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SIZE OPTIMIZATION OF SEXTIC POLYNOMIALS IN THE
NUMBER FIELD SIEVE

SHI BAI AND PAUL ZIMMERMANN

ABSTRACT. The general number field sieve (GNFS) is the most efficient al-
gorithm known for factoring large integers. It consists of several stages, the
first one being polynomial selection. The quality of the chosen polynomials in
polynomial selection can be modelled in terms of size and root properties. We
describe some methods to optimize the size property of sextic polynomials.

1. INTRODUCTION TO GNFS

The general number field sieve [I1] is the most efficient algorithm known for
factoring large integers. It has been used in many (current and previous) record
factorizations such as RSA-768 [I8] and RSA-704 [2]. GNFS consists of several
stages including polynomial selection, sieving, filtering, linear algebra and finding
square roots.

Let n be the integer to be factored. In polynomial selection, we want to choose
two irreducible and coprime polynomials f(x) and g(x) over Z which share a com-
mon root m modulo n. In practice, the homogenized polynomials F(x,y) and
G(x,y) are often used. We want to find many coprime pairs (a,b) € Z? such that
the polynomials values F'(a,b) and G(a,b) are simultaneously smooth. An integer
is smooth with respect to bound B (or B-smooth) if none of its prime factors are
larger than B. The line sieving and lattice sieving [I7] are commonly used to iden-
tify such pairs (a,b). The running-time of sieving depends on the quality of the
chosen polynomials in polynomial selection, hence many polynomial pairs will be
generated and optimized in order to produce a good one.

This paper discusses algorithms for size optimization in polynomial selection in
the number field sieve. We focus on polynomial selection with two polynomials, one
of which is a linear polynomial and the other is a polynomial of degree six. Such
polynomials are of great practical interest since they have been used in current and
previous record factorizations such as RSA-768 [I8] and may be used for future
records.

2. POLYNOMIAL SELECTION

For large integers, most methods for polynomial selection [4 @} 10 12l 13] in
GNF'S use a linear polynomial for g(x) and a quintic or sextic polynomial for f(x).
The standard method to generate such polynomial pairs is to expand n in base-
(my, mg) son = Z?:o cimim4~". The polynomial pair is given by f(x) = Z?:o c;xt
and g(z) = maox —my.
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The running-time of sieving depends on the smoothness of the polynomial values
|F(a,b)| and |G(a,b)|. Let ¥(z,z'/*) be the number of z'/*-smooth integers below
x for some u > 0. The Dickman-de Bruijn function p(u) [7] is often used to estimate
the density of smooth numbers ¥ (x,2'/*). It can be shown that

W 1/u
lim 2@ ),
xr—ro0
The Dickman-de Bruijn function satisfies the differential equation
p(u)+plu—1)=0, plu)=1 for0<u<1.
It may be shown that p satisfies the asymptotic estimate
log(p(u)) = —(1 + o(1))ulogu as u — co.

For practical purposes, the frequency of smooth numbers can be approximated by
the Canfield-Erdds-Pomerance theorem, which can be stated as follows (Corollary
1.3 from [q]).

Theorem 2.1. For any fixed € > 0, we have
\I/(Qj,xl/u) _ quu(lJro(l))

YV and w tend to infinity, uniformly in the region x > u*/(1=9).

as x

We want to choose the polynomials in a way such that it can produce many
smooth polynomial values across the sieve region. This heuristically requires that
the size of polynomial values is small in general. In addition, one can choose
an algebraic polynomial f(z) which has many roots modulo small prime powers.
Then the polynomial values are likely to be divisible by small prime powers. This
may increase the smoothness chance for polynomial values. We describe some
methods [9, [13] to estimate and compare the quality of polynomials.

1. Quality of polynomials. The quality of the chosen polynomials in polyno-
mial selection can be modelled in terms of size and root properties [I3].

