
Avoiding adjustments in modular computations

Paul Zimmermann

March 2, 2012

We consider a sequence of operations (additions, subtractions, multipli-
cations) modulo a fixed integer N , where only the final value is needed,
therefore intermediate computations might use any representation. This
kind of computation appears for example in number theoretic transforms
(NTT) [2], in stage 1 of the elliptic curve method for integer factorization
[3], in modular exponentiation, ... Our aim is to avoid as much as possible
adjustment steps, which consist in adding or subtracting N , since those steps
are useless in the mathematical sense.

Assuming residues modulo N are uniformly random, we measure the
average number of adjustment steps for each addition (or subtraction) and
each multiplication.

We assume the number N is stored on n machine words, and residues
modulo N are stored in a sign-magnitude representation, as in GMP [1]. We
denote by β the smallest power of the word base which is larger than N .

We assume multiplications use Montgomery’s reduction abβ−1 mod N ,
where N < β. We will denote ε = N/β.

We will compare the different methods theoretically, and confirm ex-
perimentally the obtained figures with the two numbers N1 = 4670326759
and N2 = 7675265546198221715 in base β = 232, with respectively ε1 ≈
2.5 · 10−10 and ε2 ≈ 0.42. Our test program is the following: it computes
a = 2Fk+1 mod N and b = 2Fk mod N , where Fk is the k-th Fibonacci num-
ber, F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 for k ≥ 2:

a = 2; b = 1; c = 1

for k := 1 to 10^6

(a, b) = (mulmod(a,b,N), a)

if odd(k) then c = addmod(a,b,N) else c = submod(a,b,N)

For N1 at the end of this test program we should obtain a = 4241733463,
b = 4461431479, c = 4450628743; for N2 at the end we should obtain a =
6410185500671098032, b = 5369541078340869818, c = 1040644422330228214.

1

1 Non-negative non-redundant representation

Each residue is in the interval [0, N − 1].
For an addition a+ b, the probability that a+ b ≥ N is 1/2, thus we get

an adjustment with probability 1/2:

c = a + b

if c >= N:

c = c - N

For a subtraction a− b, we have a < b with probability 1/2 too:

c = a - b

if c < 0:

c = c + N

For a modular multiplication, we assume we have precomputed m =
−1/N mod β:

c = a * b

q = m * c mod B

e = (c + qN) / B % exact division

if e >= N:

e = e - N

We have 0 ≤ q < β, thus 0 ≤ c + qN < N2 + βN , and 0 ≤ (c + qN)/β <
N2/β +N .

If N = εβ, then (c + qN)/β < (1 + ε)N . Assuming a = xN , b = yN ,
and q = zβ, we get: (c + qN)/β = (xyε + z)N , thus the probability of
adjustment is that of xyε+ z ≥ 1, i.e., 1− xyε ≤ z < 1, which is ε/4:

sage: var(’x y e’); integrate(integrate(x*y*e,(x,0,1)),(y,0,1))

1/4*e

2 Symmetric non-redundant representation

Each residue is in the interval −N/2 ≤ a < N/2, which contains exactly N
consecutive integer values, N being even or odd. The addition is as follows:

c = a + b

if c >= N/2:

c = c - N

else if c < -N/2:

c = c + N

2

Let a = xN and b = yN with −1/2 ≤ x, y ≤ 1/2, an adjustment occurs
when |x+ y| ≥ 1/2.

sage: var(’x y’); 2*integrate(integrate(1,(y,1/2-x,1/2)),(x,0,1/2))

1/4

(The factor 2 takes into account the case x+ y < −1/2.) For a subtraction
it is similar.

For a modular multiplication, we use the following algorithm, with m =
−1/N mod β, and where q = m * c mods B means that −β/2 ≤ q < β/2:

c = a * b

q = m * c mods B

e = (c + qN) / B

if e >= N/2:

e = e - N

elif e < -N/2:

e = e + N

return e

Now c is in [−N2/4, N2/4], q is in [−β/2, β/2[, qN is in [−βN/2, βN/2[,
thus c + qN is in [−N2/4 − βN/2, N2/4 + βN/2], and (c + qN)/β is in
[(−1/2 − ε/4)N, (1/2 + ε/4)N]. We have (c + qN)/β = (xyε + z)N , with
−1/2 ≤ x, y, z ≤ 1/2, and an adjustment is needed when |xyε + z| ≥ 1/2,
i.e., xy ≥ 0 and z ≥ 1/2− xyε or xy ≤ 0 and z ≤ −1/2− xyε:
sage: var(’x y e’); 4*integrate(integrate(x*y*e,(x,0,1/2)),(y,0,1/2))

1/16*e

The adjustment probability for a multiplication is thus ε/16, where the
factor 4 takes into account −1/2 ≤ x, y ≤ 0, and the case where x and y are
of opposite signs.

