ERC Advanced Grant
Research Proposal (Part B2)

CORE-MATH: Ensuring Correctly Rounded Mathematical Functions

Principal Investigator (PI): Dr Paul Zimmermann

PI’s host institution: Inria, France

Proposal full title: Ensuring Correctly Rounded Mathematical Functions
Proposal short name: CORE-MATH

Project duration: 60 months

Targeted Review Panel: PE6 (Computer Science and Informatics)

In 1985, the IEEE 754 standard defined for the first time what the result of a computa-
tion on floating-point numbers should be. Today, any program using floating-point additions,
subtractions, multiplications and divisions yields bit-to-bit identical results, whatever the hard-
ware, compiler, or operating system. This is because IEEE 754 requires the best possible result
for these operations, called correct rounding.

However, most scientific or industrial applications, like the Large Hadron Collider software,
developed by thousands of physicists and engineers over two decades, or Karplus’ equation
J(¢) = Acos? ¢ + Beosp + C in nuclear magnetic resonance spectroscopy, also require the
evaluation of various mathematical functions: sine, exponential, logarithm, etc. These
functions are provided by a mathematical library, which does not always provide correct
rounding. As a resulting effect, a program using such mathematical functions might yield
wrong results, which could have disastrous consequences [25]. Moreover, these results might
differ depending on the mathematical library, hardware, compiler or operating system.

We strongly believe it is the right time to fix that numerical reproducibility issue once
and for all. CORE-MATH will provide new numerical algorithms to evaluate mathematical
functions, which will always yield correct rounding (i.e., the best possible result) with speed
comparable to the best libraries currently available. This will require clever algorithms to
identify the most difficult cases for correct rounding, and innovative research in the field of
the evaluation of mathematical functions.

Thanks to CORE-MATH, scientists, engineers, researchers will obtain correct results
and thus bit-to-bit reproducible results for their numerical computations, with the same
efficiency as with currently available mathematical libraries, or even more.

Section A describes the state-of-the-art and the main objectives of CORE-MATH. To reach
these objectives, Section B details the methodology and organization of the three Research
Tracks and of the Validation Track.

A State-of-the-Art and Objectives

A.1 Introduction

Before describing the state-of-the art, let us introduce the CORE-MATH scientific context. To
compute with real numbers, two main schemes exist: the RealRAM model, and floating-point
numbers. The RealRAM model uses as much memory as needed to represent exactly real
numbers, in consequence it is time and memory expensive, thus unusable for large applications.

Floating-point numbers use a fixed amount of memory, and have been standardized through
IEEE 754. For efficiency, IEEE 754 defines some fixed-precision formats (single, double, and

CORE-MATH Paul Zimmermann Part B2 2

quadruple precision). If arbitrary precision is needed, the GNU MPFR library is the current
reference implementation.

Binary Floating-Point: the IEEE 754 Standard and Beyond. The IEEE 754 standard
defines how binary and decimal floating-point arithmetic should be performed. Published in
1985, TEEE 754 was revised in 2008 and 2019 [11]. Scientific applications mainly use the
binary formats, while the decimal formats are better suited for applications in finance. The
standard defines three main binary formats for numerical computations: binary32, binary64,
and binary128, with significands of 24 bits, 53 bits and 113 bits respectively. In this document,
we focus on binary formats only:

IEEE 754 format | precision (bits) || min |7 | max
binary32 (single precision) 24 1.4-107% 3.4-10%
binary64 (double precision) 53 4.9-1073%4 1.8.10%%8

binary128 (quadruple precision) 113 6.5 107496 1.2.10%932

IEEE 754 requires correct rounding for the four arithmetic operations (addition, subtrac-
tion, multiplication, division), the fused multiply-add FMA(z,y, z) = zy + z, and the square
root. This means that for a given operation, say x + ¢, the implementation shall return the
floating-point number y closest to the exact result according to the given rounding mode (to
nearest, toward —oo, toward zero, toward 4+00). Therefore, there is a unique possible answer y,
which is called the correct rounding of x+t. For a mathematical function, e.g., exp, the correct
rounding is the floating-point number y closest to the (infinite precision) exact value of exp(x).
IEEE 754 only recommends (unlike for basic arithmetic operations) a set of correctly rounded
mathematical functions.! Currently available mathematical libraries for the IEEE binary for-
mats (for example GNU libc) do not provide correct rounding, and thus do not conform to
IEEE 754 (see for example [27] for single precision).

Hardware and Software Support. Most current processors perform basic arithmetic oper-
ations (4, —, X, +,FMA) in hardware (usually as micro-code for the division) for single and
double precision (binary32 and binary64), but not for quadruple precision, except the IBM
Power9 processor, which also implements them in hardware. For quadruple precision, most
compilers provide a data type (__float128 in GCC) with basic arithmetic operations.

Mathematical functions are implemented in software, by a mathematical library. Current
mathematical libraries do not guarantee correct rounding. Discrepancies from correct rounding
range from one ulp (unit in the last place) to hundreds of thousands ulps, even in single precision
[27]. For quadruple precision, mathematical functions are available for the __float128 type
since 2011 through GNU libc and/or the libquadmath library?, which originates from the
FDLIBM library developed by Sun Microsystems around 1993.

GNU MPFR. GNU MPFR (MPFR for short) is a C library performing arbitrary precision
floating-point computations with correct rounding [5]. It thus extends IEEE 754 to arbitrary
precision, with the main difference that correct rounding is guaranteed in MPFR not only
for basic arithmetic operations, but also for all mathematical functions it implements. The
development of MPFR has started in 1999, and it is continuously improved, mainly by the PI
and Vincent Lefevre. It is now a very mature library, which is available on all major operating
systems (GNU/Linux, BSD, Windows, AIX, Solaris, MacOS), and is required to compile GCC
and Gfortran. The original idea to create MPFR was due to the PI.

!Together with Jean-Michel Muller, the PI already argued in 2005 for correct rounding of mathematical functions
during the first revision of IEEE 754 [26].
2The libquadmath code is automatically extracted from GNU libc.

