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NUMERICAL APPROXIMATION OF THE MASSER-GRAMAIN

CONSTANT TO FOUR DECIMAL DIGITS: δ = 1.819...

GUILLAUME MELQUIOND, W. GEORG NOWAK, AND PAUL ZIMMERMANN

Abstract. We prove that the constant δ studied by Masser, Gramain, and
Weber, satisfies 1.819776 < δ < 1.819833, and disprove a conjecture of Gra-
main. This constant is a two-dimensional analogue of the Euler-Mascheroni
constant; it is obtained by computing the radius rk of the smallest disk of
the plane containing k Gaussian integers. While we have used the original

algorithm for smaller values of k, the bounds above come from methods we
developed to obtain guaranteed enclosures for larger values of k.

1. Introduction

The Masser-Gramain constant δ is a two-dimensional generalization of the Euler-
Mascheroni constant:

δ = lim
n→∞

(
n∑

k=2

1

πr2k
− log n

)
,

where rk is the minimum radius of a closed disk containing at least k points with
integer coordinates — we will say in the following “integer points” — where the
center of the disk is not necessarily an integer point. Gramain and Weber showed
in [5]:

1.811447299 < δ < 1.897327117,

and Gramain conjectured that δ = 1+2 log π− log 2+2γ−2 logL, where γ is Euler-

Mascheroni’s constant and L = 2
∫ 1

0
dx/

√
1− x4 is Gauss’s lemniscate constant,

which would give δ ≈ 1.822825 [4].
Using new theoretical results, new algorithms, and intensive computations, we

improve the result of Gramain and Weber to

1.819776 < δ < 1.819833,

which disproves Gramain’s conjecture. We used an exact computation of rk up to
k = 106−1, using essentially the same algorithm as Gramain and Weber, but using
a multi-core cluster during several weeks. For 106 ≤ k < 109, we used the bisection
algorithm described in §4, which gives for each value of k a tight interval enclosing
rk. Finally, for k ≥ 109 we used a new analytic lower bound on rk described in §3,
which is an original result by itself. In §2 we give an improved analytic lower bound
on rk, which was used in our computation only to initialize the bisection method
from §4; however, the way this lower bound is derived is original and might also
be useful in other contexts. In their work, Gramain and Weber performed exact
computations up to k = 1400 and then used analytic bounds on rk.

Received by the editor April 8, 2011 and, in revised form, September 9, 2011.
2010 Mathematics Subject Classification. Primary 11H06; Secondary 11P21, 52C05, 11Y60.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

1235



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1236 GUILLAUME MELQUIOND, W. GEORG NOWAK, AND PAUL ZIMMERMANN

The first values of the rk sequence are r2 = 1/2, r3 = r4 =
√
2/2, r5 = 1, r6 =√

5/2, r7 = 5/4, r8 = r9 =
√
2. Notice that, for those small values of k, the squared

radius r2k is rational; this is true for all values of k [5]. The classical way to get an
enclosure for δ is first to get an enclosure for the partial sum sn :=

∑n
k=2 1/(πr

2
k),

and then to use an analytic enclosure for the tail from n+ 1 to ∞. To get a tight
analytic enclosure, we need tight upper and lower bounds for rk. Gramain and
Weber in [5] used a lower bound of Chaix for the radius rk (to simplify, we use r
instead of rk whenever there is no ambiguity):

Lemma 1 (Chaix [2]). For k > 1.364 · 107, k < πr2 + 30.84274723 r2/3.

We will prove in §3 a tighter result:

Lemma 2. For r ≥ 5, we have k < πr2 + 7.213r2/3 + 1.5r1/2.

For k ≥ 109, which implies r > 17841 from Lemma 1, it follows that k <
πr2 + 7.507r2/3.

There is a simple upper bound on the radius that is used in most proofs. This
is the same property as Proposition 3 from [5]; the idea of its proof is reproduced
here for completeness. Note that experiments from §4 have shown that this bound
is hard to improve on.

Lemma 3. For k ≥ 2, we have r <
√

k−1
π .

Proof. This is an immediate corollary of a theorem by Pólya and Szegö [8] that
states that any compact domain of area A can be translated so that it contains
�A�+ 1 points. �

Once we have a partial sum sn, the following main theorem makes use of the
bounds from Lemmas 2 and 3 to produce an enclosure of δ.

