to implement arithmetic over GF(2r).

First try monomials: xr is divisible by x. . .

Next try binomials: xr + 1 is divisible by x + 1:

xr + 1 = (x + 1)(xr−1 + xr−2 + · · ·+ x + 1)

Then try trinomials:

xr + xs + 1 with r > s > 0.

Theory – p. 10/49



Why trinomials?

We search simple irreducible polynomials over GF(2).

=⇒ efficient way to implement arithmetic over GF(2r).

First try monomials: xr is divisible by x. . .

Next try binomials: xr + 1 is divisible by x + 1:

xr + 1 = (x + 1)(xr−1 + xr−2 + · · ·+ x + 1)

Then try trinomials:

xr + xs + 1 with r > s > 0.

Theory – p. 10/49



Why trinomials?

We search simple irreducible polynomials over GF(2).

=⇒ efficient way to implement arithmetic over GF(2r).

First try monomials: xr is divisible by x. . .

Next try binomials: xr + 1 is divisible by x + 1:

xr + 1 = (x + 1)(xr−1 + xr−2 + · · ·+ x + 1)

Then try trinomials:

xr + xs + 1 with r > s > 0.

Theory – p. 10/49



Why trinomials?

We search simple irreducible polynomials over GF(2).

=⇒ efficient way to implement arithmetic over GF(2r).

First try monomials: xr is divisible by x. . .

Next try binomials: xr + 1 is divisible by x + 1:

xr + 1 = (x + 1)(xr−1 + xr−2 + · · ·+ x + 1)

Then try trinomials:

xr + xs + 1 with r > s > 0.

Theory – p. 10/49



Primitive Trinomials

Definition. A polynomial f(x) ∈ GF(2)[x] is said primitive iff:

(1) f(x) is irreducible;

(2a) x has order 2r − 1 modulo f(x), where r := deg(f);

Cf Lucas test (Nitin’s talk).

Example 1. x4 + x + 1 is primitive:

x, x2, x3, x+1, x2 +x, x3 +x2, x3 +x+1, x2 +1, x3 +x, x2 +x+1, x3 +x2 +x,

x3 + x2 + x + 1, x3 + x2 + 1, x3 + 1, x15 ≡ 1.

Example 2. x6 + x3 + 1 is irreducible but not primitive:

x9 ≡ 1 mod (x6 + x3 + 1).

Theory – p. 11/49



Primitive Trinomials

Definition. A polynomial f(x) ∈ GF(2)[x] is said primitive iff:

(1) f(x) is irreducible;

(2a) x has order 2r − 1 modulo f(x), where r := deg(f);

Cf Lucas test (Nitin’s talk).

Example 1. x4 + x + 1 is primitive:

x, x2, x3, x+1, x2 +x, x3 +x2, x3 +x+1, x2 +1, x3 +x, x2 +x+1, x3 +x2 +x,

x3 + x2 + x + 1, x3 + x2 + 1, x3 + 1, x15 ≡ 1.

Example 2. x6 + x3 + 1 is irreducible but not primitive:

x9 ≡ 1 mod (x6 + x3 + 1).

Theory – p. 11/49



Primitive Trinomials

Definition. A polynomial f(x) ∈ GF(2)[x] is said primitive iff:

(1) f(x) is irreducible;

(2a) x has order 2r − 1 modulo f(x), where r := deg(f);

Cf Lucas test (Nitin’s talk).

Example 1. x4 + x + 1 is primitive:

x, x2, x3, x+1, x2 +x, x3 +x2, x3 +x+1, x2 +1, x3 +x, x2 +x+1, x3 +x2 +x,

x3 + x2 + x + 1, x3 + x2 + 1, x3 + 1, x15 ≡ 1.

Example 2. x6 + x3 + 1 is irreducible but not primitive:

x9 ≡ 1 mod (x6 + x3 + 1).

Theory – p. 11/49



How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49



How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49



How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49



How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49



How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49



Use Mersenne primes 2r − 1

Great Internet Mersenne Prime Search (GIMPS, www.mersenne.org).

