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Followup to Mika’s talk (preproceedings, p. 25)

Theorem. The first digit of F5·1087 is 1.

Proof:

bash-3.00$ time ./fib 5e87

n=5000000000000000000000000000000000000000000\

000000000000000000000000000000000000000000000

prec=302

length of Fib(n) in base 3 is

2190089397429712060570026179560455216382019945\

882232014510953225378415664943464622853621

first digit is 1

user 0m0.004s

Credits: (www.mpfr.org), MPFI.
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Motivation: Search for Primitive Trinomials

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5) over

GF(2) whose degree is a Mersenne exponent, Math. Comp., (2000):

x859433 + x288477 + 1.

With Richard Brent and Samuli Larvala (Helsinki University of Technology), we started a

search in 2000 . . .

June 26, 2000:

x859433 + x170340 + 1

Motivation – p. 4/49
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Status so far

xr + xs + 1

r s when

756839 215747, 267428, 279695 June 2000

859433 170340, 288477 June 2000

3021377 361604, 1010202 July 2000 to April 2001: 13 GIPS-years

6972593 3037958 Feb 2001 to July 2003: 230 GIPS-years

Largest known primitive trinomial:

x6972593 + x3037958 + 1

(August 31, 2002, while Samuli Larvala and PZ were visiting Richard Brent in Oxford)

As a comparison, RSA-155 (1999) took 8 GIPS years.
Motivation – p. 5/49
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THEORY

Theory – p. 6/49



GF(2)

Field with two elements: {0, 1}.

Addition table:

+ 0 1

0 0 1

1 1 0

Multiplication table:

× 0 1

0 0 0

1 0 1
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GF(2)[x]

Polynomial ring:

a(x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0,

where ai ∈ {0, 1}.

If ad 6= 0, d = deg(a).
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Irreducible Polynomial

Definition. a(x) ∈ GF(2)[x] is irreducible if

a(x) = b(x)c(x)

implies b(x) = 1 or c(x) = 1.

Example 1. x3 + x + 1 is irreducible.

Example 2. x3 + 1 is not:

x3 + 1 = (x2 + x + 1)(x + 1)

Example 3. x4 + x2 + x + 1 is not either (irreducible over Q):

x4 + x2 + x + 1 = (x3 + x2 + 1)(x + 1)
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Why trinomials?

We search simple irreducible polynomials over GF(2).

=⇒ efficient way to implement arithmetic over GF(2r).

First try monomials: xr is divisible by x. . .

Next try binomials: xr + 1 is divisible by x + 1:

xr + 1 = (x + 1)(xr−1 + xr−2 + · · ·+ x + 1)

Then try trinomials:

xr + xs + 1 with r > s > 0.

Theory – p. 10/49
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Primitive Trinomials

Definition. A polynomial f(x) ∈ GF(2)[x] is said primitive iff:

(1) f(x) is irreducible;

(2a) x has order 2r − 1 modulo f(x), where r := deg(f);

Cf Lucas test (Nitin’s talk).

Example 1. x4 + x + 1 is primitive:

x, x2, x3, x+1, x2 +x, x3 +x2, x3 +x+1, x2 +1, x3 +x, x2 +x+1, x3 +x2 +x,

x3 + x2 + x + 1, x3 + x2 + 1, x3 + 1, x15 ≡ 1.

Example 2. x6 + x3 + 1 is irreducible but not primitive:

x9 ≡ 1 mod (x6 + x3 + 1).

Theory – p. 11/49
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How to Check Primitivity?

Follow the definition:

1. Check f(x) is irreducible.

2. Check x2r
−1 = 1 mod f(x).

3. For each prime divisor p of 2r − 1, check

x(2r
−1)/p 6= 1 mod f(x)

Need to factor 2r − 1 . . .

Easy if 2r − 1 is known to be prime:

f(x) irreducible =⇒ f(x) primitive

Theory – p. 12/49
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Use Mersenne primes 2r − 1

Great Internet Mersenne Prime Search (GIMPS, www.mersenne.org).

George

Woltman

r date r mod 8

M35 1398269 Nov 1996 5

M36 2976221 Aug 1997 5

M37 3021377 Jan 1998 1

M38 6972593 Jun 1999 1

M39 13466917 Nov 2001 5

M40? 20996011 Nov 2003 3

M41? 24036583 May 2004 7

M42? 25964951 Feb 2005 7

M43? 30402457 Dec 2005 1

M44? 32582657 Sep 2006 1

Theory – p. 13/49



Do such trinomials always exist?

Does an irreducible/primitive trinomial exist for all degree r?

No!

