Avoiding adjustments in modular computations

Paul Zimmermann

March 2, 2012

We consider a sequence of operations (additions, subtractions, multipli-
cations) modulo a fixed integer N, where only the final value is needed,
therefore intermediate computations might use any representation. This
kind of computation appears for example in number theoretic transforms
(NTT) [2], in stage 1 of the elliptic curve method for integer factorization
[3], in modular exponentiation, ... Our aim is to avoid as much as possible
adjustment steps, which consist in adding or subtracting IV, since those steps
are useless in the mathematical sense.

Assuming residues modulo N are uniformly random, we measure the
average number of adjustment steps for each addition (or subtraction) and
each multiplication.

We assume the number N is stored on n machine words, and residues
modulo N are stored in a sign-magnitude representation, as in GMP [1]. We
denote by [the smallest power of the word base which is larger than V.

We assume multiplications use Montgomery’s reduction ab3~!' mod N,
where N < 8. We will denote ¢ = N/§.

We will compare the different methods theoretically, and confirm ex-
perimentally the obtained figures with the two numbers N; = 4670326759
and Ny = 7675265546198221715 in base f = 232, with respectively e; ~
2.5-1071% and &5 ~ 0.42. Our test program is the following: it computes
a = 2Fk+1 mod N and b = 2% mod N, where F}, is the k-th Fibonacci num-
ber, FO = 0, F1 = 1, Fk = F]gfl + Fk,Q for k > 2:

a=2;b=1; c=1
for k¥ := 1 to 1076
(a, b) = (mulmod(a,b,N), a)
if odd(k) then c = addmod(a,b,N) else ¢ = submod(a,b,N)

For N at the end of this test program we should obtain a = 4241733463,
b = 4461431479, ¢ = 4450628743; for No at the end we should obtain a =
6410185500671098032, b = 5369541078340869818, ¢ = 1040644422330228214.

1 Non-negative non-redundant representation

Each residue is in the interval [0, N — 1].
For an addition a + b, the probability that a+b > N is 1/2, thus we get
an adjustment with probability 1/2:

c=a+b
if ¢ >= N:
c=c-N

For a subtraction a — b, we have a < b with probability 1/2 too:

c=a-»>b
if ¢ < O:
c=c+N

For a modular multiplication, we assume we have precomputed m =
—1/N mod g:

c=ax*xb
q=m* cmod B
e=(c+qgN) /B % exact division
if e >= N:
e=e-N

We have 0 < ¢ < B, thus 0 < c+¢N < N2+ BN, and 0 < (c+¢N)/B <
N?/B+N.

If N =¢f, then (c+¢N)/B < (1+¢)N. Assuming a = N, b = yN,
and ¢ = zf3, we get: (¢ + qN)/B = (xye + z)N, thus the probability of
adjustment is that of xye + 2z > 1, i.e., 1 — zye < z < 1, which is €/4:

sage: var(’x y e’); integrate(integrate(x*y*e,(x,0,1)),(y,0,1))
1/4%e

2 Symmetric non-redundant representation

Each residue is in the interval —N/2 < a < N/2, which contains exactly N
consecutive integer values, N being even or odd. The addition is as follows:

c=a+b

if ¢ >= N/2:
c=c-N

else if ¢ < -N/2:
c=c+ N

Let a = N and b = yN with —1/2 < z,y < 1/2, an adjustment occurs
when |z 4+ y| > 1/2.

sage: var(’x y’); 2*integrate(integrate(1,(y,1/2-x,1/2)),(x,0,1/2))
1/4

(The factor 2 takes into account the case = +y < —1/2.) For a subtraction
it is similar.

For a modular multiplication, we use the following algorithm, with m =
—1/N mod 3, and where ¢ = m * ¢ mods B means that —3/2 < ¢ < 3/2:

c=ax*xb

q =m * ¢ mods B

e=(c+qN) /B

if e >= N/2:
e=e-N

elif e < -N/2:
e=e+ N

return e

Now c is in [-N2/4,N?/4], q is in [~3/2,3/2[, ¢N is in [-BN/2, 3N/2],
thus ¢ + ¢N is in [~-N2/4 — BN/2,N?/4 + BN/2], and (c + ¢N)/f is in
[(=1/2 —e/4)N,(1/2 + ¢/4)N]. We have (¢ + gqN)/B = (xye + z)N, with
—1/2 < z,y,z < 1/2, and an adjustment is needed when |zye + z| > 1/2,
ie,zy>0and 2> 1/2 —zye or zy < 0 and z < —1/2 — zye:

sage: var(’x y e’); 4*integrate(integrate(x*y*e, (x,0,1/2)),(y,0,1/2))
1/16*e

The adjustment probability for a multiplication is thus £/16, where the
factor 4 takes into account —1/2 < z,y < 0, and the case where x and y are
of opposite signs.