2.1.1. Size property. Let (a,b) be pairs of relatively prime integers in the sieving
region 2. For the moment, we assume that a rectangle sieving region is used where
la] < U and 0 < b < U. We also assume that polynomial values |F'(a,b)| and
|G(a,b)| behave like random integers of similar size. The number of sieving reports
(coprime pairs that lead to smooth polynomial values) can be approximated by

// <log|1§g:;y)> ) <log|1§g(a;y)l> dedy.

The multiplier 6/72 accounts for the probability of a, b being relatively prime.

Since G is a linear polynomial, we may assume that log(|G(a,b)|) does not vary
much across the sieving region. A simplified approximation to compare polynomials
(ignoring the constant multiplier) is

(2.1) // (logfg%y”) da dy.

The base-(my, mg) expansion [9, [I0] can yield polynomials whose coefficients
are O(nl/ (d“)). The leading coefficients ¢4 and c¢4_1 are usually much smaller
than n'/(@+1)_ The coefficient c¢g_o is slightly smaller than n!/(@+1  For such




SIZE OPTIMIZATION OF SEXTIC POLYNOMIALS IN THE NUMBER FIELD SIEVE 3

polynomials, it is often better to use a skewed sieving region where the sieving
bounds for a, b have ratio s, while keeping the area of the sieving region 2U2. The
sieving bounds become |a] < U4/s and 0 < b < U/4/s. Each monomial in the
polynomial F(a,b) is bounded by |c;|U%s~%/2,

In the integral ([2I), computing p is time-consuming, especially if there are many
candidates. We can use some coarser approximations.

Since p(u) is a decreasing function of u, we want to choose a polynomial pair
such that the size of |F'(a,b)| (and |G(a,b)|) is small on average over all (a,b). This
roughly requires that the coefficients of the polynomials are small in absolute value.

We can compare polynomials by the logarithmic average of polynomial values
across the sieving region.

log / F(z,y)] de dy

For computational convenience, one can use the logarithmic L? norm for poly-
nomial F(x,y) by

1
(2.2) §log /FQ(x,y)dxdy

The logarithmic L?-norm is influenced by the skewness and the location of real
roots. The integral in (Z2]) can be expressed as a polynomial in the coefficients of
F(z,y).

One can also change the range and shape of the integral region (the domain ),
while keeping the skewness. We consider a modified logarithmic L?-norm defined
by

(2.3) log( / / F%(xs,y dxdy)

where s is the skewness of sieving region.

The logarithmic L?-norm given in Equation (23] is defined on a square domain.
One can also use a variant with elliptic domain. We change to polar coordinates
where x = rcosf and y = rsinf.

1 2m 1
(2.4) 3 log (s_d / / F?(scosf,sinf) r2@+1 dr dH) .
o Jo

The logarithmic L2-norm in Equation (23] is not exactly the same as the logarith-
mic L?-norm in Equation (Z4]), because the integrals are over different domains
(ellipse and rectangle). They are both (but slightly different) approximations to
the size of polynomials.

For sextic polynomial, the logarithmic L?-norm in Equation (24]) can be ex-
pressed as

log (7168 (231 Co+42cpca +14¢oCs +10¢oCs + 21 ¢ cl + 14 ¢1¢3
(25) +10¢1¢5 + 762 4+ 10¢9¢Cq + 14 C2Cg + 5 53 + 14 ¢3¢
FTE 4428456 + 21 8 +2315§))

where ¢ = ¢;s7%/2.
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For a given norm defined in Equations [23) or (24, one should not only be
able to estimate accurately that norm for a given skewness, but find the optimal
skewness that gives the minimal norm.

2.1.2. Root property. If a polynomial f(x) has many roots modulo small prime
powers, the polynomial values may behave more smooth than random integers of
about the same size. Boender, Brent, Montgomery and Murphy [3, [12], 13| [T4]
described some quantitative measures of this effect (root property).

Let p be a prime and = > 0 be an integer. We denote cont,(z) the exponent of
the largest power of p dividing = and cont,(0) = co. Let S be a set of uniformly
distributed random integers. We denote cont,(S) the average p-valuation over
elements of S.