Note however that if we use a sign-magnitude representation, the com-
putation of q = m * c mods B will first compute q′ = mc mod β with 0 ≤
q′ < β, and then subtract β if q′ ≥ β/2. This is some kind of adjustment we
should avoid, or take into account.

3 Non-negative word-aligned redundant represen-
tation

Since most low-level operations in GMP have a cost which only depends
of the number of words1 of the operands, we can allow the residues to be

1called limbs in GMP

3

redundant, as long as they use the same number of words of the modulus
N . In other words we allow 0 ≤ a < β.

The addition works as follows, with kN < β ≤ (k + 1)N :

c = a + b

if c >= B:

c = c - kN

if c >= B

c = c - N

Assuming a, b are uniformly distributed in [0, β−1], the probability of adjust-
ment by kN is 1/2. The second adjustment happens when a+ b ≥ β + kN ,
which implies a + b ≥ 2β − N = (2 − ε)β, which occurs with probability
ε2/2.

The subtraction is similar:

c = a - b

if c < 0:

c = c + kN

if c < 0:

c = c + N

For the multiplication, the algorithm is almost the same as for the non-
negative non-redundant representation:

c = a * b

q = m * c mod B

e = (c + qN) / B

if e >= B:

e = e - N

We have 0 ≤ q < β, thus 0 ≤ c+qN < β2+βN , and 0 ≤ (c+qN)/β < β+N .
If a = xβ, b = yβ, and q = zβ, an adjustment occurs when xy + εz ≥ 1,

i.e., (1− xy)/ε ≤ z ≤ 1.

sage: var(’x y e’); assume(e-1<0);

sage: integrate(integrate(1-(1-x*y)/e,(x,(1-e)/y,1)),(y,1-e,1)).expand()

-1/2*e*log(-e + 1) + 3/4*e - 1/2*log(-e + 1)/e + log(-e + 1) - 1/2

We thus get for the adjustment probability for a multiplication, assuming
uniform inputs in [0, β − 1]:

3

4
ε− 1

2
+ (1− ε/2− 1/(2ε)) log(1− ε). (1)

4

This probability goes from 0 for ε = 0 to 1/4 for ε = 1:

Figure 1: Distribution of the output for the addition (left) and the multi-
plication (right) for uniformly distributed input for N1 (up) and N2 (down)
for the non-negative word-aligned representation.

Note however that the above assumes that the inputs of each operation
are uniformly distributed. This is no longer true for a sequence of operations.
For small ε, for inputs uniformly distributed in [0, β − 1], the output of the
addition or subtraction is almost uniform in [0, β − 1], since the second
adjustment is rare (see Fig. 1, up left); however when an adjustment occurs
in the multiplication, the output is then in [0, N − 1] which is much smaller,
thus the input of the following addition or subtraction is not uniform in
[0, β− 1] (see Fig. 1, up right). Similarly, for “large” ε, for inputs uniformly

5

distributed in [0, β−1], the output of the addition or subtraction is no longer
uniform in [0, β − 1] (see Fig. 1, down left).

Therefore the overall adjustment probability depends on the actual se-
quence of operations, in particular on the ratio of additions vs multiplica-
tions.

4 Symmetric word-aligned redundant representa-
tion

Here we allow −β < a < β (we could restrict to −β/2 ≤ a < β/2, but it is
simpler to compare the absolute value of a to β).

The addition works as follows, with kN < β ≤ (k + 1)N :

c = a + b

if c >= B:

c = c - kN

if c >= B

c = c - N

elif c <= -B:

c = c + kN

if c <= -B:

c = c + N

Assuming a, b are uniformly distributed in [1− β, β − 1], the probability of
adjustment is 1/4. The subtraction is exactly the same, with the first line
changed into c = a - b.