CORE-MATH Paul Zimmermann Part B2 3

A.2 State-of-the-Art

This section reviews the state-of-the-art of research relevant to CORE-MATH, for the search of
Hard-to-Round cases (§A.2.1), and the numerical evaluation of mathematical functions (§A.2.2).

A.2.1 Search for HR-cases.

The search for HR-cases (Hard-to-Round cases) is a crucial step to design efficient algorithms
that guarantee correct rounding. Indeed, in Ziv’s onion-peeling strategy (which is explained in
§A.2.2 below), the last step should always return the correct rounding, and the knowledge of
HR-cases determines the minimum accuracy of this last step, i.e., its efficiency. Thus, apart
from exact cases, one needs to determine the smallest distance between f(x) and a floating-
number in the target precision p (or p + 1 for rounding to nearest). This is known as the
Table Maker’s Dilemma [18]. For some algebraic functions, the HR-cases are known [12], but
in general one has to resort to exhaustive search to find them. The first non-trivial algorithm
for this task is due to Lefevre, and the best algorithm currently known is the SLZ algorithm.

Lefevre’s Algorithm. Lefevre’s algorithm [14] was the first non-trivial algorithm to search
HR-cases of mathematical functions. It is based on the “three-distance theorem” in a circle.
This algorithm uses a first-order approximation of the function f: with target precision p, it
splits the interval to check into subranges of roughly p'/? consecutive floating-point values if f
is smooth enough, thus giving a complexity of roughly p*? to check a whole binade®.

The SLZ Algorithm. SLZ [21, 22] is a clever algorithm using modern lattice reduction tech-
niques (due to Coppersmith) to find HR-cases of mathematical functions. It is in fact a family
of algorithms, with parameters the degree d of the approximation polynomial of the function,
and another parameter called «, the case d = a = 1 corresponding to Lefevre’s algorithm.
Let f be a mathematical function, p the target precision in bits, N = 2P, M an integer, and
assume one searches all integers |t| < 7T such that

INf(t/N)emod 1| < 1/M, (1)

where ucmod v denotes a centered modulus with value in [—v/2,v/2]. In a nutshell, SLZ first
computes a degree-d approximation polynomial P(t) of N f(t/N), then constructs polynomials
Qi; = M*(T7)(P(r) +y)’, reduces a matrix made from the @Q;; using the Lenstra-Lenstra-
Lovész (LLL) algorithm, and if two reduced polynomials ¢;(7,y) and g(7,y) are found with
small enough coefficients, then for any integer t satisfying Eq. (1), 7 = ¢t/T will be a root of
the resultant Res,(q1, ¢2), which has integer coefficients.

For univariate functions, the asymptotic complexity of the SLZ algorithm, when the param-
eter a goes to infinity, is N*7 for d = 2, and N¥/V4+1 for d > 3 [20]. This yields N°® for d = 3,
NO45 for d = 4. When the degree d increases, SLZ allows one to consider larger ranges 7,
but the size of the matrix becomes larger, and the LLL reduction becomes more expensive. A
reference implementation of SLZ is available in the BaCSeLs software tool, written by Hanrot,
Lefevre, Stehlé and the PI. In practice, the SLZ algorithm starts to outperforms Lefevre’s al-
gorithm for double precision, and gives a large speedup for quadruple precision (see Table 1).

In [20, Section 1.6], Stehlé extended SLZ to bivariate functions: with parameters d = o = 2,
the asymptotic complexity would be N0/7 ~ N1429 wwhere N is the number of possible inputs
for each variable. For single precision (N = 232), this corresponds to a complexity of about 246,
and 2°! for double precision. However, these algorithms for bivariate functions have not been
implemented and used for a real search, thus these figures should be handled with care.

3A binade is the set of all binary floating-point numbers between two consecutive powers of two.

CORE-MATH Paul Zimmermann Part B2 4

format ‘ N M T est. time
binary64 | 2°3 2% 220 1.1 days
binary128 | 2113 2113 244 490 Myears

Table 1: Best parameters for the SLZ algorithm and estimated time to check a binade of N/2 values
for the 2% function, using the BaCSeL tool on an Intel i5-4590 at 3.3 GHz (using one core).

A.2.2 Numerical Evaluation of Mathematical Functions

Once the HR-cases are known for a given function, it is possible to design an efficient cor-
rect rounding algorithm. The main ingredients are Ziv’s strategy, argument reduction and
reconstruction, and efficient polynomial evaluation.

Ziv’s strategy. Ziv's strategy (also called onion-peeling strategy) consists in evaluating ap-
proximations of f(x) with increasing working precisions p; < py < --- (see [30]). At step i with
precision p;, one gets an approximation y; with an error bound &;: f(x) € [y; — &, y; + &;]. If
both y; —¢; and y; +¢; round to the same number y in the target precision, then by monotonicity
of the rounding function, y is the correct rounding of f(z). Otherwise, one continues with a
larger precision p;yi.

Ziv’s strategy will loop if f(z) is exactly representable in the target precision p (p + 1 for
rounding to nearest). It is thus mandatory to know these “exact” cases and be able to efficiently
detect them. Fortunately for most functions the exact cases are quite rare, for example for the
exponential function there is only €® = 1. A tricky case is the power function z¥, which admits
plenty of exact cases, for example z = 625 and y = 3/4 yield x¥ = 125.

If the HR~cases are not known, the only way to guarantee correct rounding is to implement
Ziv’s strategy with an unbounded number of steps, thus with unbounded working precision p;.
However, embarking an arithmetic with unbounded precision would be highly inefficient. This
is why HR-cases are needed, or at least a tight bound for the maximal required precision. Ziv’s
original implementation uses a 3-step strategy for binary64: a first step using double precision,
a second step using double-double arithmetic, and a final one using 32 digits in base 224, thus
a total of 768 bits. For binary64, 768 bits is very likely large enough to guarantee correct
rounding, but no proof was given by Ziv.