Example. No irreducible trinomial of degree 8:

x8 + x + 1 = (x6 + x5 + x3 + x2 + 1)(x2 + x + 1)

x8 + x2 + 1 = (x4 + x + 1)2

x8 + x3 + 1 = (x3 + x + 1)(x5 + x3 + x2 + x + 1)

x8 + x4 + 1 = (x2 + x + 1)4

In general, no irreducible trinomial of degree r = 8k.

Theory – p. 14/49
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Swan’s Theorem (1962)

Previous work by von zur Gathen (2002), Dalen (1955), Dickson (1906), Stickelberger

(1897), Pellet (1878), . . .

Theorem. Suppose r > s > 0, r − s odd. Then xr + xs + 1 has an even number of

irreducible factors over GF(2) if and only if one of the following holds:

r is even, r 6= 2s, rs/2 mod 4 ∈ {0, 1};

2r 6= 0 mod s, r = ±3 mod 8;

2r = 0 mod s, r = ±1 mod 8.

Corollary 1. If r is prime, r = ±3 mod 8, s /∈ {2, r−2}, then xr +xs +1 is reducible.

=⇒ need to check only xr + x2 + 1.

Corollary 2. A trinomial of degree multiple of 8 cannot be irreducible.

Theory – p. 15/49
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r = 8k: pentanomials

Swan’s theorem: no trinomial of degree r = 8k can be irreducible.

How to perform efficient arithmetic in GF(2r), say GF(216)?

Workaround: use a pentanomial

x16 + x5 + x3 + x + 1.

Theory – p. 16/49



r = 8k: almost irreducible trinomials

(Richard Brent, PZ, 2003)

x19+x4+1 = (x3+x+1)(x16+x14+x13+x12+x9+x7+x6+x5+x2+x+1)

Perform all arithmetic modulo x19 + x4 + 1.

Reduce mod x16 + · · ·+ 1 only when a canonical form is needed.

Theory – p. 17/49



ALGORITHMS
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The Problem

Given a degree r with 2r − 1 prime.

Goal 1. Find all irreducible (thus primitive) trinomials

xr + xs + 1.

Goal 2. (if possible) output a certificate which can be checked faster than the time to make it.
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Certificates

Integer multiplication:

395718860534 · 193139816415⇒ 76429068075489748865610

Difficult to exhibit a certificate which can be checked faster!

Integer factorization:

17943540555468154303435 ⇒ 22424170465 · 800187484459

One factor is a valid certificate.

Algorithms – p. 20/49
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Do not waste a factor of two!

One of Schönhage’s golden rules.

xr + xs + 1 = a(x)b(x) =⇒ 1 + xr−s + xr = xra(1/x)b(1/x)

=⇒ can restrict to s ≤ r/2.

Algorithms – p. 21/49



Main Theorem

Theorem. The product of ALL irreducible factors of degree dividing k is x2k

+ x.

x21

+ x = x(x + 1)

x22

+ x = x(x + 1)(x2 + x + 1)

x23

+ x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

x24

+x = x(x+1)(x2 +x+1)(x4 +x+1)(x4 +x3 +1)(x4 +x3 +x2 +x+1)

Algorithms – p. 22/49



The old algorithm

1. (sieving) for k = 2 to k0, compute:

gcd(x2k

+ x, xr + xs + 1)

If non trivial, output “divisible by degree k”

(When 2k exceeds r, reduce mod xr + xs + 1.)

2. (full test) check whether:

x2r

≡ x mod (xr + xs + 1).

If not, output the low bits from x2r

mod (xr + xs + 1) as pseudo-certificate.

For r = 6972593, we used k0 = 26: 236244 trinomials (7%) survived Step 1.

Complexity: O(r2) for each full test.
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The “new” algorithm

Perform a classical DDF (distinct degree factorization) with the “blocking strategy” (von zur

Gathen and Shoup 1992, Kaltofen and Shoup 1998):

0. Partition {2, . . . , br/2c} into intervals I1, . . . , Im.

1. for j := 1 to m do

a← 1; for k in Ij do

b← x2k

mod (xr + xs + 1) [SQR]

a← a(b + x) mod (xr + xs + 1) [MUL]

g ← gcd(a, xr + xs + 1) [GCD]

if g 6= 1 then output “reducible with degree in Ij ”

Output “irreducible”.

Complexity: O(dM(r)) if the smallest factor has degree d, assuming the GCD cost is not

dominant.
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Complexity Analysis (sketch)

Old Algorithm: we sieve up to k ≈ log r.

• it remains≈ r
log r trinomials

• cost≈ r2 per full test, total cost≈ r3

log r

New Algorithm: cost O(dM(r)) if the smallest factor has degree d.

• Pr[no factor of degree < d] ≈ 1
d

• total cost r
∑r/2

d=1
1
dM(r) ≈ rM(r) log r

New algorithm faster as soon as M(r)� r2

log2 r
.