Note however that if we use a sign-magnitude representation, the com-
putation of @ = m * ¢ mods B will first compute ¢ = mc mod 8 with 0 <
¢’ < f3, and then subtract 3 if ¢ > /2. This is some kind of adjustment we
should avoid, or take into account.

3 Non-negative word-aligned redundant represen-
tation

Since most low-level operations in GMP have a cost which only depends
of the number of words! of the operands, we can allow the residues to be

Lcalled limbs in GMP

redundant, as long as they use the same number of words of the modulus
N. In other words we allow 0 < a < .
The addition works as follows, with kN < 5 < (k+ 1)N:

c=a+b
if ¢ >= B:
c =c¢ - kN
if ¢ >= B
c=c¢c-N

Assuming a, b are uniformly distributed in [0, 5—1], the probability of adjust-
ment by kN is 1/2. The second adjustment happens when a +b > 8+ kN,
which implies a +b > 28 — N = (2 —), which occurs with probability
£2/2.

The subtraction is similar:

c=a-b>b

if ¢ < 0:
c =c+ kN
if ¢ < 0:
c=c+N

For the multiplication, the algorithm is almost the same as for the non-
negative non-redundant representation:

c=a=x*xb
q=m* cmod B
e=(c+qgN) /B
if e >= B:

e=e-N

We have 0 < ¢ < 3, thus 0 < c+¢N < 824+BN,and 0 < (c+¢N)/B8 < B+N.
If a =2p, b=1ypB, and ¢ = 2B, an adjustment occurs when xy +¢cz > 1,
ie, (1—zy)/e <z<1.

sage: var(’x y e’); assume(e-1<0);
sage: integrate(integrate(1-(1-x*y)/e, (x,(1-e)/y,1)),(y,1-e,1)) .expand()
-1/2xe*xlog(-e + 1) + 3/4*e - 1/2xlog(-e + 1)/e + log(-e + 1) - 1/2

We thus get for the adjustment probability for a multiplication, assuming
uniform inputs in [0, 5 — 1]:
3 1

16—§+(1—5/2—1/(25))10g(1—5). (1)

This probability goes from 0 for e =0 to 1/4 for e = 1:

0.25

021

01f

0.2 0.4 0.6 0.8 1

Figure 1: Distribution of the output for the addition (left) and the multi-
plication (right) for uniformly distributed input for N; (up) and Ny (down)
for the non-negative word-aligned representation.

Note however that the above assumes that the inputs of each operation
are uniformly distributed. This is no longer true for a sequence of operations.
For small ¢, for inputs uniformly distributed in [0, 5 — 1], the output of the
addition or subtraction is almost uniform in [0, — 1], since the second
adjustment is rare (see Fig. 1, up left); however when an adjustment occurs
in the multiplication, the output is then in [0, N — 1] which is much smaller,
thus the input of the following addition or subtraction is not uniform in
[0, 8 —1] (see Fig. 1, up right). Similarly, for “large” ¢, for inputs uniformly

distributed in [0, —1], the output of the addition or subtraction is no longer
uniform in [0, 8 — 1] (see Fig. 1, down left).

Therefore the overall adjustment probability depends on the actual se-
quence of operations, in particular on the ratio of additions vs multiplica-
tions.

4 Symmetric word-aligned redundant representa-
tion
Here we allow —f < a < 8 (we could restrict to —3/2 < a < /2, but it is

simpler to compare the absolute value of a to).
The addition works as follows, with kN < 8 < (k+ 1)N:

c=a+b
if ¢ >= B:
c =c - kN
if ¢ >= B
c=c-N
elif c <= -B:
c =c+ kN
if ¢ <= -B:

c=c+N

Assuming a, b are uniformly distributed in [1 — 8, 8 — 1], the probability of
adjustment is 1/4. The subtraction is exactly the same, with the first line
changed into ¢ = a - b.

