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In 1770 Leonhard Euler found a magic square of order 4 filled of squares.
682 292 412 372
172 312 792 322
592 28% 232 612
112 777 8% 492
All rows and columns and the two main diagonals sum up to 8515. Contrary to classical
magic squares filled with consecutive integers, the only rule is that all elements are squares
of different positive integers. We also require the magic square to be primitive, i.e., the ged
of all elements is one (indeed, multiplying all elements by some integer k* keeps the equality
between sums). In 1996, Martin Gardner asked whether there exists a 3 x 3 magic square
filled with squares, and offered a $100 prize to the first discoverer. Euler’s method, and a
detailed history of this problem is presented in [2].
Lee Sallows found in 1997 the following near miss:
127%  46* 58
22 113% 942
742 822 9T?

where all rows and columns and main diagonals sum up to 21609, except the descending
diagonal whose sum is 38307. Christian Boyer notices in [2] that Sallows’ solution is part of
a family proposed by Lucas in 1876.
Duncan Buell shows in [3] that if a solution exists, its center cell is larger than 25 - 10%4.
In Section 1, we give a necessary condition that elements of a magic square of squares
must follow. In Section 2, we extend the class of solutions found by Buell and Pech to the
“magic hourglass” problem and similar configurations with 7 squares.

1. MODULAR PROPERTIES

Lemma 1. For any magic 3 X 3 square of squares which is primitive, the corresponding sum
must be s = 3 mod 72, and the (square) elements must be 1 mod 24.

Proof. The idea of the proof is to find all possible magic squares of squares modulo ¢ for
some prime power ¢. Since elements are squares, this adds some additional constraints. For
example for ¢ = 4, only 0 and 1 are squares. It is then easy to see that a 3 x 3 magic square
of squares modulo 4 can be only of two possible forms:

000 111
000, 111,
000 111
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the first one with sum 0 mod 4, the second one with sum 3 mod 4. However, the first solution
will not give primitive squares, since we can divide all elements by 22. Modulo 8, we get
solutions for sum 0 mod 8 (but non-primitive as explained above), for 3 mod 8, and for
4 mod 8 (non-primitive either). The only primitive solution is:

111
1 1 1.
1 11

Thus a 3 x 3 magic square of squares must have all its (square) elements 1 mod 8, and a sum
3 mod 8.

Similarly, modulo 9, we get one non-primitive solution with all elements and sum 0 mod 9,
and 27 solutions with sum 3 mod 9, filled with (square) elements 1, 4 or 7 modulo 9, which
are the only squares modulo 9, apart from 0. Thus s = 3 mod 8 and s = 3 mod 9, therefore
by CRT s = 3 mod 72.

The (square) elements must be 1 modulo 8, and 1, 4, or 7 modulo 9, which gives 1 mod 3,
and 1 mod 24. 0

REMARK 1: we can also try larger ¢ values. For example with ¢ = 7 (resp. ¢ = 11) we find
that s should not be divisible by 7 (resp. 11).

REMARK 2: the same approach applies to the “hour glass” problem [3] and to the Enigma 1
problem [2]. It suffices to relax the quadratic residue constraint on the corresponding entries
(D and F for the hour glass, D and [ for Enigma 1):

A B C
D E F.
G H I

Surprisingly, despite relaxing two constraints, for both problems we get exactly the same
conditions than in Lemma 1. In fact for all problems 7.1 to 7.VIII from [1] we got the same
constraint: all square elements must be 1 mod 24.

2. ARITHMETIC PROGRESSIONS OF SQUARES

In [3], Buell considers configurations called “magic hourglasses” where the central cell is
a = A?, with A a sum of two squares in at least 3 different ways (see also [4]). However
he assumes that in each of the two diagonals and the central column, the three entries are
coprime, which does not necessarily hold. We show that we can find primitive solutions with
a common divisor among some rows, columns or diagonals.

Theorem 1. Let A be a positive odd integer. Then all non-trivial arithmetic progressions of
the form 2, A%, y? can be found as follows, each in a unique way. Let p be a square-free divisor
of A, p=1mod 4. Write A = pA’, and search for all decompositions A’ = m? +n? with m
even and n odd, m,n > 0. Then write b = 4mn(m? — n?), v = /A2 — p2b, y = \/ A% + p?b.

Proof. First it can be easily checked that A2—p?b and A%2+p?b are perfect squares, respectively
of x = p(m? — 2mn — n?) and of y = p(m? + 2mn — n?).
Conversely, assume 2, A2, 9% is an arithmetic progression of squares. We must prove that
it can be produced in the way given by the theorem, and in a unique way.
Let us first prove the uniqueness. Assume A = pA’ = p'A” with p,p’ square-free and
distinct, A’ = m2+n?, A" = m> +n/?, and A2 £4p*mn(m? —n?) = A2 £4p”m'n'(m"> —n'?).
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If a prime ¢ divides both m,n,m’,n’, we can divide all four values by ¢, and we will find
two similar decompositions; we can thus assume that m,n,m’,n’ have no common factor.
Without loss of generality we can assume there is a prime factor g of p’ which does not divide
p. Since p(m? +n?) = p'(m’* + n'?), q divides m? 4+ n?. But since ¢ divides p/, it also divides
z = p(m?—2mn—n?) = p'(m>—2m'n' —n'*). Thus it divides m? —2mn—n?. Since ¢ divides
both m? +n? and m? — 2mn — n?, it divides their sum 2m? — 2mn. Similarly, considering v,
it divides both m? +n? and m? 4+ 2mn — n?, thus it divides 2m? 4+ 2mn. Therefore ¢ divides
4m?. Since ¢ is odd (remember p’ = 1 mod 4), it necessarily divides m, and then it divides
n too. Now:
e if ¢ does not divide m'> + n’*, then ¢ divides A = p/(m'* + n’*) with exponent 1. On
the other side, since ¢ divides both m and n, it divides A = p(m?*+n?) with exponent
2 at least, which leads to a contradiction;
e if ¢ divides m/*> +n’?, since we assumed m, n, m’,n’ have no common factor, it cannot
divide m/ (nor n', one implying the other) thus by Lemma 2 it does not divide
m'* — 2m/n’ —n'?, thus it divides © = p/(m'> — 2m'n’ — n’*) with exponent 1. On the
other side since x = p(m? — 2mn — n?) and ¢ divides both m and n it divides = with
exponent 2 at least, which leads to a contradiction too.