With R. Brent: a faster algorithm in O(r2 log r
√

M(r)/r), but no space in the margin. . .
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NUMBERS
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Binary Polynomials

a(x) = ar−1x
r−1 + · · ·+ a1x + a0 is stored in computer by the binary polynomial

a(2) = ar−1 · 2
r−1 + · · ·+ a1 · 2 + a0.

On a 8-bit computer, the trinomial x19 + x4 + 1 is stored as:

00001000
︸ ︷︷ ︸

x3
·x16

00000000
︸ ︷︷ ︸

0·x8

00010001
︸ ︷︷ ︸

(x4+1)·x0
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Addition of Binary Polynomials

x15 + x13 + x12 + x11 + x9 + x8 + x6 + x4 + x3 + x2 10111011 01011100

x15 + x12 + x11 + x10 + x9 + x7 + x6 + x5 + x4 + x2 + x 10011110 11110110

x13 + x10 + x8 + x7 + x5 + x3 + x 00100101 10101010
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Multiplication by xk

a = x13 + x12 + x11 + x9 + x8 + x6 + x4 + x3 + x2 00111011 01011100

x2a = x15 + x14 + x13 + x11 + x10 + x8 + x6 + x5 + x4 11101101 01110000
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Multiplication

(x6 + x4 + x3 + x2)(x5 + x4 + x3 + x + 1) 01011100

× 00111011

01011100

01011100

01011100

01011100

+ 01011100

0000110001000100

x11 + x10 + x6 + x2
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Squares are easy:

xt + xu + · · · =⇒ x2t + x2u + · · ·

GCDs reduce to multiplication: O(M(r) log r)

=⇒We have to improve multiplications!
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Multiplication over GF(2)[x]

naive (quadratic) algorithm

Karatsuba’s algorithm

Toom-Cook 3-way and higher order

Fast Fourier Transform: segmentation, Cantor (BiPolAr), Schönhage

Numbers – p. 32/49



Schönhage’s Algorithm

Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, A. Schönhage,

Acta Inf. 7 (1977), 395–398.

Complexity O(r log r log log r).

High-level description:

one product mod(x2N + xN + 1) =⇒ 2K products mod(x2L + xL + 1)

Constraints: K power of 3, L ≥ N/K , L multiple of K

Variant described here:

one product mod(xN + 1) =⇒ K products mod(x2L + xL + 1)

Constraints: K power of 3, L ≥ N/K , L multiple of K/3

Forward and backward transform: O(K log K) additions/shifts mod x2L + xL + 1.

Pointwise products: K products mod x2L + xL + 1.
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The Algorithm

Input: a, b polynomials of degree < N

Parameters: K power of 3 dividing N , M = N/K , L ≥M multiple of K/3.

1. Decompose a, b in base xM :

a(x) =

K−1∑

i=0

ai(x)xiM

2. Forward transform with ω = x3L/K :

âi =

K−1∑

j=0

ai(x)ωij mod (x2L + xL + 1), 0 ≤ i < K

3. Pointwise products:

ĉi = âib̂i, 0 ≤ i < K
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4. Backward transform:

c` =

K−1∑

i=0

ĉi(x)ω−`i mod (x2L + xL + 1), 0 ≤ ` < K

5. Recomposition:

c(x) =
K−1∑

`=0

c`x
`M mod (xN + 1).
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An example

Compute a(x)b(x) mod (x15 + 1):

a(x) = x14 + x13 + x12 + x11 + x10 + x8 + x6 + x5 + x4 + x3 + x2 + 1,

b(x) = x13 + x11 + x8 + x7 + x6 + x2.

Take K = 3, L = 5:

a2 = x4 + x3 + x2 + x + 1, a1 = x3 + x + 1, a0 = x4 + x3 + x2 + 1

b2 = x3 + x, b1 = x3 + x2 + x, b0 = x2

Forward transform (ω = x5, mod x10 + x5 + 1):

â2 = x20a2 + x10a1 + a0 = x9 + x7 + x4 + x2 + x

â1 = x10a2 + x5a1 + a0 = x9 + x7 + x

â0 = a2 + a1 + a0 = x3 + 1
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An example

Forward transform (ω = x5, mod x10 + x5 + 1):

â2 = x9 + x7 + x4 + x2 + x, â1 = x9 + x7 + x, â0 = x3 + 1

b̂2 = x7 + x3 + x, b̂1 = x7 + x3 + x2 + x, b̂0 = 0

Pointwise transforms:

ĉ2 = x6 + x3, ĉ1 = x7 + x6 + x3, ĉ0 = 0

Backward transform:

c2 = x6 + x3, c1 = x7 + x6 + x3, c0 = 0

Reconstruction:

c2x
10 + c1x

5 + c0 = x13 + x12 + x11 + x8 + x2 + x mod (x15 + 1)
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Why does it work?

Let RL := GF(2)[x]/(x2L + xL + 1).