Theorem 1. Assume k < πr2 + αr2/3 holds for k ≥ 109 and some α < 30.85.
Then for n ≥ 109, we have

sn − log n+
1

2n
< δ < sn − log

(
n+

1

2

)
+

β

n2/3
,

for any β ≥ 1.0242 · α. In particular, for α = 7.507 (Lemma 2) we can take
β = 7.69.

Proof. From the main theorem in [5]:

δ > (sn − log n) + lim
N→∞

(
log

n

N + 1
+

N∑
k=n

1

k

)
.

Now consider n fixed, and let N tend to infinity. Let ψ be the digamma function,

that is, the logarithmic derivative of the Γ function. Since the sum
∑N

k=n 1/k equals
ψ(N + 1)− ψ(n), and limN→∞ ψ(N + 1)− log(N + 1) = 0, we get δ ≥ sn − ψ(n).
Since log n > ψ(n) + 1/(2n) for n ≥ 1, this proves the lower bound.

From the hypothesis k < πr2 + αr2/3, and r <
√
k/π by Lemma 3, we deduce

1

πr2
<

1

k − α(k/π)1/3
=

1

k

(
1 +

α

k2/3π1/3

(
1− α

k2/3π1/3

)−1
)

<
1

k
+

2β

3k5/3
.
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It follows for N > n ≥ 109:

δ ≤ sn + lim
N→∞

(
− logN +

N∑
k=n+1

1

k
+

2β

3k5/3

)
< sn − ψ(n+ 1) +

∫ ∞

n

2β

3k5/3
dk

= sn − ψ(n+ 1) +
β

n2/3
< sn − log(n+ 1/2) +

β

n2/3
,

since ψ(n+ 1/2) > log n for n ≥ 1. �

We describe in §3 how the analytic lower bound from Lemma 2 was obtained.

2. An improved analytic lower bound on rk

2.1. Relating disk radius and number of integer points. Let us consider
a disk of area πr2 containing k integer points. The disk is first split into four
quadrants according to the horizontal and vertical lines going through its center.
The four quadrants and the integer points they contain1 are then moved away. A
cross of area 4r + 1 is placed between them.

Figure 1. A disk of area πr2 is first expanded by adding a cross
of area 4r + 1. Then k unit squares are attached to the k integer
points of the disk. The bijection between squares and integer points
is represented by gray triangles showing which square corners are
attached to which integer points.

Unit squares can now be embedded in the expanded disk and placed at integer
coordinates. There are exactly k such squares. This is shown on Figure 1 by
associating to each integer point a square. A point in the upper right quadrant
gets the square whose upper right corner is at this integer point. The process is
symmetric for the other quadrants. The added cross ensures that points near the
horizontal and vertical diameters do not share squares.

Let T ′ be the area of the expanded disk that is not occupied by squares. The
equality πr2 + 4r+ 1 = k+ T ′ holds. If we consider only the area T of the original
disk which does not contain squares, we get the following relation instead, where
0 ≤ T ′ − T < 4 corresponds to the area of the added cross which is not occupied
by squares:

πr2 + 4r + 1 ≥ k + T.

1If an integer point is on the border between several quadrants, an arbitrary one is chosen as
its container, for instance the rightmost and/or topmost one.
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2.2. Bounding the disk border. In Proposition 4 from [5], the authors consider
convex curvilinear right-angled triangles of width 1 to obtain a lower bound on the
area T . However, they use triangles of heights 1 and 2 only. Here, we consider
simple right-angled triangles only, but of any height. The height might not even be
an integer, as shown on Figure 2.

Figure 2. Filling the disk border of the first octant with right
triangles of noninteger heights. In the proof of Lemma 4, the height
of the triangles will not be that optimal.

Lemma 4. If a disk of radius r contains k ≥ 5 integer points, then k < πr2+4r+
1− T with

T/4 ≥ −2
√
r − 1 + r/

√
2.

Proof. Let x + iy be the center of a disk of radius r. Let (ui)0≤i≤n be a finite
increasing sequence of real numbers with u0 ≥ 1. For s ≥ 1, we define αs :=
r cos arctan(1/s) = rs/

√
s2 + 1.

Between abscissas 	x+αui

 and 	x+αui+1


, triangles of height ui can be used to
fill the disk border. Indeed, by definition of αs, at the right of x+ αs, the tangent
of the disk is of slope larger than s (in absolute value).

Similarly, between abscissas 	x+αun

 and �x+ r�, triangles of height un can be

placed.2 The cumulated area of all these triangles between 	x+αu0

 and �x+ r� is

a lower bound on the area of the border of the first octant. Twice this cumulated
area is given by

(�x+ r� − 	x+ αun

)un +

n−1∑
i=0

(
	x+ αui+1


 − 	x+ αui


)
ui.