For a fixed prime p, the expected p-valuation cont,(S) is

1(1 1)+2 <1 1>+ 1
p P p?  p p—1

In the number field sieve, we want to know the expected p-valuation of homoge-
neous polynomial values. Let F'(x,y) be an algebraic polynomial and f(z) be its
dehomogenized polynomial. We discuss the roots of F(z,y). Let p* | F(a,b) for
some coprime integers a, b and some integer k. Then there are two cases: either ptb
and f(a/b) =0 (mod p*) or p | band h(b/a) =0 (mod p*) where h(z) = 29 f(1/z).

In the first case, pairs (a,b) can be identified by (a/b (mod p*),1). They are
referred to as the affine roots. F(x,y) (mod p*) can have p* possible affine roots,
each of which relates to p* — p*~! equivalent (a,b) pairs.

For the second case, pairs (a,b) can be identified by (1,b/a (mod p*)). We call
them the projective roots. There are at most p*~! projective roots. Each relates
to p¥ — pF¥~1 equivalent (a,b) pairs.

Let np be the number of affine and projective roots (counting without mul-
tiplicities) of F' (mod p*) for & > 1. The expected p-valuation of homogeneous
polynomial values is

oo
1 Nk

] k—1°
erlk:lp

(2.6) cont,(F)

Murphy [I3] defines the a(F') function to compare the cumulative expected p-
valuation of polynomial values to random integers of similar size. «(F') can be
considered as the logarithmic benefit compared to using random integers.

a(F) =Y (pll _ contp(F)) log .

p<B M

In the number field sieve, we want «(F') negative and large in absolute value.

2.1.3. Combined score. The logarithmic L?-norm in Equation (23] or (24) can be
modified to take the root property into account. Since the a(F") function affects the
polynomial size on logarithmic scale, the combined score can be defined by adding
a(F) to the logarithmic L?-norm. The combined score is only a rough estimate to
compare polynomials. In practice, it is only trustful when the differences between
polynomials are large.
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2.2. Optimizing the quality of polynomials. Polynomial selection can be di-
vided into three steps: polynomial generation, size optimization and root optimiza-
tion.

In polynomial generation, we generate many raw polynomials whose size is ad-
missible. We further reduce the size of the raw polynomials in size optimization.
Many polynomials can have comparable size after size optimization. We produce
and choose the best polynomials in terms of root properties in root optimization.

Translation and rotation are useful to optimize the size and root properties. Let
fz) = Z?:o c;xt and g(x) = max — my where my/ms (mod n) is the common
root.

Translation of f(x) by k gives a new polynomial fi(x) defined by fr(x) = f(z +
k). The linear polynomial gi(x) is mox — mq + kmsg. The common root becomes
mi/mo —k (mod n). Translation does not alter the root properties.

Rotation by a polynomial A(x) gives a new polynomial fy(,)(z) defined by
@) (@) = f(x) +X(z) g(x). The linear polynomial is unchanged gy(,)(z) = g(x) =
mox — mqp. The common root is unchanged. A(x) is often a linear or quadratic
polynomial, depending on n and on the skewness of f(x). Rotation can affect both
size and root properties.

3. SIZE OPTIMIZATION

Polynomial generation (e.g., using Kleinjung’s methods [9] [10]) gives many raw
polynomials with small leading coefficients. The raw polynomials have very small
lcal, |ca—1] and small |cq_a|. The coefficients |c4—3l, - ,|co| are comparable to
(n/cq)'/?.

For quintic polynomials, coefficients |c5], |c4| and |c3| are small. The next non-
controlled coefficient is co. Let the sieving bounds be |a| < Uy/s and 0 < b < U/+/s.
In the regions where no cancellation occurs, the polynomial values are bounded
below by |02\s’1/2U5. As s > 1, the contribution of ¢z on the polynomial value is
already reduced by a factor of s—1/2.