For a fixed target precision like in the CORE-MATH objectives, a close to optimal strategy
is to use two precisions: a fast path with precision p; that will be able to return a correctly
rounded value in almost all cases, and an accurate path with precision p, large enough to always
return the correctly rounded value, as detailed in Figure 1. If ¢, (resp. t2) is the average time

fast path call a routine fi, using a working precision p; > p, yielding an approximation y;
such that |y — f(x)| < e1;

rounding test if round,(y; — 1) = round,(y; + 1), return that number;

accurate path otherwise call a routine fo, using a working precision py > pi, yielding an ap-
proximation yp, and return round,(yz).

Figure 1: The correct rounding algorithm for a univariate function f(x) and target precision p.

of fi (resp. f2), and & the probability that f; is not able to round correctly, the average time
is:

Once the HR-cases are known, we know the minimal precision p, required for fo, and we
can design such a function with the smallest ¢5. Then different implementations of f; can be

CORE-MATH Paul Zimmermann Part B2 5

tried, with different values of ¢; and &, keeping the one giving the smallest average time t in
Eq. (2). This approach has been successfully used by Godunov for the binary64 exponential
function [7].

Argument Reduction and Reconstruction. When a function f(x) satisfies some mathemat-
ical properties, for example sin(x + 27) = sin(x), one can use these properties to reduce the
evaluation to a small interval, usually around zero or one. This technique is called argument
reduction. One distinguishes between additive argument reduction, like in sin(x + 27) = sin(z),
and multiplicative argument reduction, like in log(2z) = log(x) 4 log(2). The typical workflow
is thus the following: (i) reduce the input z to a reduced argument z’, (i) approximate f(z’),
and (iii) recover f(x) from f(a’). Step (iii) is called argument reconstruction, it can be trivial
like in sin(z + 27) = sin(z).

Algorithms and Arithmetic. For the argument reduction/reconstruction and for the approx-
imation of f(z2’) (see above), different algorithms and arithmetic implementations are possible.

Once the argument has been reduced to a small interval 2’ € [a,b], a good polynomial
approximation of the function f over [a,b] is chosen. The state-of-the-art tool to choose this
polynomial is the Sollya program [4], which in addition allows one to give constraints on the
polynomial coefficients, so that they fit into the desired format. The range [a, b] can also be split
further into smaller sub-intervals, on which a polynomial of smaller degree can be used. The
“middle” point of each sub-interval can be chosen according to Gal’s “accurate table method”,
so that the constant coefficient of the polynomial yields some extra accuracy [6]. Very recently,
Gustafson proposed a completely new approach [9], which however seems to be usable only for
single precision.

Finally, the choice of the arithmetic implementation is crucial. Here three cases are dis-
tinguished according to the target precision. If the target precision is binary32, one can use
binary64 for the working precision of the fast path routine: it will yield 53 — 24 = 29 extra
bits of accuracy, and binary64 is very efficient since implemented in hardware. For binary64
target precision, one could use double extended variables, with a significand of 64 bits, but
this format is available on some processors only. A better solution is to use a 64-bit integer
type [13]. This approach has also demonstrated its efficiency for binary128, with multi-word
integer types [29], where a speedup of more than 10 was obtained for the quadruple preci-
sion exponential function. Table 2 shows the maximal error in units in last place for some
mathematical libraries in single precision, and the number of computer cycles needed by the
reference GNU libc implementation (it is free, widely available, highly optimized, well tested,
and contains benchmark utilities to measure average latency).

Summary. The main weakness of IEEE 754 is that correctly rounded mathematical functions
are not mandatory. This has too major consequences: different mathematical libraries might
give inaccurate results (and indeed they do [27]), and scientific computations are not bit-to-
bit reproducible, as soon as they involve mathematical functions. When IEEE 754 was first
published in 1985, it was too early to standardize mathematical functions. Nowadays, a lot
of progress has been made by several researchers in the field, particularly by the PI and his
co-authors; however, the issue of correctly rounded mathematical functions is far from being
solved, since major algorithmic obstructions remain.

A.3 Grand Challenge and Scientific Objectives

It would be rather easy to provide correct rounding with an average factor of two slowdown
with respect to current mathematical libraries (which do not yield correct rounding). However,

CORE-MATH Paul Zimmermann Part B2 6

GNU libc Intel Math Library AMD libm Newlib OpenLibm Musl

asin 0.898 0.528 0.861 0.926 0.743 0.743
exp2 0.502 0.519 1.00 1.02 0.501 0.502
log2 0.752 0.508 0.586 1.65 0.865 0.752
sqrt 0.500 0.500 0.500 0.500 0.500 0.500

function ‘ binary32 binary64 binary128

sin 71/79 306/299 3060/3361

exp 47/43 45/46 3546/3342

pow 82/76 115/108 9412/9027

Table 2: Top: maximal error in units in last place for some mathematical libraries in single precision
[27]. Bottom: latency (in clock cycles) for some GNU libc 2.31 functions on an Intel Core i7-8750H
(left) and an AMD Ryzen 5-2400G (right), for random inputs in [—10, 10] for exp, in [0, 10]? for pow,
and in [2¢71, 2¢] for sin, with e = 128, 1024, 16384 for binary32, binary64 and binary128 respectively.

to definitively convince users and members of the next IEEE 754 revision committee to adopt
correctly rounded mathematical functions, we strongly believe in the following Grand Challenge:

Design correct rounding algorithms for mathematical functions, and cor-
responding IEEE 754 conforming implementations for single, double, and
quadruple precision, with better efficiency than current non-conforming
mathematical libraries.

Said otherwise, our Grand Challenge is to have all entries 0.500 in the top part of Table 2,
which is the optimal maximal error in terms of units in last place for rounding to nearest, like
in the sqrt row, while having better timings than in the bottom part of Table 2.

The scientific challenges to be solved depending on the format (single, double, quadruple),
the Grand Challenge naturally splits into three Research Tracks: RT-1 for single precision
(§A.3.1), RT-2 for double precision (§A.3.2), and RT-3 for quadruple precision (§A.3.3).