For the multiplication, the algorithm is the following, with m = 1/N mod

B:
c = lal * |bl
q=m3* cmod B
e=(c-qN) /B

return sign(a)*sign(b)*e

We have 0 < ¢ < %2, 0 < ¢ < 8, thus =8N < ¢ —¢N < %, and —N <
(¢ —gN)/B < . Therefore no adjustment is needed for e.

When each result of an addition or subtraction is given as input of a
multiplication (and never to another addition or subtraction), in some cases
the residues will never reach S in absolute value. This is because Mont-
gomery reduction is contracting. Assume |a|,|b] < aN before an addi-
tion (or subtraction), for some o > 1, then the result of the addition is

Figure 2: Distribution of the output for the addition (left) and the multi-
plication (right) for uniformly distributed input for Ny (up) and N2 (down)
for the symmetric word-aligned representation.

bounded by 2aN. Thus in the following multiplication 0 < ¢ < 4a?N?,
and —BN < ¢ —qN < 4a’N?, and —N < (¢ — ¢N)/B < 4a?eN. Thus
for e < 1/4, and a = 1/(4¢), the inputs of an addition are bounded — in
absolute value — by aN = /4, thus the addition result is bounded by 3/2;
and the outputs of a multiplication are bounded by 4a’cN = aN = /4
again. Thus no reduction at all is needed.

Going back to the non-negative word-aligned redundant representation,
we have a similar phenomenon for the additions, with o = 2 for ¢ < 1/16,
thus no adjustment occurs in that case in the additions. However for the
subtractions this is not the case, since with probability 1/2 the value of a —b
is negative, and one adjustment is needed to get a non-negative residue. A
symmetric representation avoids this.

5 Summary

The following table gives theoretical probabilities of adjustment for addi-
tions/subtractions and multiplications for each of the four representations,
assuming the inputs of each operation are uniformly distributed in the al-
lowed range.

representation add/sub mul

non-negative non-redundant 1/2 e/4
symmetric non-redundant 1/4 e/16
non-negative word-aligned 1/2+¢2/2 Eq. (1)

symmetric word-aligned 1/4 0

The last table gives experimental results with the test program given
above, and the two test numbers N; and Ny. The results for the non-negative
non-redundant representation match exactly the theory, with e1/4 ~ 6-10~ 1
and e9/4 ~ 0.104. Similarly for the symmetric non-redundant representa-
tion, with /16 ~ 1.6 - 107! and 5/16 ~ 0.026. For the non-negative
word-aligned representation, we get an average of about 1/4 adjustment for
the additions and subtractions for N; since no adjustment is done for the ad-
ditions because N < /16, and half of the subtractions yield an adjustment;
for Ny the 0.317896 figure includes 0.250448 for the subtractions, for the
same reason as above, and we have extra adjustments in the additions and
multiplications, since e > 1/16. Finally for the symmetric word-aligned
representation we have no adjustment at all for Ny since €1 < 1/4.

The fact that we do not get any adjustment for Ny despite g9 > 1/4
is due to the special form of our test program. Indeed, we only perform
multiplications on a and b, in which case it follows that |al,|b] < N; then
since Ny < (/2 it easily follows that a+b cannot exceed f in absolute value.

Ny Ny
representation add/sub mul add/sub mul
0.500182 0.104491
0.249211 0.026052
0.317896 0.006510

0 0

non-negative non-redundant 0.500060
symmetric non-redundant 0.249616
non-negative word-aligned 0.249892

symmetric word-aligned 0

o O O O

Acknowledgements. Many thanks to David Harvey and Paul Leyland
for pointers and discussions concerning this topic.

References

[1] GNU MP: The GNU Multiple Precision Arithmetic Library, 5.0.4 ed.,
2011. http://gmplib.org/.

[2] HARVEY, D. Faster arithmetic for number-theoretic transforms. slides
presented at the FLINT /Sage Days 35, Warwick, 2011.

[3] LENSTRA, H. W. Factoring integers with elliptic curves. Annals of
Mathematics 126 (1987), 649-673.