For sextic polynomials, the polynomial values are bounded below by terms |c3|U°
in the regions where no cancellation occurs. As c3 is not controlled in the polynomial
generation step, we do not get a reduction in size like the s~/2 factor for quintic
polynomials. Therefore, it is important to size-optimize sextic polynomials before
trying to optimize the root properties.

In this paper, we focus on the size optimization of raw, sextic polynomials. In size
optimization, we want to produce polynomials with smaller logarithmic L2-norm
(e.g., Equation ([Z4])) by changing the skewness, translating and rotating.

3.1. Local descent method. Let f(z) be a sextic polynomial. We can use qua-

dratic rotations since cs,- - -, co have order (n/cg)'/%. A quadratic rotation is de-
fined by
(3.1) fuww(®@) = f(2) + (uz® + vr +w) g(z)

for some integers wu, v, w.

Murphy [I3] used the classic multivariable optimization technique to optimize
the L2-norm. For sextic polynomials, there are five variables u,v,w, k, s, where k
is the translation amount and s is the skewness; u, v, w, k are integers and s is real.
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The allowed range of these parameters is huge. The standard iterative methods,
such as the gradient descent, are slow and tend to get stuck in local minima. For
efficiency, we use a local descent method to optimize the size.

In each iteration, we attempt some translations k& and rotations u,v,w, and
descend into the local minimum in the direction determined by some k,u,v,w.
During the procedure, we need to re-optimize the skewness of the polynomial. We
describe the method in Algorithm [

Algorithm 1: Local descent method

Input : polynomial pair f(x) = Z?:o c;xt and g(x) = mox — my;
Output: polynomial pair of smaller (or equal) L2-norm;
1tk=u=v=w=1;
2 repgat
s f(z)=flzxk), g(z) = g(x) £ kma;

4 if either L*(f) < L*(f) then

5 f=Ff9=3 k=2k

6 else

7 k= Tk/2];

s J@) = f(a) £ ua? gla)

o if either L?>(f) < L*(f) then
10 f=7F u=2u
11 else
12 u=[u/2];
13 Search similarly (e.g., lines 8-12) for linear and constant rotations;

14 until local minimum is found or loop limit is reached;
15 return f(z), g(z);

The method seems to work for quintic polynomials, when the searching space is
not too huge. However, it performs badly in practice for sextic polynomials. Many
iterations get stuck at local minima without giving much reduction in size. We
demonstrate this situation below.

We examine a data set consisting of 10° raw sextic polynomials for RSA-768.
The polynomials are generated by Kleinjung’s 2008 algorithm [10]. Figure [l shows
the discrete density distribution of logarithmic Ls-norm for the raw and optimized
(by the local descent) polynomials.

In Figure [Il the raw polynomials have average logarithmic L?-norm 80.75 and
standard deviation 1.00. The optimized polynomials have average logarithmic L2-
norm 79.06 and standard deviation 3.55. It can be seen that only a few polynomials
are optimized well by the local descent procedure. Many of them seem to descend
to a local minimum rapidly and then get stuck. We discuss below some better
methods to optimize such polynomials.

To overcome local minima, we could use some global optimization methods such
as simulated annealing. However, they do not seem to work efficiently in our ex-
periments, due to the huge search space and large coefficients.

Instead, we first translate the algebraic polynomial to increase the skewness.
Heuristically, it moves away from the starting point and decreases the chance to
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FIGURE 1. Local descent optimization

get stuck in a local minimum. If the skewness of the polynomial is larger than the
translation amount k, the translation does not affect the norm significantly. This
can be seen from the coefficients of f(z + k). A local optimization method such as
descent can then be applied. One question is how to decide the translation amount.
We describe some methods in Subsection

3.2. A better method. We want to produce a polynomial with small L?-norm
by translation and rotation.

In the raw polynomial, cg, c1,ca, cs have similar size and are much larger than
c4,¢5,¢6. In Equation (ZH), the &, &1, ¢ are bounded by é;. Therefore, the L2-
norm can be controlled by terms involving ¢s, ¢4, ¢ (since |cg| = |c5| < |ca|). A
lower bound, not depending on skewness, is dominated by the term ¢3 = c3. We
demonstrate this situation for a raw polynomial A7¢s in Appendix [Al It is a raw
polynomial generated by Kleinjung’s 2008 algorithm [I0] that could be used for
RSA-768.