2The last two abscissas may end up inverted: �x+ r� < �x+ αun�. Let us take the biggest i
such that �x+ αui� = �x+ r�. The inversion causes us to count one too many triangles of slope
ui, while we are counting backward a single triangle of slope un. Since un ≥ ui, both miscounted
triangles compensate themselves and do not invalidate the proof.
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After distributing the terms, one gets

�x+ r�un − 	x+ αu0

u0 −

n∑
i=1

	x+ αui

(ui − ui−1),

which can be minored by

(x+ r − 1)un − (x+ αu0
+ 1)u0 −

n∑
i=1

(x+ αui
+ 1)(ui − ui−1).

Simplifying this lower bound removes the dependency on x. So the bound holds
for all the other octants as well, which leads to the inequality

T/4 ≥ (r − 2)un − αu0
u0 −

n∑
i=1

αui
(ui − ui−1).

An interesting family of (ui) sequences is (i/j +1)0≤i≤(m−1)j for any j ≥ 1 and for
any real number m ≥ 1, as the inequality then becomes

T/4 ≥ (r − 2)m− r√
2
− 1

j

(m−1)j∑
i=1

αi/j+1.

The rightmost sum is a Riemann sum of the Riemann-integrable function α on the
interval [1,m], so it tends toward the integral when j tends to infinity. Since the
inequality holds for any j, it also holds at the limit:

T/4 ≥ (r − 2)m− r√
2
−
∫ m

1

αs ds = (r − 2)m− r√
2
−
(√

1 +m2 −
√
2
)
r.

The lower bound reaches its maximum for m = r−2
2
√
r−1

. Injecting this special value

of m in the formula gives the lower bound of Lemma 4. �

Corollary 1. The radius of a disk containing k integer points is bigger than the
positive root r of the quadratic equation

πr2 + 2r
(
2−

√
2
)
+
(
1− k + 8

√
ρ− 1

)
= 0 with ρ =

√
k − 1

π
.

Proof. Let r be the minimal radius of a disk containing k integer points. Lemma 4
states the inequality

πr2 + 2r
(
2−

√
2
)
> k − 1− 8

√
r − 1.

We can substitute for the rightmost r any of its upper bounds without invalidating
the inequality above. In particular, we can use

√
(k − 1)/π, in order to prove the

corollary. �

For k = 106, this gives r > 563.949. This new bound is better than Chaix’s
bound for k ≤ 759 267 778, and better than the bound given by Lemma 2 for
k≤1439, which again shows that Lemma 2 is more useful for the computation of δ.
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3. A tight analytic lower bound on rk

Lemma 5. For real x ≥ 0 and arbitrary 	c = (c1, c2) ∈ R
2, let C(x;	c) denote the

compact circular disc with center 	c and radius x, and A(x;	c) the number of integer
points contained therein. Then it follows that, for x ≥ 5,∣∣A(x;	c)− πx2

∣∣ ≤ 7.213x2/3 + 1.5x1/2 .

Proof. We put ε := b
x1/3 , with a positive constant b at our disposal, and K =

(3π)−2/3ε−1. Further, we write χM for the indicator function of any set M ⊆ R
2,

and | · | for the Euclidean norm in R
2. The strategy is to approximate χC(x;�c) by a

smooth function, obtained by convolution (denoted by ∗) with δ := (πε2)−1χC(ε;�o),

where 	o = (0, 0) ∈ R
2.

We first claim that

(1) χC(x−ε;�c) ∗ δ ≤ χC(x;�c) ≤ χC(x+ε;�c) ∗ δ
throughout. A geometric intuition of these inequalities can be seen on Figure 3.
Indeed, (χC(y;�c) ∗ χC(ε;�o))(	u) is the area of the intersection between the two disks

C(y;	c) and C(ε; 	u). The constant (πε2)−1 in the definition of δ ensures that the
value (χC(y;�c) ∗ δ)(	u) is normalized between 0 and 1.

Figure 3. Intersections between C(x ± ε;	c) and C(ε; 	u). The
grayed areas are proportional to the values of the lower and upper
convolutions χC(x±ε;�c) ∗ δ for the two points of the middle figure,
one inside the disk, the other outside.

More formally, the two inequalities of equation (1) can be verified by distinguish-
ing two cases.