For each Research Track, some hard scientific challenges are identified, and corresponding
success criteria are given. The Validation Track will ensure these scientific results will be made
available to the scientific and research community.

A.3.1 Research Track 1: Single Precision

The IEEE 754 binary32 format can represent numbers as small as T, ~ 1.4-107% (in absolute
value), and as large as Tyax =~ 3.4 - 103, This format being encoded on 32 bits, there are at
most 232 possible inputs. Searching all HR-cases for an univariate function is straightforward,
even with a naive algorithm comparing each value to the one obtained with MPFR (which
explains why nobody did bother publishing them). However, bivariate functions, for example
the power function z¥, the hypot function y/x2 + y2, or the atan2 function arctan(y/z), remain
out of reach for an exhaustive HR-case search. The objective of Research Track 1 is to solve
the Table Maker’s Dilemma for these bivariate functions, and to provide corresponding correct
rounding algorithms:

e Track RT1-a: Search HR-cases for binary32 bivariate functions

e Track RT1-b: Design efficient correct rounding algorithms for binary32 bivariate
functions

Criterion of Success for Research Track 1: new algorithms and a reference IEEE
754-conforming implementation for the power function in single precision within 50

CORE-MATH Paul Zimmermann Part B2 7

cycles on average (compared to 76-82 cycles for the current non-conforming GNU
libc implementation)®.

A.3.2 Research Track 2: Double Precision

For univariate functions in double precision, many HR-cases are known, thanks to the work of
Lefevre and Muller [15, 17]. One exception is the case of periodic functions. For example, the
HR-cases of sin(z) are known only for |z| < 12867/4096 ~ 3.1413, the worst case in that range
being (where the right-hand side is in binary)

sin(8980155785351021 - 2754) = 0.011110100110010101000001110011000011000100011010010101 111...111 000...
66

HR-cases for larger absolute values (up to the largest binary64 number x = 1.8 - 103%) are
still unknown. In [10], a new algorithm was proposed for periodic functions, with an estimate
of about 4 core-years for the [210%3 21024] hinade. This gives about 4000 core-years to find all
HR-cases of sin(x) for the whole binary64 format. One objective of this research track is to
find new algorithms that will reduce that search time by a factor of 10 to make it feasible:

e Track RT2-a: Search HR-cases for binary64 periodic functions

e Track RT2-b: Design efficient correct rounding algorithms for binary64 periodic
functions

Criterion of Success for Research Track 2: new algorithms and a reference IEEE
754-conforming implementation for the sine function within 100 cycles on average
for the whole double precision exponent range (compared to about 300 cycles for
the current non-conforming GNU libc implementation).

A.3.3 Research Track 3: Quadruple Precision

Quadruple precision (binary128) is the wider IEEE 754 format, which can represent up to 2!
different values, ranging from 6.5 - 107496 to 1.2 - 10932 in absolute value. With the current
state-of-the-art algorithms, it would take of the order of 420M core-years to find HR-cases
for one binade (see Table 1), and the binary128 format corresponds to about 2 binades.
No HR-cases are known (except for the square root [12]). CORE-MATH will provide major
breakthroughs in two directions:

e Track RT3-a: Search HR-cases for binary128 functions
e Track RT3-b: Design efficient correct rounding algorithms for binary128 functions

For the design of efficient algorithms, an important difference with single and double precision
is that basic arithmetic for quadruple precision (addition, subtraction, multiplication, division)
is usually implemented in software, and it thus slow (with the already-mentioned exception of
the IBM Power9 processor, see §A.1).

Criterion of Success for Research Track 3: new algorithms and a reference IEEE
754-conforming implementation for the exponential function in quadruple precision
within 200 cycles on average (compared to 3300-3500 cycles for the current non-
conforming GNU libc implementation).

4While CORE-MATH will target all functions of Annex F from the C language standard, within each research track
we identify hard problems that remain currently unsolved, and give corresponding success criteria.

CORE-MATH Paul Zimmermann Part B2 8

A.3.4 Validation Track

Using the results of RT-1, RT-2, and RT-3, the Validation Track will provide correct round-
ing implementations for the binary32, binary64, and binary128 formats respectively, for all
rounding modes. It will address all 28 functions of Annex F of the C language standard:
trigonometric functions (acos, asin, atan, atan2, cos, sin, tan), hyperbolic functions (acosh,
asinh, atanh, cosh, sinh, tanh), exponential and logarithmic functions (exp, exp2, expml, log,
log10, loglp, log2), power-like functions (cbrt, hypot, pow, sqrt), error and gamma functions
(erf, erfc, lgamma, tgamma), together with the new functions planned in the C2X standard [3].

Criterion of Success for the Validation Track: ensure the correct rounding func-
tions designed within CORE-MATH are integrated into at least one of the current
mathematical libraries: GNU libc, Intel Math Library, etc.

B Methodology

We explain now how we will achieve our Grand Challenge, and which research plan we will
set up for each research track. Some methodology of CORE-MATH is common to all three
research tracks, in particular the dependency to the IEEE 754 rounding modes. The correct
rounding algorithms designed within CORE-MATH will depend on the rounding mode in the
very last step only: first the inputs will be converted to some internal representation, then
all computations will be done within that internal representation (where the current rounding
mode will have no effect), and the final approximation will be correctly rounded according to
the current rounding mode.

For each research track, we detail the CORE-MATH methodology on the example function
given in the corresponding criterion of success. As explained above, the other functions of
Annex F of the C standard (see §A.3.4) will be considered too, but each example function
represents well the main difficulties that will be encountered.

B.1 Research Track 1: Single Precision
Track RT1-a: Search HR-cases for binary32 bivariate functions

Let us detail the CORE-MATH methodology on the power function z¥. A good news is that
not all 25 pairs of inputs yield a result in the binary32 exponent range. Indeed, for z = 17
and y = 42, x¥ overflows, thus there is no need to consider that pair for HR-cases. For the
power function, the number of positive inputs such that z¥ does not underflow or overflow is
about 26!, However, this number is still huge.