ω = x3L/K =⇒ ωK/3 = xL thus in RL:

ω2K/3 + ωK/3 + 1 = 0 (1)

From Eq. (1) it follows

ωK = 1 and ω−1 = ωK−1 (2)

c` :=
K−1∑

i=0

ĉi(x)ω−`i =
K−1∑

i=0

ω−`i





K−1∑

j=0

ωijai





(
K−1∑

k=0

ωikbk

)

=

K−1∑

j=0

K−1∑

k=0

ajbk

K−1∑

i=0

ωi(j+k−`).
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Why does it work?

c` =

K−1∑

j=0

K−1∑

k=0

ajbk

K−1∑

i=0

ωi(j+k−`)

We have−K < j + k − ` < 2K . If t := j + k − ` 6= 0 mod K :

K−1∑

i=0

ωi(j+k−`) =
ωKt + 1

ωt + 1
= 0.

Otherwise j + k − ` ∈ {0,K}, and ωi(j+k−`) = 1.

Thus
∑K−1

i=0 ωi(j+k−`) is non-zero only when j + k − ` ∈ {0,K}, in which case it

equals K = 1 mod 2.

It follows:

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk (modx2L + xL + 1).

Numbers – p. 39/49



Why does it work?

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk (modx2L + xL + 1).

Recall deg(aj),deg(bk) < M : if L ≥M , then

c` =
∑

j+k=`

ajbk +
∑

j+k=K+`

ajbk.

5. Recomposition:

c(x) =
K−1∑

`=0

c`x
`M mod (xN + 1).

c(x) is simply the cyclic convolution of a(x) and b(x) mod xN + 1.
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Arithmetic Modulo x2L + xL + 1

• addition: easy

• shift: multiplication by xj , 0 ≤ j < 3L

• full multiplication
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Shifts Modulo x2L + xL + 1

Input: a binary polynomial a(x) of degree < 2L, 0 ≤ j < 3L

Output: xja(x) mod (x2L + xL + 1)

1. Shift of j, 0 ≤ j < L:

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

0
︸ ︷︷ ︸

j

a1 + a2
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j
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Case 2: Shift of L + j, 0 ≤ j < L

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

a2
︸ ︷︷ ︸

L

xja0 + a1
︸ ︷︷ ︸

L

a2 + a1
︸ ︷︷ ︸

L
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Case 3: Shift of 2L + j, 0 ≤ j < L

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

0
︸ ︷︷ ︸

L

xja0
︸ ︷︷ ︸

L

a2
︸ ︷︷ ︸

L

a1
︸ ︷︷ ︸

L

a0
︸ ︷︷ ︸

L−j

a2
︸ ︷︷ ︸

j

a1 + xja0
︸ ︷︷ ︸

L
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Multiplication mod x2L + xL + 1

3. Pointwise products

ĉi = âib̂i(modx2L + xL + 1)

aibi:
c3

︸ ︷︷ ︸

L

c2
︸ ︷︷ ︸

L

c1
︸ ︷︷ ︸

L

c0
︸ ︷︷ ︸

L

c2
︸ ︷︷ ︸

L

c1
︸ ︷︷ ︸

L

c0 + c3
︸ ︷︷ ︸

L

c1 + c2
︸ ︷︷ ︸

L

c0 + c2 + c3
︸ ︷︷ ︸

L
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Timings

Core 2 processor, 2.66Ghz, 4MB cache, 3GB memory.

r Toom-Cook 3 Toom-Cook 4 FFTMul(K) GCD

6972593 1.32s 1.01s 0.27s(6561) 12.1s

24036583 7.89s 6.30s 1.77s(6561) 55.3s

32582657 13.9s 8.11s 2.16s(6561) 78.4s
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6972593 again

From April 18 to April 29, 2007, we started the computation of extended logs for

r = 6972593 using about 25 Opterons (2.2Ghz and 2.4Ghz).

It took a total of about 0.44 cpu year, or about 1 GIPS-year.

And checking all certificates took only 2 hours with Magma!

Speedup of about 230 due to:

• Schönhage’s multiplication (with classical DDF and blocking strategy)

• new multi-level blocking DDF algorithm (with R. Brent)

• faster basecase multiplication (with P. Gaudry and E. Thomé): about 130 cycles for

128× 128→ 256 (Core 2)

• subquadratic GCD (still quite expensive)
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24036583

We have started computations for r = 24036583 (M41?) on April 25.

Already done more than 10%.

No primitive trinomial so far.

But already found a (smallest) factor of degree almost one million!

Help welcome (preferably Opteron/Core 2)!
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Some Conclusions

slow algorithms are slow as expected

fast algorithms are indeed asymptotically faster

thanks to Moore’s law, the asymptotic domain is closer and closer. . .

Thank you for staying awake so far!
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