Case 1: 	u /∈ C(x;	c). Thus |	u − 	c| > x. If δ(	v) �= 0, then |	v| ≤ ε, hence
|	u− 	c+ 	v| > x − ε, therefore χC(x−ε;�c)(	u+ 	v) = 0. Thus δ(	v)χC(x−ε;�c)(	u+ 	v) = 0

for all 	v ∈ R
2, hence (χC(x−ε;�c) ∗ δ)(	u) = 0. The right-hand part of equation (1) is

trivial since χC(x;�c)(	u) = 0.

Case 2: 	u ∈ C(x;	c). Thus |	u − 	c| ≤ x. If δ(	v) �= 0, then |	v| ≤ ε, hence
|	u−	c+	v| ≤ x+ε, therefore χC(x+ε;�c)(	u+	v) = 1. Thus δ(	v)χR2\C(x+ε;�c)(	u+	v) = 0

for all 	v ∈ R
2, hence (χR2\C(x+ε;�c) ∗ δ)(	u) = 0, consequently (χC(x+ε;�c) ∗ δ)(	u) = 1.

The left-hand part of equation (1) is trivial since χC(x;�c)(	u) = 1.

We sum up equation (1) over all integer points of Z2:∑
�m∈Z2

(χC(x−ε;�c) ∗ δ)(	m) ≤ A(x;	c) ≤
∑
�m∈Z2

(χC(x+ε;�c) ∗ δ)(	m) .
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By applying the multidimensional Poisson’s formula (see Bochner [1]) to both sides,
we get the following formula, where ·̂ denotes the Fourier transform:

(2)
∑
�m∈Z2

χ̂C(x−ε;�c)(	m)δ̂(	m) ≤ A(x;	c) ≤
∑
�m∈Z2

χ̂C(x+ε;�c)(	m)δ̂(	m) .

Obviously, δ̂(	o) = 1, and χ̂C(x±ε;�c)(	o) = π(x ± ε)2. Writing 	z · 	u for the standard

inner product in R
2, and e(w) := e2πiw as usual, we define, for 	z ∈ R

2,

I(	z) :=

∫
|�u|≤1

e(	z · 	u)d	u .

Then, for 	o �= 	m ∈ Z
2,

δ̂(	m) =
1

π
I(ε	m) , χ̂C(x±ε;�c)(	m) = e(	c · 	m)(x± ε)2I((x± ε)	m) .

Thus we conclude from equation (2) that

(3)
∣∣A(x;	c)− πx2

∣∣ ≤ π(2xε+ ε2) + max
R=x±ε

Δ(R) ,

where, for R = x± ε,

Δ(R) :=
R2

π

∑
�o�=�m∈Z2

|I(R	m)| |I(ε	m)| .

Evaluating I(	z), we get

|I(	z)| = 2

∣∣∣∣∣∣
1∫

−1

√
1− v2 e(|	z|v)dv

∣∣∣∣∣∣ = |J1(2π|	z|)|
|	z| ,

where J1 is a Bessel function of the first kind. Now

(4) max
w>0

∣∣J1(w)√w
∣∣ = 0.82503 . . . .

It is clear by inspection of a graph of J1(w)
√
w that the global maximum is attained

at the first relative extremum wmax = 2.16587 . . . ; A rigorous proof can be based
on the well-known asymptotics

J1(w)
√
w =

√
2

π
cos

(
w − 3π

4

)
+O(w−1) ,

where theO-term can be bounded explicitly according to Gradshteyn and Ryzhik [3],

formula 8.451. Note that
√
2/π = 0.79788 . . . .

Now equation (4) implies that

|I(	z)| ≤ 0.83(2π)−1/2|	z|−3/2 <
1

3
|	z|−3/2 ;

hence, for R = x± ε,

|Δ(R)| ≤ (x+ ε)1/2

3π

∑
�o �=�m∈Z2

|	m|−3/2 min

(
1

3
(ε|	m|)−3/2, π

)
,
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taking into account also the trivial estimate I(ε|	m|) ≤ π. We split up this sum
according to whether |	m| is less or greater than K = (3π)−2/3ε−1, as defined
earlier. Thus,

|Δ(R)| ≤ (x+ ε)1/2

3π

⎛⎝π
∑

�m∈Z2: 1≤|�m|≤K

|	m|−3/2 +
1

3ε3/2

∑
�m∈Z2: |�m|>K

|	m|−3

⎞⎠

= (x+ ε)1/2

⎛⎝1

3

K+∫
1−

dA∗(w)

w3/2
+

1

9πε3/2

∞∫
K+

dA∗(w)

w3

⎞⎠ ,

where A∗(w) := A(w;	o)− 1, and Stieltjes integrals have been used. Integrating by
parts, and using the inequality (x+ ε)1/2 <

√
x+ ε/(2

√
x), we infer that

(5) |Δ(R)| ≤
(√

x+
ε

2
√
x

)⎛⎝1

2

K∫
1

A∗(w)

w5/2
dw +

1

3πε3/2

∞∫
K

A∗(w)

w4
dw

⎞⎠ .