For the multiplication, the algorithm is the following, withm = 1/N mod
β:

c = |a| * |b|

q = m * c mod B

e = (c - qN) / B

return sign(a)*sign(b)*e

We have 0 ≤ c < β2, 0 ≤ q < β, thus −βN < c − qN < β2, and −N <
(c− qN)/β < β. Therefore no adjustment is needed for e.

When each result of an addition or subtraction is given as input of a
multiplication (and never to another addition or subtraction), in some cases
the residues will never reach β in absolute value. This is because Mont-
gomery reduction is contracting. Assume |a|, |b| < αN before an addi-
tion (or subtraction), for some α ≥ 1, then the result of the addition is

6

Figure 2: Distribution of the output for the addition (left) and the multi-
plication (right) for uniformly distributed input for N1 (up) and N2 (down)
for the symmetric word-aligned representation.

bounded by 2αN . Thus in the following multiplication 0 ≤ c < 4α2N2,
and −βN < c − qN < 4α2N2, and −N < (c − qN)/β < 4α2εN . Thus
for ε < 1/4, and α = 1/(4ε), the inputs of an addition are bounded — in
absolute value — by αN = β/4, thus the addition result is bounded by β/2;
and the outputs of a multiplication are bounded by 4α2εN = αN = β/4
again. Thus no reduction at all is needed.

Going back to the non-negative word-aligned redundant representation,
we have a similar phenomenon for the additions, with α = 2 for ε < 1/16,
thus no adjustment occurs in that case in the additions. However for the
subtractions this is not the case, since with probability 1/2 the value of a−b
is negative, and one adjustment is needed to get a non-negative residue. A
symmetric representation avoids this.

5 Summary

The following table gives theoretical probabilities of adjustment for addi-
tions/subtractions and multiplications for each of the four representations,
assuming the inputs of each operation are uniformly distributed in the al-
lowed range.

7

representation add/sub mul

non-negative non-redundant 1/2 ε/4
symmetric non-redundant 1/4 ε/16
non-negative word-aligned 1/2 + ε2/2 Eq. (1)
symmetric word-aligned 1/4 0

The last table gives experimental results with the test program given
above, and the two test numbersN1 andN2. The results for the non-negative
non-redundant representation match exactly the theory, with ε1/4 ≈ 6·10−11

and ε2/4 ≈ 0.104. Similarly for the symmetric non-redundant representa-
tion, with ε1/16 ≈ 1.6 · 10−11 and ε2/16 ≈ 0.026. For the non-negative
word-aligned representation, we get an average of about 1/4 adjustment for
the additions and subtractions for N1 since no adjustment is done for the ad-
ditions because N < β/16, and half of the subtractions yield an adjustment;
for N2 the 0.317896 figure includes 0.250448 for the subtractions, for the
same reason as above, and we have extra adjustments in the additions and
multiplications, since ε2 > 1/16. Finally for the symmetric word-aligned
representation we have no adjustment at all for N1 since ε1 < 1/4.

The fact that we do not get any adjustment for N2 despite ε2 > 1/4
is due to the special form of our test program. Indeed, we only perform
multiplications on a and b, in which case it follows that |a|, |b| < N ; then
since N2 < β/2 it easily follows that a+b cannot exceed β in absolute value.

N1 N2

representation add/sub mul add/sub mul

non-negative non-redundant 0.500060 0 0.500182 0.104491
symmetric non-redundant 0.249616 0 0.249211 0.026052
non-negative word-aligned 0.249892 0 0.317896 0.006510
symmetric word-aligned 0 0 0 0

Acknowledgements. Many thanks to David Harvey and Paul Leyland
for pointers and discussions concerning this topic.

References

[1] GNU MP: The GNU Multiple Precision Arithmetic Library, 5.0.4 ed.,
2011. http://gmplib.org/.

[2] Harvey, D. Faster arithmetic for number-theoretic transforms. slides
presented at the FLINT/Sage Days 35, Warwick, 2011.

[3] Lenstra, H. W. Factoring integers with elliptic curves. Annals of
Mathematics 126 (1987), 649–673.

8