Some preliminary experiments with the bivariate SLZ algorithm in the SageMath computer
algebra system [23] yield the following optimal settings for the x¥ function, degree d = 3 and
parameter o = 2, where each call of the SLZ algorithm (see §A.2.1) deals with a rectangle of
2T consecutive floating-point values for x, and 2U for y:

format T U estimated time
binary32 26 26 400000 years
binary64 24 21 107 years
binary12g 231 23! 10 years

Apart from the fact that binary64 and binary128 are out of reach, the interesting figure is
T = U = 2° for binary32. This means that each run of the algorithm deals with a square
containing 27 = 128 consecutive binary32 x-values, and 2U = 128 consecutive binary32 y-
values, thus a total of 16384 pairs (z,y). This corresponds to about 90 milliseconds per square

CORE-MATH Paul Zimmermann Part B2 9

of 16384 pairs for the SageMath toy implementation. We propose the following alternate
algorithm:

e compute an order-1 expansion f(x,y) ~ a+bt+ cu around xg, 3o, with a, b, ¢ floating-point
values, and t,u integers, |t| < T, |u| < U, assuming 1/2 < |f(z,y)| < 1;

e deduce a’ = frac(2Pa), b/ = frac(2Pb), ¢ = frac(2Pc), corresponding to the least significant
bits, with p the target precision;

e now one wants to find integers t, u such that @’ + 't + c'ucmod 1 is small, where o', V', ¢
are real numbers in [0, 1), and cmod denotes the centered modulus.

A classical approach for the last step is the following: let a” be the integer closest to 2%%a’, and
similarly for b” and ¢”, then one is looking for a” + b"t 4 ¢’u cmod 2%¢ small, say less than some
bound d in absolute value. Another classical approach (already used for example in Lefevre’s
algorithm [14]) is to compute instead a” 40"t +"u+d mod 2%* (now with the classical modulus,
giving a number in [0,2% — 1]) and check whether it is smaller than 2d. This could be done
at the speed of one operation every clock cycle. On a 3 GHz processor, one should be able
to check 3 - 10° binary32 pairs (z,y) per second, and thus checking all the ~ 2% cases of z¥
that do not yield underflow or overflow (see above) would take a few core-years, which becomes
feasible.

Track RT1-b: Design correct rounding algorithms for binary32 bivariate functions

The objective of this research track is to provide efficient correct rounding algorithms for
mathematical functions in single precision, unlike current mathematical libraries [27]. The 28
functions of Annex F of the C language standard, detailed in §A.3.4, will be addressed.

The challenging functions will be the bivariate ones (atan2, pow, hypot), since on the one
hand the HR-cases will be harder to compute (cf Track RT1-a), and on the other hand they
are likely to require more accuracy for the accurate path. Indeed, for a format on p bits, the
HR-cases for univariate functions are expected to require about 2p bits of accuracy, and those
for bivariate functions are expected to require about 3p bits of accuracy, thus about 96 bits
here. Instead of using Ziv’s original strategy (see Figure 1), we propose to have an accurate
path with a working precision of 64 bits, and to add a third “very accurate” path with a working
precision sufficient to round correctly all HR-cases. This will require to implement an efficient
arithmetic with about 96 bits of accuracy. Here the experience of the PI with MPFR will be
extremely valuable [16].

B.2 Research Track 2: Double Precision
Track RT2-a: Search HR-cases for binary64 periodic functions

Research Track RT2-a will first re-evaluate the estimate of 4000 core-years to find all HR-cases
of sin(x) for binary64 (see §A.3.2). A first research direction will be to investigate whether
the algorithm from [10] can be parallelized. For the [2192% 21921] hinade, where two consecutive
floating-point numbers are distant from p = 2°7!, this algorithm considers arithmetic progres-
sions of numbers distant of gu from each other, where ¢ = 15106909 301 is chosen such that
qu is very small modulo 27, here gu mod (27) ~ 4.41 - 1073, Then the original SLZ algorithm
is used on each arithmetic progression (or Lefevre’s algorithm, which strangely was not even
tried in [10]).

Within CORE-MATH, we will search for new ideas making obsolete the state-of-the-art
algorithm from [10]. On the algorithmic side, one such idea to be experimented is the following.
The algorithm from [10] deals independently with every binade. However, binades could be

CORE-MATH Paul Zimmermann Part B2 10

grouped together, for example if we group the [21022 21023] and [21923 21024) hinades together,
we have to consider inputs of the form m - 2970 for an integer m in the range [2°2,2%1]. Since
the algorithm from [10] is sublinear in the input size N, one can expect a smaller asymptotic
complexity.

In the worst-case scenario, assuming only a factor of 4 will be gained, it will decrease the cost
of the search of HR-cases for sin(z) from 4000 years to about 1000 years. This is tractable with
university-level resources (using if needed the Grid5000 platform [8] or the PRACE Research
Infrastructure [19]). Thus Track RT2-a should be able to determine and publish HR-cases of
sin(x) for the whole binary64 format, as well as of the other considered functions.

Track RT2-b: Design correct rounding algorithms for binary64 periodic functions

We will provide correctly-rounded algorithms for binary64 using Ziv’s strategy with two steps:
a fast path using 64-bit integer arithmetic, and an accurate path using 128-bit integer arith-
metic, assuming it is enough for the HR-cases obtained by Track RT2-a. Indeed, since the
advent of 64-bit processors, the clever use of integer operations can be faster than using hard-
ware floating-point operations to implement mathematical functions [13, 29].

Efficient arithmetic will also be needed for the argument reduction step. In the case of sin(x)
for x large, one first needs to compute k& = |z/(27)], then compute the reduced argument
x' = x — 2km, before approximating sin(z’). For the largest possible x, the integer k& will have
up to 1022 bits. We will also try the following research direction: since every binary64 number
can be written x = m-2° for integers m and e, the idea is to precompute 7 ~ 2 mod (27), then
2’ &~ m7 mod (2m). Using statistical considerations, an accuracy of about 128 bits should be
enough for 7, therefore the argument reduction will require a smaller arithmetic and be faster,
at the expense of more memory to store the table of the precomputed 7 values. Track RT2-b
will compare all these strategies and keep the best one.