It is easy to give a crude bound for A∗(w): Observe that, for any w ≥ 0,

⋃
�m∈Z2: |�m|≤w

(
	m+

[
−1

2
,
1

2

]2)
⊆ C

(
w +

√
2

2
;	o

)
,

then it is immediate that

A∗(w) ≤ π

(
w +

√
2

2

)2

− 1 .

We use this in equation (5), evaluate the integrals, recall equation (3) and the
definitions of K and ε. After carrying out all of these routine calculations, prefer-
ably supported by some symbolic computation software, we obtain a bound for∣∣A(x;	c)− πx2

∣∣ with leading term(
2πb+

2(3π)2/3

3
√
b

)
x2/3 .

Here the coefficient of x2/3 attains its minimum for b = 1
6 (

17496
π2 )1/9 = 0.382656 . . . .

With this choice of b, K > 1 for x ≥ 5. We thus obtain∣∣A(x;	c)− πx2
∣∣ ≤ 7.213x2/3 + 1.5

√
x− 2.9x1/3 +

1.38 . . .

x2/3
+

0.28 . . .

x5/6
− 0.55 . . .

x
.

From this, the assertion of the lemma is immediate, since the sum of the last four
terms is negative for x ≥ 5. �

Remark. In its essence, this argument based on Fourier analysis and involving
Poisson’s formula is fairly standard; see, e.g., W. Müller [7] and the literature cited
there. However, there are just a very few papers which pay attention to an explicit
and very careful estimation of the constants involved: See, for instance, Krätzel
and Nowak [6], where a weaker and less general version of Lemma 5 has been
established.
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4. Approximating radii by bisection

We describe here an alternate method, which is useful when k is too large for
an exact computation of rk, but still small enough such that one can outperform
the analytic bound from Lemma 2. This method yields an enclosure � ≤ rk ≤ h,
where the bounds � and h can be made arbitrarily tight given sufficient computer
power, as it ultimately amounts to computing the optimal radius for each possible
disk center.

For a given k, assume we want to show that rk > r for r fixed. If the center x+iy
of an optimal disk is known, this is easy: it suffices to count the number of integer
points in the disk of center x+ iy and radius r. Now if we move slightly the center,
the number of integer points will not change much. Moreover, if the center is in a
small rectangle around x + iy, we can bound the number of integer points in the
disk using interval arithmetic. Since it suffices to consider 0 ≤ x ≤ y ≤ 1/2 using
symmetry, we can divide this domain in smaller subdomains, and hope that interval
arithmetic will give a tight bound on the number of integer points. Consequently,
assuming these computations show that all the disks of radius r have at most k− 1
integer points, we obtain rk > r.

For example, for r = 563.873, and with the whole square 0 ≤ x, y ≤ 1/2, we get
an upper bound of 999994 integer points, which gives the lower bound rk > r for
k ≥ 999995.

With 10 recursive subdivisions (5 for each coordinate, thus considering squares
of width 2−6) we get 564.169 < rk < 564.190 for k = 106.

In order to obtain an upper bound r on rk, one just has to find one disk of radius
r containing k or more integer points. More precisely, once an arbitrary point has
been chosen as the disk center, a binary search on possible values of r will compute
the minimal radius at this point — to get k or more integer points — and therefore
an upper bound on rk. In practice, corners of the subdivision used for getting a
lower bound on rk are chosen as disk centers.

The pseudo-code in Algorithm 1 sketches the algorithm used for finding a tight
enclosure of rk. Given k and an enclosure R of rk, the function improve returns
another enclosure, hopefully tighter.

Here are a few remarks about this code. The nb points function is specified to
return an upper bound on the number of integer points contained in any disk of
radius r and center contained in X × Y . In the specific case where X and Y are
singleton intervals (this case occurs when decreasing r), the result is assumed to be
exact in the algorithm.