This proves the uniqueness of a decomposition as given by the theorem.

It remains to prove that all arithmetic progressions of three squares satisfy such a decom-
position. First we show (see Lemma 3) that decompositions A = p(m?+n?) with p = 3 mod 4
cannot work (or equivalently, decompositions with A = 3 mod 4 since m? + n? = 1 mod 4).

Now assume that ¢? divides all terms z, A, y of an arithmetic progression 2, A%, y? of
squares. Let z = ¢*ry, A = ¢*Ay, y = ¢*y1. Then 22, A2 y? is an arithmetic progression
of squares. Thus by induction it can be written A; = p;(m? 4+ n?), and x; = /A2 — p?by,
y1 = \/A? + p?b; with by = 4myn;(m? — n?). Then z, A,y satisfy the theorem with p; = p,
m = qmy, n = qn;.

It thus remain to deal with the case where the ged of z, A,y is square-free. Let p be
this ged, and = = pz’, A = pA’, y = py’. Then 2/*, A, y'* is an arithmetic progression of
squares with ged(z/, A, y/) = 1. According to [3, 4] we have A’ = m?+n? with m, n coprime,
' =A? - b,y = VA? + b with b = dmn(m? — n?). O

Lemma 2. If an odd prime q divides m* +n?* but does not divide m (or n) then it does not
divide m? — 2mn — n?.

Proof. First if ¢ does not divide m it cannot divide n, otherwise it could not divide m? + n?.
Then assume ¢ divides m? — 2mn — n%. Then it divides (m? + n?) + (m? — 2mn — n?) =
2m(m — n). Since it does not divide m, it necessarily divides m — n. But then it divides
m? —n% = (m —n)(m+n). And then it divides (m? + n?) + (m? — n?) = 2m?, which gives
a contradiction. O

Lemma 3. Let A > 0 be a integer equal to 3 mod 4. There exists an integer g > 1 such that
for all decompositions A = p(m? + n?) with p, m,n positive integers, g divides p.

Proof. Since A = 3 mod 4, A has at least one prime factor ¢ = 3 mod 4 appearing with odd
exponent in A. Then since the exponent of ¢ in m? + n? is necessarily even (this is classical
result whose proof can be found in Hardy and Wright, An introduction to the theory of

numbers, instance 20.1, Theorems 367 and 368), ¢ necessarily divides all values of p. 0]
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Decompositions A = p(m? + n?) lead so arithmetic progressions of primes
A% —4p*mn(m? — n?), A%, A% + 4p*mn(m® — n?)

with p? as common divisor. However for the hourglass problem, if A decomposes in three
different such ways with coprime values of p, then it can lead to a possible solution.

We found the following hourglass, where all 5 sums are equal modulo 247, among which
the two diagonals and the central column are fully equal: in

711111125% 1710283897% 17044802092
12898651252
649808663% 634376129% 16793288752

This solution corresponds to:
A = 1289865125, (m,n, p) = (13320,8975,5), (r, s,t) = (7666, 35087, 1), (u, v, w) = (19526, 30143, 1),

and has a central element A of 10 digits only, whereas with p = ¢ = w = 1 Buell found no
solution modulo 27 up to A = 5 - 10'2.

Similarly Pech found no solution modulo 2°% up to A = 10'3, and the following is one

modulo 2°7:
725457722152 13920294226012 15271101418032

10812359183652
77954070629% 6327687641932 1527376618015

which corresponds to A of 13 digits (less than Buell’s search bound too):
A = 1081235918365, (m, n, p) = (1306, 505, 551465), (r, s,t) = (1719, 3868, 60349), (u, v, w) = (185522, 1023141, 1).

We performed a search up to 5-10'2, and this is the only solution modulo 257 we found (we
found 3 solutions modulo 2°%, for A = 2112168345989, 2333130729649, 3065838349925).

For problem 7.1 we did a partial search only up to A = 6,500, 000,000, and found no
solution. Similarly for problem 7.III up A = 16,900, 000,000, and for problem 7.V up to
A = 16,000, 000, 000.

For problem 7.VI from [1] we found the following solution modulo 2% (i.e., we can complete
the two empty cells by numbers so that all sums are equal modulo 259):

1189945859393%  18324471103132
3395314123655 2830752289945% 2120886384455
3559277263991% 3822348218801

This is the only solution modulo 2% we found up to A = 615, 000, 000, 000.
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