B.3 Research Track 3: Quadruple Precision
Track RT3-a: Search HR-cases for binary128 functions

The current cost estimates for the search of binary128 HR-cases are huge: 420M core-years
for one binade of the 2% function (Table 1). A first research direction will be to revisit this
estimate, using algorithmic and implementation ideas, as already detailed in Track RT2-a. On
the other side, since the parameters are larger, this opens more room for new ideas.

In case the revised estimate is still too large, it will not be possible to actually compute the
HR-cases for the target function. We will then implement the fallback solution of determining
an upper bound for the required working precision. Indeed, the cost of the SLZ algorithm
decreases when the number of sought identical bits after the rounding bit increases, i.e., when
the parameter M increases in Equation (1). In his PhD thesis, Torres has shown that with
M = 21 degree d = 45, and parameter o = 10, the cost of checking one quadruple-precision
binade for the exponential function decreases to 66 core-years [24, Section 3.9.6.2]. The search
then becomes tractable, very likely it will find no HR-case, nevertheless it will prove that a
working precision of 113 + 10 - 113 = 1243 bits will be enough, i.e., about 20 words of 64 bits.
Another research direction will be to re-evaluate this estimate, and similarly for smaller values
of M (2% 2% ..}, in order to determine the smallest value of M for which the HR-cases search
(or more precisely bounding the HR~cases) is feasible. Indeed, for such large values of M, most
of the time is spent in the LLL reduction, and one will search for a special-purpose reduction
algorithm along the lines of [1].

In any case, Track RT3-a will provide for every function a bound py.x, certifying that no
solution to Equation (1) exists for M = 2Pm=x_ This bound will be used in Track RT3-b.

CORE-MATH Paul Zimmermann Part B2 11

Track RT3-b: Design correct rounding algorithms for binary128 functions

We will provide correctly-rounded algorithms for binary128 using Ziv’s strategy with two or
three steps: a fast path using 128-bit integer arithmetic, a second path using 256-bit integer
arithmetic, and if needed a third path using larger integer arithmetic, using the bound pyax
provided by Track RT3-a.

A preliminary study performed by the PI has shown that using integer-only arithmetic to
implement quadruple precision mathematical functions can yield a speedup of 27% over GNU
libc on platforms which support binary128 in hardware, and a factor of more than 10 on
platforms without such hardware support [28]. These figures are very preliminary and are
likely to be improved by CORE-MATH. This will be the main direction followed by Track
RT3-b.

For each of the two or three steps of Ziv's strategy (128 bits, 256 bits, and up to about
1200 bits depending on the results of Track RT3-a), we will design efficient algorithms for the
argument reduction and reconstruction, and the evaluation of the approximation polynomial
itself. The binary128 instances of these algorithms will be automatically generated using the
Meta-MPFR generator (see below).

B.4 Validation Track

The Validation Track will take care of efficiently implementing the algorithms designed in RT-1,
RT-2, and RT-3. For this purpose, a meta-generator of efficient code (called Meta-MPFR) will
be designed and tuned for the scientific objectives of CORE-MATH. This will greatly help
disseminate and integrate the scientific results of CORE-MATH.

Track VT-a: Meta-MPFR

Meta-MPFR will be meta-generator, written in a high-level language like Python. It will
generate efficient code for the C language with rigorous error bounds, that will be used to

efficiently implement the algorithms designed in RT1-b, RT2-b, RT3-b. Meta-MPFR will have
two layers:

e a lower layer providing low-level functions, in particular addition, subtraction and multi-
plication;

e a higher layer providing high-level functions, for example argument reduction or recon-
struction, evaluation of an approximation polynomial.

The higher layer will be interfaced with the Sollya tool [4] to automatically compute approxi-
mation polynomials. The programs generated by Meta-MPFR will manipulate fixed-precision
floating-point numbers stored on several computer words, using only integer operations (as in
MPFR). Meta-MPFR will take as input the target precision, the bit size of the target processor
(32 or 64), and other parameters like the maximal absolute value that can arise during the
computations, the hardware configuration of the target processor (for example presence of a
fused multiply-add operation, size of caches). Note that for a given step (fast or accurate path),
the working precision will be determined by one of Tracks RT1-a, RT2-a, or RT3-a, then will
be the same for all routines needed for that step, and can thus be implicit (contrary to MPFR
where each floating-point variable stores its own precision).

Track VT-b: Dissemination and Integration

Track VT-b will take care of the dissemination of the CORE-MATH results toward the scientific
community, and its full integration into existing mathematical libraries. For each function of

CORE-MATH Paul Zimmermann Part B2 12

Annex F from the C language standard, a complete implementation with correct rounding will
be published for public review. To assess the correctness of these reference implementations,
a “CORE-MATH bugs bounty program” will be launched, with amounts of 1024 euros (single
precision bounty), 2048 euros (double precision bounty), and 4096 euros (quadruple precision
bounty) for the first individual to find a case that is not correctly rounded®. Apart from
attracting public media, this will provide an excellent review of the work done in CORE-
MATH. These implementations will be integrated into at least one of the main mathematical
libraries (GNU libc for example) and thus available for every engineer, scientist or researcher.

B.5 CORE-MATH Roadmap

Table 3 summarizes the distribution of the work over the 5 years of CORE-MATH, according to
the dependencies and relationships between the different research tracks. The first priorities for
the HR~cases tracks (RT1-a, RT2-a, RT3-a) will be to compute upper bounds for the precision
of the corresponding accurate paths, that will be needed by tracks RT'1-b, RT2-b, RT3-b. Since

Meta-MPFR is independent from the other tracks, its development can start at the beginning
of CORE-MATH.