The improve function stores in S all the rectangles that have yet to be handled.
The variable z is an upper bound on rk and it improves whenever a smaller disk
containing k integer points (or more) is encountered. The variable z is a lower
bound on the radius of all the disks containing at least k integer points whose
center was in some already visited “small enough” rectangle. Both of them are
initialized to a value sufficiently big (they could be set to +∞) and they decrease
over the course of the algorithm. The criteria we choose for stopping recursion is
detailed in §5 along our numerical results.

All the triples (Xi, Yi, Zi) stored in the set S satisfy the following invariant: any
minimal disk containing ≥ k integer points with a center in the rectangle Xi × Yi

has a radius contained in Zi. For symmetry reasons, any triple with yi < xi is
redundant and thus skipped. In the algorithm, triples with yi = xi are skipped
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nb points(X = [x, x], Y = [y, y], r) =

x+r�∑

j=�x−r
�y + hj� − 	y − hj
 with hj = sup

x∈[x,x]

√
r2 − (x− j)2

improve(k,R = [r, r]) =
assert rk ∈ R
let S a set of triples (Xi, Yi, Zi) initially empty
let z = z = r
insert ([0, 0.5], [0, 0.5], R) into S
while S is not empty

extract an element (Xi, Yi, Zi) from S
if yi≤xi or z≤zi or nb points(Xi, Yi, z)<k, then skip to next iteration
let r = zi and r = zi
increase r while keeping nb points(Xi, Yi, r) < k
decrease r while keeping nb points([xi, xi], [yi, yi], r) ≥ k
if Xi × Yi is small enough, then

z ← min(z, r)
z ← min(z, r)

else
split Xi × Yi into two smaller rectangles X ′ × Y ′ and X ′′ × Y ′′

insert (X ′, Y ′, [r, r]) and (X ′′, Y ′′, [r, r]) into S
return [z, z]

Algorithm 1. The bisection algorithm.

also. Indeed, for the same symmetry reasons, the only interesting point from such
a rectangle is (xi, yi); yet this point is also contained in several other rectangles,
e.g., [xi − ε, xi]× [xi − ε, xi], that will not be skipped.

Triples are also skipped when z ≤ zi or nb points(Xi, Yi, z) < k. These tests
detect whether no disk can decrease the lower bound z further. Potentially, these
triples might have still been able to improve the upper bound; skipping them is
just a heuristic: the best improvement of the upper bound will happen when the
lower bound is improved, since they are ultimately equal.

The performance of the algorithm will depend on the order triples are extracted
from S and how r and r are refined. Our implementation (depth-first extraction,
coarse-grained refinement) is probably not optimal.

5. Computation of δ

To obtain lower and upper bounds for δ, we proceed as follows. We choose an
integer m1 and we compute sm1

=
∑m1

k=2 1/(πr
2
k). Since r2k is rational, πsm1

is
rational too and we compute it exactly by rational arithmetic. The only rounding
error for sm1

happens at the end of the computation, when we divide it by an
approximation of π. We got the following timings on a 2.83Ghz Intel Core 2: r100000
was computed in 3.5s, r200000 in 12.1s, r500000 in 38.9s, and r1000000 in 546.3s. As
can be seen from these timings, the time complexity of computing exact values
does not make it practical to go much further, so we stop at m1 = 106 − 1. Using
a variant of Theorem 1 at this point, we get the enclosure 1.8197 < δ < 1.8206,
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which is sufficient to disprove Gramain’s conjecture but does not give much more
information about the digits of δ than Gramain and Weber’s result.

So we choose another integer m2 = 109 − 1. For each k in (m1,m2], we compute
a lower bound for rk using Lemma 4, and an upper bound using Lemma 3. We
then refine these bounds with the bisection method described in Section 4. In our
implementation, rectangles Xi × Yi are bisected until their width reaches 2−17 or
when the difference r − r is small enough for the enclosure of 1/(πr2k) to be no
wider than 10−5k−1.1 — this bound was experimentally chosen to minimize the
overall computation time. All the refined enclosures are computed and summed
with double-precision interval arithmetic, 1000 at a time for parallelization purpose.
Finally, all these partial sums are combined with enough precision to ensure that no
additional rounding error occurs. So the overall rounding error due to summation
is about 6 · 10−13, hence negligible. In the end, this gives us an interval enclosing
sm2

− sm1
, and thus sm2

.
We use Theorem 1 to conclude:

1.81977613409613 < δ < 1.81983226978634.

The width of this interval is about 56 · 10−6. The contribution of the bisection
algorithm is 50·10−6, while the analytic estimate contributes the remaining 6·10−6.
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