Let s = 3916800 be the optimal skewness for the raw polynomial. We consider
the relative weight of each term in Equation (Z3). The largest term is 5¢3 =~
2.58 x 1056, whereas the second largest term is 1064 ~ 1.23 x 10°'. Hence, a
small c3 is a necessary condition for a small L2-norm. The idea is to minimize c3
by translation.

Translation by k gives a polynomial in = whose coeflicients are functions of k:

f(z+k) = cea® + (6cgk + c5)x° + (15c6k? + Besk + cq)x?
+ (20c6k® + 10csk? + degk + c3)a® + -
Let ¢;(k) be the coefficients of the i-th term in the translated polynomial. ¢3(k) of

f(z+E) is a cubic polynomial in k. The coefficients co(k), ¢1(k), c2(k) will increase
due to translation. We can use rotation to reduce them, if needed.
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3.2.1. Minimizing c3(k). The cubic polynomial c3(k) has either one or three real
roots. For each real root r, we choose K to be either [r] or |r], whichever minimizes
les(k)|. We translate f(x) by K. The optimization is expected to work for all sextic
polynomials since there exists at least one real root for a cubic polynomial.

In the cubic polynomial c3(k), the constant term cz is O(mq) (see Lemma 2.1
of [9]). The real root r is about O((m1/cg)'/?). Hence ¢5(K) is bounded by
O(m}/?’cé/?’ + ¢5) and ¢4(K) is bounded by O(mf/‘gcé/?’ + ¢4). Empirically, ¢4 is
comparable to ¢4 (K) for the raw polynomials found by algorithms [9], [10]. On the
other hand, my > |cg| and |cg| & |c5| and hence the coefficient ¢5(K) can be much
larger than cs.

After translation, ¢3(k) is minimized and often smaller than the original c3. Let
§ = K — r and hence |0| < 1. Tt follows that

les(K)| = [20c6 K? + 10c5 K2 + 4ca K + c3)
= |20c6(6% + 3726 + 3r6%) + 10¢5(2r8 + 02) + 4cqd|
(3.2) <20 |co| (14 3r? + 3 |r|) + 10 |es| (2]r| + 1) + 4 |ca]-

Given r = O((my/cg)*/?) where my > |cg| and |cs| = |cg|, Equation (B2) above
has order O(mf/?’cé/3 +c4). |es(K)| is likely to be smaller than |cz| = O(my) since
lca| < |es| in the raw polynomial. Assume further that |cgq| = O(mf/3cé/3), which
appears to be practical (see Kleinjung’s 2008 method [10]). After translation, |cs]
can be reduced by a factor of (m; /cg)"/?.

Once K is fixed in minimizing c3(k), we can further optimize the polynomial
locally by the local descent method.

In the translated polynomial fx (z), the coefficients ¢5(K) = O(mi/?’cg/s), cy(K) =
O(m;"e'?). e3(K) = O(m ™). ea(K) = O(my"*/ /"), e1(K) = O(my"*/ ),
co(K) = O(m2/cg). The coefficients ca(K),c1(K), co(K) are increased during the
translation. We can reduce them using rotation in the local optimization. As an
example, we apply a quadratic rotation on fx (z) to reduce co(K), c1(K), ca(K) to
O(my). The quadratic polynomial uz? 4+ va + w used in the rotation has parame-
ters w = O(my /cg), v =0((m1/cs)?’?) and u = O((my/c6)'/?) (using my < my).
Let the rotated polynomial be fx(z) whose coefficients are &(K) for 0 < i < 6.
The coefficient ¢3(K) = O(mf/gcé/g + ma(my /cs)'/3) is comparable to c3(K) if
mo S m}/ 3c§/ 3 (parameters mg and cg can be chosen in Kleinjung’s 2008 method
[10]). Hence co(K),c1(K),c2(K) are reduced to O(my) without increasing too
much ¢3(K). Comparing fx (z) to the raw polynomial f(z), the coefficient é(K)
is increased, while é3(K) is often smaller. If the gain from a smaller ¢3(K) exceeds
the deterioration from a larger és(K), the L?-norm can be reduced. In practice,
the local descent method (Algorithm[I]) can be applied, instead of applying a single
rotation.