Year 1 \ Year 2 Year 3 Year 4 \ Year 5
RT1 RT1-a (binary32 HR-cases)
RT1 RT1-b (binary32 correct rounding)
RT2 RT2-a (binary64 HR-cases)
RT2 RT2-b (binary64 correct rounding)
RT3 RT3-a (binary128 HR-cases)
RT3 ‘ RT3-b (binary128 correct rounding)
VT | VT-a (Meta-MPFR) VT-b (dissemination and integration)

\ Workshop 1 \ Workshop 2 \

Table 3: The CORE-MATH Roadmap (timeline in years).

Three PhD students will be hired to work on the HR-cases search (research tracks RT1-a,
RT2-a, RT3-a), while three postdoctoral researchers will be hired to work on the efficient correct
rounding algorithms (research tracks RT1-b, RT2-b, RT3-b). A confirmed researcher with 4-8
years of experience will be hired to work on the Validation Track.

B.6 High Risk, High Gain

The outcome of CORE-MATH will be new algorithms providing correct rounding for the three
binary IEEE 754 formats, and the corresponding reference implementations. This will only be
possible if we manage to do major algorithmic breakthroughs in the search for HR-cases, and
in the accurate evaluation of mathematical functions.

High Risk. For Research Track 1, we are confident we will be able to determine the hard-
to-round cases for ¥ in the binary32 format, by inventing an algorithm similar to SLZ for
bivariate functions, if needed with the help of parallel computations.

For Research Track 2, saving a factor of 10 over the state-of-the-art search for HR-cases [10]
entails a high risk. If we only save a smaller factor, for example 3, the total time will still be
reachable using distributed computations, for which the PI has a very solid experience [2].

®The corresponding amounts will be paid by the Host Institution (Inria).

CORE-MATH Paul Zimmermann Part B2 13

The risk for Research Track 3 is very high. Indeed, the current estimation of 420 Myears
for the HR~cases search is huge (for just one binade), and here a factor of about one million
should be saved to make it feasible. If the algorithmic and implementation improvements are
not sufficient, another research direction would be to add a second rounding test in Figure 1
after the call to fs, to check whether round, (ys —e2) = round,(y2 +¢2), where &5 is the maximal
error for . If that is not the case, a third function f3 will be called with a larger precision
p3 > po. Since the cost of determining HR-cases with the SLZ algorithm decreases with the
precision, ps will be chosen such that this search becomes possible.

The Validation Track will consolidate the results obtained by Research Tracks 1-3. The
main risk for this track is that the output of CORE-MATH will not be adopted by the scientific
community. To mitigate this risk, contributions will be made to the main mathematical libraries
used in scientific applications very early during CORE-MATH. (In addition, the PI is member
of the IEEE 754 discussion list since 2001, and of the C Floating-Point group since early 2020.)

High Gain. Computer science achievements made IEEE 754 the most famous and successful
industrial standard. However, it did not settle the case of correct rounding for mathematical
functions, which has produced many incorrect results since 1985, and is still preventing bit-
to-bit reproducibility of numerical computations. CORE-MATH will push the next revision
of IEEE 754 to require correct rounding for mathematical functions. The timeline is perfect,
since the next revision is due in 2029. CORE-MATH will open new possibilities for engineers
and scientists from all domains. Firstly, scientific applications will yield the best possible result
and become bit-to-bit reproducible, across hardware processors, compilers, operating systems.
Secondly, since the roundoff error for every mathematical function will be bounded, it will
become possible to compute rigorous error bounds for a whole computation. In particular,
it will be possible to perform rigorous interval arithmetic with mathematical functions, and
thus obtain a correct containment interval for the result of a whole computation. Last but not
least, CORE-MATH will provide new algorithms for quadruple precision which will not only
yield correct rounding, but also provide more than a tenfold speedup with respect to the best
publicly available libraries. This will make quadruple precision really accessible for applications
requiring it. In summary, CORE-MATH will allow to compute just right, and still fast!

The economic impact of CORE-MATH will be multiple. On the one hand, the cost of
developing numerical applications will decrease, since it will no longer be required to test them
on every different combination of hardware, compiler, operating system (or worse to tweak
them so that the test suites run) and we will get for free forward reproducibility, i.e., a program
written at year Y will still yield the same result at year Y + 10. This is not the case currently,
since any tiny change in the mathematical library (either improving or degrading the accuracy)
might change the final result. We also expect it will enable to join or share the development
efforts of the different mathematical libraries currently available. Finally, vendor lock-in will
no longer be possible, where the library designed by a vendor calls non-optimal routines on
hardware from a different vendor.

B.7 Conclusion and Perspectives

As for the perspectives, one expectation is that CORE-MATH will motivate other researchers
and numerical analysts to promote correct rounding for other domains of computation or other
operations. For example, despite computations with (floating-point) complex numbers are
standardized in the C language, there is currently no requirement for correct rounding at all,
even when multiplying or dividing two complex numbers!

CORE-MATH Paul Zimmermann Part B2 14

References

[1]

Bi1, J., CoroN, J., FAUGERE, J., NGUYEN, P. Q., RENAULT, G., AND ZEITOUN, R. Rounding and
chaining LLL: finding faster small roots of univariate polynomial congruences. In Public-Key Cryptography
- PKC 2014 - 17th International Conference on Practice and Theory in Public-Key Cryptography, Buenos
Aires, Argentina, March 26-28, 2014. Proceedings (2014), H. Krawczyk, Ed., vol. 8383 of Lecture Notes in
Computer Science, Springer, pp. 185-202.

Boupor, F., GAUDRY, P., GUILLEVIC, A., HENINGER, N., THOME, E., AND ZIMMERMANN, P. Com-
paring the difficulty of factorization and discrete logarithm: a 240-digit experiment. In Proceedings of
Advances in Cryptology (CRYPTO) (2020), D. Micciancio and T. Ristenpart, Eds., vol. 12171 of Lecture
Notes in Computer Science, pp. 62-91.

C FLOATING-POINT GROUP. IEC 60559 math functions for C2X. http://www.open-std.org/jtcl/sc22/
wgld/www/docs/n2373.pdf, 2019.