George

Woltman

r date r mod 8

M35 1398269 Nov 1996 5

M36 2976221 Aug 1997 5

M37 3021377 Jan 1998 1

M38 6972593 Jun 1999 1

M39 13466917 Nov 2001 5

M40? 20996011 Nov 2003 3

M41? 24036583 May 2004 7

M42? 25964951 Feb 2005 7

M43? 30402457 Dec 2005 1

M44? 32582657 Sep 2006 1

Theory – p. 13/49



Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

x8 + x + 1 = (x6 + x5 + x3 + x2 + 1)(x2 + x + 1)

x8 + x2 + 1 = (x4 + x + 1)2

x8 + x3 + 1 = (x3 + x + 1)(x5 + x3 + x2 + x + 1)

x8 + x4 + 1 = (x2 + x + 1)4

In general, no irreducible trinomial of degree r = 8k.

Theory – p. 14/49



Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

x8 + x + 1 = (x6 + x5 + x3 + x2 + 1)(x2 + x + 1)

x8 + x2 + 1 = (x4 + x + 1)2

x8 + x3 + 1 = (x3 + x + 1)(x5 + x3 + x2 + x + 1)

x8 + x4 + 1 = (x2 + x + 1)4

In general, no irreducible trinomial of degree r = 8k.

Theory – p. 14/49



Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

x8 + x + 1 = (x6 + x5 + x3 + x2 + 1)(x2 + x + 1)

x8 + x2 + 1 = (x4 + x + 1)2

x8 + x3 + 1 = (x3 + x + 1)(x5 + x3 + x2 + x + 1)

x8 + x4 + 1 = (x2 + x + 1)4

In general, no irreducible trinomial of degree r = 8k.

Theory – p. 14/49



Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

x8 + x + 1 = (x6 + x5 + x3 + x2 + 1)(x2 + x + 1)

x8 + x2 + 1 = (x4 + x + 1)2

x8 + x3 + 1 = (x3 + x + 1)(x5 + x3 + x2 + x + 1)

x8 + x4 + 1 = (x2 + x + 1)4

In general, no irreducible trinomial of degree r = 8k.

Theory – p. 14/49



Swan’s Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger

(1897), Pellet (1878), . . .

Theorem. Suppose r > s > 0, r − s odd. Then xr + xs + 1 has an even number of

irreducible factors over GF(2) if and only if one of the following holds:

r is even, r 6= 2s, rs/2 mod 4 ∈ {0, 1};

2r 6= 0 mod s, r = ±3 mod 8;

2r = 0 mod s, r = ±1 mod 8.

Corollary 1. If r is prime, r = ±3 mod 8, s /∈ {2, r−2}, then xr +xs +1 is reducible.

=⇒ need to check only xr + x2 + 1.

Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

Theory – p. 15/49



Swan’s Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger

(1897), Pellet (1878), . . .

Theorem. Suppose r > s > 0, r − s odd. Then xr + xs + 1 has an even number of

irreducible factors over GF(2) if and only if one of the following holds:

r is even, r 6= 2s, rs/2 mod 4 ∈ {0, 1};

2r 6= 0 mod s, r = ±3 mod 8;

2r = 0 mod s, r = ±1 mod 8.

Corollary 1. If r is prime, r = ±3 mod 8, s /∈ {2, r−2}, then xr +xs +1 is reducible.

=⇒ need to check only xr + x2 + 1.

Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

Theory – p. 15/49



Swan’s Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger

(1897), Pellet (1878), . . .

Theorem. Suppose r > s > 0, r − s odd. Then xr + xs + 1 has an even number of

irreducible factors over GF(2) if and only if one of the following holds:

r is even, r 6= 2s, rs/2 mod 4 ∈ {0, 1};

2r 6= 0 mod s, r = ±3 mod 8;

2r = 0 mod s, r = ±1 mod 8.

Corollary 1. If r is prime, r = ±3 mod 8, s /∈ {2, r−2}, then xr +xs +1 is reducible.

=⇒ need to check only xr + x2 + 1.

Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

Theory – p. 15/49



r = 8k: pentanomials

Swan’s theorem: no trinomial of degree r = 8k can be irreducible.

How to perform efficient arithmetic in GF(2r), say GF(216)?

Workaround: use a pentanomial

x16 + x5 + x3 + x + 1.

Theory – p. 16/49



r = 8k: almost irreducible trinomials

(Richard Brent, PZ, 2003)

x19+x4+1 = (x3+x+1)(x16+x14+x13+x12+x9+x7+x6+x5+x2+x+1)

Perform all arithmetic modulo x19 + x4 + 1.

Reduce mod x16 + · · ·+ 1 only when a canonical form is needed.

Theory – p. 17/49



ALGORITHMS

Algorithms – p. 18/49



The Problem

Given a degree r with 2r − 1 prime.