3.2.2. Example and statistics. We give an example for the polynomial Argg in Ap-
pendix [Al It has logarithmic Lo-norm 72.59. The coefficient of z3 in f(x + k)
is
71727600k + 190647000k + 1129504938822234180339372k+
718693701130240225274612814188142.
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The cubic polynomial has a real root near k = —191352410. We translate f(x)
by k and then apply the local descent method to the translated polynomial. The
resulting optimized polynomial Brgg in Appendix[Alhas logarithmic Lo-norm 67.60.

The method works better on average than the local descent method used alone.
We consider the same data set of 10° polynomials used in Figure[ll Figure 2shows
the discrete density distribution of logarithmic Ls-norm for the raw and optimized
polynomials. The improved method can reduce the average logarithmic Lo-norm to
70.34 with a standard deviation 0.60. We gain almost 9 on the average logarithmic
Lo-norm with respect to the local descent method used alone.
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FIGURE 2. Optimizing c3(k) before the local descent

3.2.3. Further improvement. Thorsten Kleinjung (personal communication) describes
a method which helps further reduce the norm. Before translation, we attempt sev-
eral cubic rotations by f(z) + dz3g(z) for small 6’s on the raw polynomial f(z).
This gives some variation during the optimization. For each rotated polynomial,
we repeat the optimization procedure from Subsection and record the minimum
norm found.

The variation gives some benefits in practice. We consider the same data set
of 10° polynomials used in Figure [l In experiments, we rotate polynomials by
|6] < 256 and optimize the size using the above method. Figure[Bshows the discrete
density distribution of logarithmic La-norm for the raw and optimized polynomials.
This method can further reduce the average logarithmic Lo-norm to 69.84 with a
standard deviation 0.56. We gain another 0.5 on the average logarithmic Lo-norm
compared to the above method.

3.3. Trade-off between size and root. The raw polynomial often has a small ¢5,
which permits a larger rotation bound in root optimization. The size optimization
procedure leads to a much larger c5 due to translation. This may lead to a smaller
rotation space. We could have optimized the root property (of the raw polynomial)
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FIGURE 3. Optimizing c3(k) before the local descent: a better variant

first and then optimized the size by translating and changing the skewness. If the
root property is outstanding, we might expect that it can yield better results than
the size-root (in order) optimization. However, we give a heuristic argument that
this is difficult in practice.

Let fyuw(x) be the rotated polynomial in Equation (3. If ¢ = O(m,) and
co & c38%, ¢ ~ c35%, co ~ c38, we have an upper bound O(s®) for the rotation
space. We want to estimate the expected minimum «(F') after K polynomials are
chosen where K is about 5.

3.3.1. Expected minimum o(F). Emmanuel Thomé described a method (personal
communication) to estimate the expected minimum of «(F') using order statistics.
We assume that the a(F') values of random polynomials follow a standard Gaussian

(normal) distribution N(u,0?) (see Figure M.
Let ®(x) be the cumulative density function for the standard N(0,1) normal

distribution ¢(z) where

qs(x):\/%e*f/?, @(x);<1+erf(\g/c§)>.

