RECOVERING HIDDEN SNFS POLYNOMIALS

PAUL ZIMMERMANN

ABSTRACT. Given an integer N constructed with an SNF'S trapdoor, i.e., such that N = |Res(f, g)|
with f = agx® + ag_12¥ '+ -+ ap having small coefficients a; = O(B), and g = fx — m, we
can recover f and g in O(BF(f)) arithmetic operations, assuming B?(? < agm, where F({) is the
number of arithmetic operations to extract a prime factor of same size as ¢. This partially answers
an open problem from [1].

We use the following algorithm, where the transform N’ < ddazll*lN and the translation z —
x — ag—1/(dag) are inherited from [3].

Algorithm 1

Input: an integer N, a degree d, a leading coeflicient a4, a bound L
Output: f = agz®+ -+ ag,g = fx — m such that N = |Res(f, g)| and ¢ < L, or FAIL
N+ d%?'N
m LN’l/dW
r e N —m/?
search using ECM prime factors of r» smaller than L
for ¢ in known divisors(r) do
if r mod /2 = 0 then
decompose N = agm®+ag_1m® U+ - -+ aol® where m, aq_; satisfy m’ = dagm+ag_1/
return f = agx? + - +ag,g = lx —m
return FAIL

Lemma 1. If N = agm® + ag_ym® " + - - + ayml?~1 4 apl?, with a; = O(B) and B*(* < agm,
then Algorithm 1 unveils f = agz® + -+ ag and g = fx —m in O(F({)) arithmetic operations.

Proof. We have N = agm® + ag_1m? " + R with R = O(Bmd*2£2). Then:

N = ddazll*l(admd + ag_1m* Y + R)
= (dagm + ad,lﬁ)d - S+ ddag_lR,

where S = Z?:_oz (f) (dagm)i(aq_1£)?" = O(ddazlldBde_QEQ), and ddagflR = O(ddazlemd_Qﬂ),
thus N’ = m’d+0(ddag7232md_2€2) with m’ = dagm+aq_1¢. Since B*(? < agm and m’ ~ dagm,
we get N/ — m'? < dm/®"!, which ensures that the rounded d-th root of N’ is m’. Now both R

and S are divisible by ¢2, thus the divisor ¢ of r will be found in time O(F(¢)), and the rest follows
from Lemma 2.1 of [2]. O
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Example. Consider this innocent-looking 1024-bit prime produced by Emmanuel Thomé:

N = 10125975488959488438636448139388738111384370034580126872774623167983065095763618
44716875429364100448228034431031042649131921103572845443219053574589128101877982
01444275956478694551535584037776691110761982172617916831503906052571224968894093
331711339997796469044311233642191451302290245121528058995397476887083.

We search for f of degree 6, with coefficients bounded by 1000 in absolute value. This search will

in particular consider ag = 883. We then get

m’ = 3692818662892237319633959730548796198786083711157940498,

r = 82879887764694366348912168791836341837049570452618174403026264656774533779857170
37239452504338734757522396248499672667034561347930357160942512349898884824251878
72235920062471226328786567796505070700605282371914362200427993013634248968829556
011673078229487543202175808000.

Dividing out primes less than one million we get:
r=27.3%.5%. 172 . 71 137% - go51,

where ¢o51 is a 251-digit composite number. With GMP-ECM [4] we find the following prime
factors of ¢o51:

go51 = 3513299 - 2258358157748717 - 36004635722054299 - ¢106.

Among the divisors of r we try £ = 13584477048659642904102 = 2-3%-17-137-36004635722054299,
which yields the polynomials:

f = 883z0 —2022° + 7792 — 99022 + 37422 — 8862 + 316,
g = 13584477048659642904102z — 697021265174072729262733055974243160277446764632799.

A full search for 1 < ag < 1000 takes about 280 minutes of cpu time on an Intel Xeon CPU E7-4850
running at 2.2GHz.
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