Goal 1. Find all irreducible (thus primitive) trinomials

xr + xs + 1.

Goal 2. (if possible) output a certificate which can be checked faster than the time to make it.

Algorithms – p. 19/49



The Problem

Given a degree r with 2r − 1 prime.

Goal 1. Find all irreducible (thus primitive) trinomials

xr + xs + 1.

Goal 2. (if possible) output a certificate which can be checked faster than the time to make it.

Algorithms – p. 19/49



The Problem

Given a degree r with 2r − 1 prime.

Goal 1. Find all irreducible (thus primitive) trinomials

xr + xs + 1.

Goal 2. (if possible) output a certificate which can be checked faster than the time to make it.

Algorithms – p. 19/49



Certificates

Integer multiplication:

395718860534 · 193139816415⇒ 76429068075489748865610

Difficult to exhibit a certificate which can be checked faster!

Integer factorization:

17943540555468154303435 ⇒ 22424170465 · 800187484459

One factor is a valid certificate.

Algorithms – p. 20/49



Certificates

Integer multiplication:

395718860534 · 193139816415⇒ 76429068075489748865610

Difficult to exhibit a certificate which can be checked faster!

Integer factorization:

17943540555468154303435 ⇒ 22424170465 · 800187484459

One factor is a valid certificate.

Algorithms – p. 20/49



Do not waste a factor of two!

One of Schönhage’s golden rules.

xr + xs + 1 = a(x)b(x) =⇒ 1 + xr−s + xr = xra(1/x)b(1/x)

=⇒ can restrict to s ≤ r/2.

Algorithms – p. 21/49



Main Theorem

Theorem. The product of ALL irreducible factors of degree dividing k is x2k

+ x.

x21

+ x = x(x + 1)

x22

+ x = x(x + 1)(x2 + x + 1)

x23

+ x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

x24

+x = x(x+1)(x2 +x+1)(x4 +x+1)(x4 +x3 +1)(x4 +x3 +x2 +x+1)

Algorithms – p. 22/49



The old algorithm

1. (sieving) for k = 2 to k0, compute:

gcd(x2k

+ x, xr + xs + 1)

If non trivial, output “divisible by degree k”

(When 2k exceeds r, reduce mod xr + xs + 1.)

2. (full test) check whether:

x2r

≡ x mod (xr + xs + 1).

If not, output the low bits from x2r

mod (xr + xs + 1) as pseudo-certificate.

For r = 6972593, we used k0 = 26: 236244 trinomials (7%) survived Step 1.

Complexity: O(r2) for each full test.

Algorithms – p. 23/49



The old algorithm

1. (sieving) for k = 2 to k0, compute:

gcd(x2k

+ x, xr + xs + 1)

If non trivial, output “divisible by degree k”

(When 2k exceeds r, reduce mod xr + xs + 1.)

2. (full test) check whether:

x2r

≡ x mod (xr + xs + 1).

If not, output the low bits from x2r

mod (xr + xs + 1) as pseudo-certificate.

For r = 6972593, we used k0 = 26: 236244 trinomials (7%) survived Step 1.

Complexity: O(r2) for each full test.

Algorithms – p. 23/49



The old algorithm

1. (sieving) for k = 2 to k0, compute:

gcd(x2k

+ x, xr + xs + 1)

If non trivial, output “divisible by degree k”

(When 2k exceeds r, reduce mod xr + xs + 1.)

2. (full test) check whether:

x2r

≡ x mod (xr + xs + 1).

If not, output the low bits from x2r

mod (xr + xs + 1) as pseudo-certificate.

For r = 6972593, we used k0 = 26: 236244 trinomials (7%) survived Step 1.

Complexity: O(r2) for each full test.

Algorithms – p. 23/49



The “new” algorithm

Perform a classical DDF (distinct degree factorization) with the “blocking strategy” (von zur

Gathen and Shoup 1992, Kaltofen and Shoup 1998):

0. Partition {2, . . . , br/2c} into intervals I1, . . . , Im.

1. for j := 1 to m do

a← 1; for k in Ij do

b← x2k

mod (xr + xs + 1) [SQR]

a← a(b + x) mod (xr + xs + 1) [MUL]

g ← gcd(a, xr + xs + 1) [GCD]

if g 6= 1 then output “reducible with degree in Ij ”

Output “irreducible”.

Complexity: O(dM(r)) if the smallest factor has degree d, assuming the GCD cost is not

dominant.

Algorithms – p. 24/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .

Algorithms – p. 25/49



NUMBERS

Numbers – p. 26/49



Binary Polynomials

a(x) = ar−1x
r−1 + · · ·+ a1x + a0 is stored in computer by the binary polynomial

a(2) = ar−1 · 2
r−1 + · · ·+ a1 · 2 + a0.

On a 8-bit computer, the trinomial x19 + x4 + 1 is stored as:

00001000
︸ ︷︷ ︸

x3
·x16

00000000
︸ ︷︷ ︸

0·x8

00010001
︸ ︷︷ ︸

(x4+1)·x0

Numbers – p. 27/49



Addition of Binary Polynomials

x15 + x13 + x12 + x11 + x9 + x8 + x6 + x4 + x3 + x2 10111011 01011100

x15 + x12 + x11 + x10 + x9 + x7 + x6 + x5 + x4 + x2 + x 10011110 11110110

x13 + x10 + x8 + x7 + x5 + x3 + x 00100101 10101010

Numbers – p. 28/49



Multiplication by xk

a = x13 + x12 + x11 + x9 + x8 + x6 + x4 + x3 + x2 00111011 01011100

x2a = x15 + x14 + x13 + x11 + x10 + x8 + x6 + x5 + x4 11101101 01110000

Numbers – p. 29/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2

Numbers – p. 30/49



Squares are easy:

xt + xu + · · · =⇒ x2t + x2u + · · ·

GCDs reduce to multiplication: O(M(r) log r)

=⇒We have to improve multiplications!

Numbers – p. 31/49



Multiplication over GF(2)[x]

naive (quadratic) algorithm

Karatsuba’s algorithm

Toom-Cook 3-way and higher order

Fast Fourier Transform: segmentation, Cantor (BiPolAr), Schönhage

Numbers – p. 32/49



Schönhage’s Algorithm

Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, A. Schönhage,

Acta Inf. 7 (1977), 395–398.

Complexity O(r log r log log r).

High-level description:

one product mod(x2N + xN + 1) =⇒ 2K products mod(x2L + xL + 1)

Constraints: K power of 3, L ≥ N/K , L multiple of K

Variant described here:

one product mod(xN + 1) =⇒ K products mod(x2L + xL + 1)

Constraints: K power of 3, L ≥ N/K , L multiple of K/3

Forward and backward transform: O(K log K) additions/shifts mod x2L + xL + 1.

Pointwise products: K products mod x2L + xL + 1.

Numbers – p. 33/49



The Algorithm

Input: a, b polynomials of degree < N

Parameters: K power of 3 dividing N , M = N/K , L ≥M multiple of K/3.

1. Decompose a, b in base xM :

a(x) =

K−1∑

i=0

ai(x)xiM

2. Forward transform with ω = x3L/K :

âi =

K−1∑

j=0

ai(x)ωij mod (x2L + xL + 1), 0 ≤ i < K

3. Pointwise products:

ĉi = âib̂i, 0 ≤ i < K

Numbers – p. 34/49



4. Backward transform:

c` =

K−1∑

i=0

ĉi(x)ω−`i mod (x2L + xL + 1), 0 ≤ ` < K

5. Recomposition:

c(x) =
K−1∑

`=0

c`x
`M mod (xN + 1).

Numbers – p. 35/49



An example

Compute a(x)b(x) mod (x15 + 1):

a(x) = x14 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x2 + 1,

b(x) = x13 + x11 + x8 + x7 + x6 + x2.

Take K = 3, L = 5:

a2 = x4 + x3 + x2 + x + 1, a1 = x3 + x + 1, a0 = x4 + x3 + x2 + 1

b2 = x3 + x, b1 = x3 + x2 + x, b0 = x2

Forward transform (ω = x5, mod x10 + x5 + 1):

â2 = x20a2 + x10a1 + a0 = x9 + x7 + x4 + x2 + x

â1 = x10a2 + x5a1 + a0 = x9 + x7 + x

â0 = a2 + a1 + a0 = x3 + 1

Numbers – p. 36/49



An example

Forward transform (ω = x5, mod x10 + x5 + 1):

â2 = x9 + x7 + x4 + x2 + x, â1 = x9 + x7 + x, â0 = x3 + 1

b̂2 = x7 + x3 + x, b̂1 = x7 + x3 + x2 + x, b̂0 = 0

Pointwise transforms:

ĉ2 = x6 + x3, ĉ1 = x7 + x6 + x3, ĉ0 = 0

Backward transform:

c2 = x6 + x3, c1 = x7 + x6 + x3, c0 = 0

Reconstruction:

c2x
10 + c1x

5 + c0 = x13 + x12 + x11 + x8 + x2 + x mod (x15 + 1)

Numbers – p. 37/49



Why does it work?

