
The glibc bug #10709

Paul Zimmermann

September 28, 2009

On computers without double-extended precision, the GNU libc 2.10.1 in-
correctly rounds the sine of (the double-precision closest to) 0.2522464. This is
a bug in IBM’s Accurate Mathematical Library, which claims correct rounding,
as recommended by IEEE 754-2008 [2]. We analyze this bug and propose a fix.

Note: since 17 decimal digits are enough to identify a double-precision binary
floating-point number (significand of 53 bits), we identify those 17 digits with
the corresponding double-precision number.

Let x be the double-precision closest to 0.2522464. With rounding to near-
est, sinx should yield 0.24957989804940911, but the GNU libc 2.10.1 gives
0.24957989804940914 on a computer without double-extended precision (for ex-
ample a 64-bit Core 2, or a Nokia N810 with ARM processor).

1 Analysis of the bug

The bug lies in the glibc/sysdeps/ieee754/dbl-64/s_sin.c source file, func-
tion sin, more precisely in the case commented as 0.25 < |x| < 0.855469:

else if (k < 0x3feb6000) {
u.x=(m>0)?big.x+x:big.x-x;
y=(m>0)?x-(u.x-big.x):x+(u.x-big.x);
xx=y*y;
s = y + y*xx*(sn3 +xx*sn5);
c = xx*(cs2 +xx*(cs4 + xx*cs6));
k=u.i[LOW_HALF]<<2;
sn=(m>0)?sincos.x[k]:-sincos.x[k];
ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1];
cs=sincos.x[k+2];
ccs=sincos.x[k+3];
cor=(ssn+s*ccs-sn*c)+cs*s;
res=sn+cor;
cor=(sn-res)+cor;
return (res==res+1.025*cor)? res : slow1(x);

The code computes an approximation res+cor of sinx, where res = 0.24957989804940914,
cor = −1.3444106938820255e− 17. It then uses the test res==res+1.025*cor

1

to check whether the correctly rounded result is res. This test is using a stan-
dard trick, described for example in [1, Listing 3.11]: if A + B is an approxi-
mation of some (unknown) value y with relative error less than δ, with A, B
two double-precision values, with |B| ≤ 1

2ulp(A), and if e = 1 + δ · 255, if A ==
A + B * e (when computed with rounding to nearest), then A is the correct
rounding of y.

The value e = 1.025 used in the test above suggests the bound δ = 0.025 ·
2−55 ≈ 0.69 ·10−18 for the relative error in the approximation res+cor of sinx.
However, the relative error is larger, since it is about 0.24 · 10−17.

2 Bug fix

To fix the bug, we need to provide a rigorous error analysis of the relative error
in the approximation res + cor, which is valid for every input 0.25 < |x| <
0.855469. We assume x > 0, since the code uses the fact that sin(−x) = − sinx.
The constant big.x equals 3 · 244, so that after the line

u.x=(m>0)?big.x+x:big.x-x;

we have ulp(u) = 2−7. This is a standard trick to select the bits of x of weight
≥ −7. After

y=(m>0)?x-(u.x-big.x):x+(u.x-big.x);

we have x = (u − big) + y, with |y| ≤ 2−8. Now we round xx=y*y, with
xx ≤ 2−16 and err(xx) ≤ 2−70. The next line computes an approximation of
sin y,

s = y + y*xx*(sn3 +xx*sn5);

where sn3 = −0.16666666666666488 and sn5 = 0.0083333321428572232 are
approximations of −1/6 and 1/120. The maximal absolute error between sin y
and y + y3sn3 + y5sn5 is ≤ 2−68.930 for |y| ≤ 2−8. Now consider the rounding
errors:

value bound error bound
xx 2−16 2−70

xx*sn5 2−22 2−75

sn3+xx*sn5 2−2 2−55.999

y*xx 2−24 2−77

y*xx*(sn3+xx*sn5) 2−26 2−78.414

y+y*xx*(sn3+xx*sn5) 2−8 2−61.999

Taking into account the above mathematical error, this gives a maximal error
of 2−68.930 + 2−61.999 ≤ 2−61.987 between s and sin y.

Similarly, we approximate 1− cos y:

c = xx*(cs2 +xx*(cs4 + xx*cs6));

2

with cs2 = 1/2, cs4 = −0.041666666666666442, cs6 = 0.0013888887400793761.
The mathematical error y2cs2+y4cs4+y6cs6−(1−cos y) is bounded by 2−79.930

for |y| ≤ 2−8. We bound the rounding error as above:

value bound error bound
xx 2−16 2−70

xx*cs6 2−25 2−78

cs4+xx*cs6 2−4 2−57.999

xx*(cs4+xx*cs6) 2−20 2−72.414

cs2+xx*(cs4+xx*cs6) 2−1 2−54.999

xx*(cs2+xx*(cs4+xx*cs6)) 2−17 2−69.414,

thus the maximal absolute error between c and 1− cos y is 2−79.930 + 2−69.414 ≤
2−69.413.

Now assume the tabulated sn + ssn value is a best-possible approximation
of sin(u− big), and similarly for cs + ccs for cos(u− big). Thus the absolute
error for each one is less than 2−108. Assume here that sn and cs are exact,
and ssn and ccs are wrong by at most 2−108. Then we have:

sinx = sin(u− big)− sin(u− big)(1− cos y) + cos(u− big) sin y
≈ sn + ssn− sn · c+ cs · s+ ccs · s.

value bound error bound
s*ccs 2−62 2−114.414

ssn+s*ccs 2−53 2−106.409

sn*c 2−17 2−68.999

ssn+s*ccs-sn*c 2−16 2−68.414

cs*s 2−8 2−60.999

(ssn+s*ccs-sn*c)+cs*s 2−8 2−60.408

The last two instructions leave the sum res + cor unchanged:

res=sn+cor;
cor=(sn-res)+cor;

thus the final absolute error is bounded by 2−60.408, and the relative error is
bounded by 2−60.408/ sin(0.25) ≤ δ = 2−58.392. This yields a bound e = 1 + δ ·
255 ≤ 1.096. Thus changing the line:

return (res==res+1.025*cor)? res : slow1(x);

into:

return (res==res+1.096*cor)? res : slow1(x);

will provide a correctly-rounding routine, assuming slow1 performs correct
rounding.

Note: the absolute error on res+cor comes mainly from the rounding error
on (ssn+s*ccs-sn*c)+cs*s, which counts for 2−62, on the rounding error on

3

cs*s, which counts for 2−62 too, and cs times the rounding error on s, which
counts for 2−61.999. We can slightly improve the bound by using the fact that
cs ≤ cos(0.25), which gives 2−60.424 for the error bound, and 1.095 for the
constant factor. However, since those three errors are independent, it seems
difficult to improve much more.

References

[1] Defour, D. Fonctions élémentaires: algorithmes et implémentations effi-
caces pour l’arrondi correct en double précision. PhD thesis, École Normale
Supérieure de Lyon, 2003.

[2] IEEE standard for floating-point arithmetic, 2008. Revision of ANSI-IEEE
Standard 754-1985, approved June 12, 2008: IEEE Standards Board.

4