CHEVILLARD, S., JOLDES, M. M., AND LAUTER, C. Sollya: an environment for the development of
numerical codes. In Third International Congress on Mathematical Software - ICMS 2010 (Kobe, Japan,
2010), K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, Eds., vol. 6327 of Lecture Notes in
Computer Science, Springer, pp. 28 — 31.

Fousse, L., HANROT, G., LEFEVRE, V., PELISSIER, P., AND ZIMMERMANN, P. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (2007).

GAL, S. Computing elementary functions: A new approach for achieving high accuracy and good per-
formance. In Accurate Scientific Computations, Symposium, Bad Neuenahr, FRG, March 12-14, 1985,
Proceedings (1985), W. L. Miranker and R. A. Toupin, Eds., vol. 235 of Lecture Notes in Computer Sci-
ence, Springer, pp. 1-16.

GobpuNov, A. Algorithms for calculating correctly rounded exponential function in double-precision arith-
metic. IEEE Transactions on Computers 69, 9 (2020), 1388-1400.

The Grid’5000 testbed for parallel and distributed computing. https://www.grid5000.fr.

GUSTAFSON, J. L. The Minefield method: A uniformly fast solution to the Table-Maker’s Dilemma.
https://bit.1ly/2ZP4kHj, 2020.

HaNroT, G., LEFEVRE, V., STEHLE, D., AND ZIMMERMANN, P. Worst cases of a periodic function
for large arguments. In Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH’18)
(Montpellier, France, 2007), P. Kornerup and J.-M. Muller, Eds., IEEE Computer Society Press, Los
Alamitos, CA, pp. 133-140.

IEEE standard for floating-point arithmetic, 2019. 84 pages.

LaNG, T., AND MULLER, J.-M. Bounds on runs of zeros and ones for algebraic functions. In Proceedings
of the 15th IEEE Symposium on Computer Arithmetic (2001), IEEE Computer Society, pp. 13—20.

LE MAIRE, J., BRUNIE, N., DE DINECHIN, F., AND MULLER, J.-M. Computing floating-point logarithms
with fixed-point operations. In 28rd IEEE Symposium on Computer Arithmetic (Santa Clara, United
States, 2016), P. Montuschi, M. J. Schulte, J. Hormigo, S. F. Oberman, and N. Revol, Eds., IEEE, pp. 156—
163.

LEFEVRE, V. New Results on the Distance Between a Segment and Z2. Application to the Exact Rounding.
In 17th IEEE Symposium on Computer Arithmetic - Arith’17 (Cape Cod, MA, United States, 2005),
P. Montuschi and E. Schwarz, Eds., IEEE Computer Society, pp. 68-75.

LEFEVRE, V., AND MULLER, J.-M. Worst Cases for Correct Rounding of the Elementary Functions in
Double Precision. In 15th IEEE Symposium on Computer Arithmetic - ARITH 2001 (Vail, Colorado,
2001), N. Burgess and L. Ciminiera, Eds., pp. 111-118.

LEFEVRE, V., AND ZIMMERMANN, P. Optimized binary64 and binary128 arithmetic with GNU MPFR.
In 2/th IEEE Symposium on Computer Arithmetic, ARITH 2017, London, United Kingdom, July 24-26,
2017 (2017), N. Burgess, J. D. Bruguera, and F. de Dinechin, Eds., pp. 18-26.

LEFEVRE, V. Hardest-to-round cases — part 2. http://tamadiwiki.ens-1lyon.fr/tamadiwiki/images/
c/cl/Lefevre2013.pdf, 2013. Slides presented at the final TaMaDi meeting. 30 pages.

CORE-MATH Paul Zimmermann Part B2 15

[18]

[26]
[27]
28]

[29]

LEFEVRE, V., MULLER, J.-M., AND TISSERAND, A. Toward correctly rounded transcendentals. IEEE
Transactions on Computers 47 (1998), 1235 — 1243.

Partnership for Advance Computing in Europe. https://prace-ri.eu.

STEHLE, D. Algorithmique de la réduction de réseauz et application & la recherche de pires cas pour
Uarrondi de fonctions mathématiques. Theses, Université Henri Poincaré - Nancy I, 2005.

STEHLE, D. On the Randomness of Bits Generated by Sufficiently Smooth Functions. In Seventh Algorith-
mic Number Theory Symposium - ANTS 2006 (Berlin, Germany, 2006), F. Hess, S. Pauli, and M. Pohst,
Eds., vol. 4076 of Lecture Notes in Computer Science, Springer, pp. 257-274.

STEHLE, D., LEFEVRE, V., AND ZIMMERMANN, P. Searching worst cases of a one-variable function using
lattice reduction. IEEE Transactions on Computers 54, 3 (2005), 340-346.

THE SAGE DEVELOPERS. SageMath, the Sage Mathematics Software System (Version 9.1), 2020. https:
//www.sagemath.org.

TORRES, S. Tools for the Design of Reliable and Efficient Functions Fvaluation Libraries. PhD thesis,
Université de Lyon, 2016.

VUIik, K. Some disasters caused by numerical errors. http://ta.twi.tudelft.nl/users/vuik/wi211/
disasters.html.

ZIMMERMANN, P. Why transcendentals and arbitrary precision? Invited talk at the IEEE 754 revision
committee, Sun Menlo Park, 2005.

ZIMMERMANN, P. Accuracy of mathematical functions in single precision. https://members.loria.fr/
PZimmermann/papers/accuracy.pdf, 2020.

ZIMMERMANN, P. Faster expfl28. https://sourceware.org/pipermail/libc-alpha/2020-June/
115229.html, 2020.

ZIMMERMANN, P. How slow is quadruple precision? Invited talk at the ICERM workshop on Variable Pre-
cision in Mathematical and Scientific Computing, Providence, 2020. https://icerm.brown.edu/events/
htw-20-vp/.

Z1v, A. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans.
Math. Softw. 17, 3 (1991), 410-423.