Let RL := GF(2)[x]/(x2L + xL + 1).

ω = x3L/K =⇒ ωK/3 = xL thus in RL:

ω2K/3 + ωK/3 + 1 = 0 (1)

From Eq. (1) it follows

ωK = 1 and ω−1 = ωK−1 (2)

c` :=
K−1∑

i=0

ĉi(x)ω−`i =
K−1∑

i=0

ω−`i





K−1∑

j=0

ωijai





(
K−1∑

k=0

ωikbk

)

=

K−1∑

j=0

K−1∑

k=0

ajbk

K−1∑

i=0

ωi(j+k−`).

Numbers – p. 38/49



Why does it work?

c` =

K−1∑

j=0

K−1∑

k=0

ajbk

K−1∑

i=0

ωi(j+k−`)

We have−K < j + k − ` < 2K . If t := j + k − ` 6= 0 mod K :

K−1∑

i=0

ωi(j+k−`) =
ωKt + 1

ωt + 1
= 0.

Otherwise j + k − ` ∈ {0,K}, and ωi(j+k−`) = 1.

Thus
∑K−1

i=0 ωi(j+k−`) is non-zero only when j + k − ` ∈ {0,K}, in which case it

equals K = 1 mod 2.

It follows:

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk (modx2L + xL + 1).

Numbers – p. 39/49



Why does it work?

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk (modx2L + xL + 1).

Recall deg(aj),deg(bk) < M : if L ≥M , then

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk.

5. Recomposition:

c(x) =
K−1∑

`=0

c`x
`M mod (xN + 1).

c(x) is simply the cyclic convolution of a(x) and b(x) mod xN + 1.

Numbers – p. 40/49



Arithmetic Modulo x2L + xL + 1

• addition: easy

• shift: multiplication by xj , 0 ≤ j < 3L

• full multiplication

Numbers – p. 41/49



Shifts Modulo x2L + xL + 1

Input: a binary polynomial a(x) of degree < 2L, 0 ≤ j < 3L

Output: xja(x) mod (x2L + xL + 1)

1. Shift of j, 0 ≤ j < L:

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

0
︸ ︷︷ ︸

j

a1 + a2
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

Numbers – p. 42/49



Case 2: Shift of L + j, 0 ≤ j < L

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

a2
︸ ︷︷ ︸

L

xja0 + a1
︸ ︷︷ ︸

L

a2 + a1
︸ ︷︷ ︸

L

Numbers – p. 43/49



Case 3: Shift of 2L + j, 0 ≤ j < L

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

a2
︸ ︷︷ ︸

L

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1 + xja0
︸ ︷︷ ︸

L

Numbers – p. 44/49



Multiplication mod x2L + xL + 1

3. Pointwise products

ĉi = âib̂i(modx2L + xL + 1)

aibi:
c3

︸ ︷︷ ︸

L

c2
︸ ︷︷ ︸

L

c1
︸ ︷︷ ︸

L

c0
︸ ︷︷ ︸

L

c2
︸ ︷︷ ︸

L

c1
︸ ︷︷ ︸

L

c0 + c3
︸ ︷︷ ︸

L

c1 + c2
︸ ︷︷ ︸

L

c0 + c2 + c3
︸ ︷︷ ︸

L

Numbers – p. 45/49



Timings

Core 2 processor, 2.66Ghz, 4MB cache, 3GB memory.

r Toom-Cook 3 Toom-Cook 4 FFTMul(K) GCD

6972593 1.32s 1.01s 0.27s(6561) 12.1s

24036583 7.89s 6.30s 1.77s(6561) 55.3s

32582657 13.9s 8.11s 2.16s(6561) 78.4s

Numbers – p. 46/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)

Numbers – p. 47/49



24036583

We have started computations for r = 24036583 (M41?) on April 25.

Already done more than 10%.

No primitive trinomial so far.

But already found a (smallest) factor of degree almost one million!

Help welcome (preferably Opteron/Core 2)!

Numbers – p. 48/49



Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!

Numbers – p. 49/49



Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!

Numbers – p. 49/49



Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!

Numbers – p. 49/49



Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!

Numbers – p. 49/49



Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!

Numbers – p. 49/49