In ®(x) , erf(zx) is the error function [6] defined by

2 z 2
erf(x) = — / e ¥ dt.
VT Jo
The probability distribution for the minimum order statistic is given by
prc(w) = K (1-®(2))" ™" ()

where K is the cardinality of the sample set. We use an asymptotic approxi-
mation [5] for the expected value of the minimum order statistic of the normal
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distribution:

(3.3)

log(log K) + 1.377
— v2log K — .
p-o ( 8 2+/2log K
In practice, we need to estimate the parameters u, o of the actual distribution.

We examine a data set of 107 polynomials for RSA-768. The polynomials are
generated by CADO-NFS [I] and Msieve [15 [16]. The data has mean p = —0.257

and standard deviation o = 0.824. Here the average «(F) is negative since the
raw polynomials are generated in a way such that they are expected to have good

projective root property (e.g., ¢4 is divisible by many small primes).

0.5
D:.ata /\
Gaussian - /A
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0.4 ‘:‘;// \
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& i/ 2\
o 3\
| 3\
a E
0.2
u\
0.1 |
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o(F)

FIGURE 4. Distribution of a of 107 raw RSA-768 polynomials

In Figure[d] we show the density estimate of the data. The estimated distribution
of a(F) is close to a Gaussian distribution with above parameters p,o. We use

these parameters to estimate the expected value of the minimum order statistic
(e.g., Equation [B3))).

3.3.2. Order of optimization. Assume a(F) follows a normal distribution with mean
= —0.257 and deviation o = 0.824. Equation (B3] shows that the expected min-
imum « is roughly proportional to the square root of logarithmic scale of skewness.
We consider the situation of sextic polynomials for RSA-768. Let s = 10'°, which
is reasonably large for raw polynomials. It gives an expected minimum o = —13.80
after s% polynomials are generated. In an ideal situation, we can expect to find
such a without affecting the size. In practice, a rotation space of s® is very likely
to increase the size and it is very hard to find polynomials with such « while
keeping the size constrained. We can also apply a size optimization of two variables
(translation and skewness) afterwards. However, such optimization is restricted as

no rotation can be used any more (since we do not want to change the good root
properties).
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On the other hand, if we first conduct size optimization, Figure Bl shows that a
reduction of 10 in norm is common. A following root optimization can further re-
duce the combined norm by 7-11, despite slightly increasing the size. Put together,
size-root (in order) optimization often behaves much better than root-size optimiza-
tion in experiments. Therefore, it is suggested to optimize the size property first
and then the root property.

4. CONCLUSION

We discussed the size optimization in polynomial selection for the number field
sieve. Local optimization techniques fail for many sextic polynomials when the
integers to be factored are large. We described some better methods to optimize
the size by determining an appropriate initial polynomial for the iteration and then
locally optimizing the polynomial.

The method described in Subsection is implemented in CADO-NFS [I], an
open-source implementation of the number field sieve, which has been used in the
factorization of many integers. The factorization [2] of the 704-bit RSA challenge
number in July 2012 used this method to optimize the size of raw polynomials.
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APPENDIX A. SOME POLYNOMIALS

The appendix contains polynomial pairs Avgs, B7gs discussed in the paper.
Polynomial Args:

f(z) = 3586380 2° 4 190647002° 4 282376234705558545084843z*
+ 7186937011302402252746128141881422°
+ 43402001628933397612599912223809112822:
— 12541568233611627968693736065307030120x
+ 9008374174467563445936947139641332877
g(z) = 53362054832582019225383 x
— 26457722251514149087911384249044520830
skewness: 3916800.00
L?-norm: 72.59
a(F): —1.08
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Polynomial Brgs:

f(z) = 3586380 2% — 4117247962908300° + 22518332252355341901098432*
+ 1362209300404696707841386105162>

— 1750146689531721232777757169064100703 72>
— 261107030382558999477876428688304027476731x
+ 7615515160280039774928055019776311036048363657612
g(z) = 53362054832582019225383 x
— 26457732461661641051994527730477303005
skewness: 2593792.00

L?-norm: 67.60
a(F): —2.04
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