The glibc bug #10709

Paul Zimmermann

September 28, 2009

On computers without double-extended precision, the GNU libc 2.10.1 incorrectly rounds the sine of (the double-precision closest to) 0.2522464. This is a bug in IBM's Accurate Mathematical Library, which claims correct rounding, as recommended by IEEE 754-2008 [2]. We analyze this bug and propose a fix.

Note: since 17 decimal digits are enough to identify a double-precision binary floating-point number (significand of 53 bits), we identify those 17 digits with the corresponding double-precision number.

Let x be the double-precision closest to 0.2522464. With rounding to nearest, $\sin x$ should yield 0.24957989804940911, but the GNU libc 2.10.1 gives 0.24957989804940914 on a computer without double-extended precision (for example a 64-bit Core 2, or a Nokia N810 with ARM processor).

1 Analysis of the bug

The bug lies in the glibc/sysdeps/ieee754/dbl-64/s_sin.c source file, function _sin, more precisely in the case commented as 0.25 < |x| < 0.855469:

```
else if (k < 0x3feb6000) {
    u.x=(m>0)?big.x+x:big.x-x;
    y=(m>0)?x-(u.x-big.x):x+(u.x-big.x);
    xx=y*y;
    s = y + y*xx*(sn3 +xx*sn5);
    c = xx*(cs2 +xx*(cs4 + xx*cs6));
    k=u.i[LOW_HALF]<<2;
    sn=(m>0)?sincos.x[k]:-sincos.x[k];
    ssn=(m>0)?sincos.x[k+1]:-sincos.x[k+1];
    cs=sincos.x[k+2];
    ccs=sincos.x[k+3];
    cor=(ssn+s*ccs-sn*c)+cs*s;
    res=sn+cor;
    cor=(sn-res)+cor;
    return (res==res+1.025*cor)? res : slow1(x);
```

The code computes an approximation $res+cor\ of\ sin\ x$, where res=0.24957989804940914, cor=-1.3444106938820255e-17. It then uses the test res==res+1.025*cor

to check whether the correctly rounded result is res. This test is using a standard trick, described for example in [1, Listing 3.11]: if A+B is an approximation of some (unknown) value y with relative error less than δ , with A, B two double-precision values, with $|B| \leq \frac{1}{2} \mathrm{ulp}(A)$, and if $e = 1 + \delta \cdot 2^{55}$, if A = A + B * e (when computed with rounding to nearest), then A is the correct rounding of y.

The value e=1.025 used in the test above suggests the bound $\delta=0.025 \cdot 2^{-55} \approx 0.69 \cdot 10^{-18}$ for the relative error in the approximation $\operatorname{res} + \operatorname{cor}$ of $\sin x$. However, the relative error is larger, since it is about $0.24 \cdot 10^{-17}$.

2 Bug fix

To fix the bug, we need to provide a rigorous error analysis of the relative error in the approximation $\operatorname{res} + \operatorname{cor}$, which is valid for every input 0.25 < |x| < 0.855469. We assume x > 0, since the code uses the fact that $\sin(-x) = -\sin x$. The constant $\operatorname{big.x}$ equals $3 \cdot 2^{44}$, so that after the line

```
u.x=(m>0)?big.x+x:big.x-x;
```

we have $\operatorname{ulp}(u) = 2^{-7}$. This is a standard trick to select the bits of x of weight ≥ -7 . After

```
y=(m>0)?x-(u.x-big.x):x+(u.x-big.x);
```

we have x=(u-big)+y, with $|y|\leq 2^{-8}$. Now we round xx=y*y, with xx $\leq 2^{-16}$ and $\text{err}(xx)\leq 2^{-70}$. The next line computes an approximation of $\sin y$,

```
s = y + y*xx*(sn3 +xx*sn5);
```

where $\mathtt{sn3} = -0.166666666666666488$ and $\mathtt{sn5} = 0.0083333321428572232$ are approximations of -1/6 and 1/120. The maximal absolute error between $\sin y$ and $y + y^3 \mathtt{sn3} + y^5 \mathtt{sn5}$ is $\leq 2^{-68.930}$ for $|y| \leq 2^{-8}$. Now consider the rounding errors:

value	bound	error bound
XX	2^{-16}	2^{-70}
xx*sn5	2^{-22}	2^{-75}
sn3+xx*sn5	2^{-2}	$2^{-55.999}$
y*xx	2^{-24}	2^{-77}
y*xx*(sn3+xx*sn5)	2^{-26}	$2^{-78.414}$
y+y*xx*(sn3+xx*sn5)	2^{-8}	$2^{-61.999}$

Taking into account the above mathematical error, this gives a maximal error of $2^{-68.930} + 2^{-61.999} \le 2^{-61.987}$ between s and $\sin y$.

Similarly, we approximate $1 - \cos y$:

```
c = xx*(cs2 + xx*(cs4 + xx*cs6));
```

with cs2 = 1/2, cs4 = -0.04166666666666442, cs6 = 0.0013888887400793761. The mathematical error $y^2cs2 + y^4cs4 + y^6cs6 - (1-cosy)$ is bounded by $2^{-79.930}$ for $|y| \le 2^{-8}$. We bound the rounding error as above:

value	bound	error bound
xx	2^{-16}	2^{-70}
xx*cs6	2^{-25}	2^{-78}
cs4+xx*cs6	2^{-4}	$2^{-57.999}$
xx*(cs4+xx*cs6)	2^{-20}	$2^{-72.414}$
cs2+xx*(cs4+xx*cs6)	2^{-1}	$2^{-54.999}$
xx*(cs2+xx*(cs4+xx*cs6))	2^{-17}	$2^{-69.414}$

thus the maximal absolute error between c and $1-\cos y$ is $2^{-79.930}+2^{-69.414}\leq 2^{-69.413}$.

Now assume the tabulated sn + ssn value is a best-possible approximation of $\sin(u - big)$, and similarly for cs + ccs for $\cos(u - big)$. Thus the absolute error for each one is less than 2^{-108} . Assume here that sn and cs are exact, and ssn and cs are wrong by at most 2^{-108} . Then we have:

$$\sin x = \sin(u - \text{big}) - \sin(u - \text{big})(1 - \cos y) + \cos(u - \text{big})\sin y$$

 $\approx \text{sn} + \text{ssn} - \text{sn} \cdot c + \text{cs} \cdot s + \text{ccs} \cdot s.$

value	bound	error bound
s*ccs	2^{-62}	$2^{-114.414}$
ssn+s*ccs	2^{-53}	$2^{-106.409}$
sn*c	2^{-17}	$2^{-68.999}$
ssn+s*ccs-sn*c	2^{-16}	$2^{-68.414}$
cs*s	2^{-8}	$2^{-60.999}$
(ssn+s*ccs-sn*c)+cs*s	2^{-8}	$2^{-60.408}$

The last two instructions leave the sum res + cor unchanged:

```
res=sn+cor;
cor=(sn-res)+cor;
```

thus the final absolute error is bounded by $2^{-60.408}$, and the relative error is bounded by $2^{-60.408}/\sin(0.25) \le \delta = 2^{-58.392}$. This yields a bound $e = 1 + \delta \cdot 2^{55} \le 1.096$. Thus changing the line:

```
return (res==res+1.025*cor)? res : slow1(x);
```

into:

```
return (res==res+1.096*cor)? res : slow1(x);
```

will provide a correctly-rounding routine, assuming slow1 performs correct rounding.

Note: the absolute error on res + cor comes mainly from the rounding error on (ssn+s*ccs-sn*c)+cs*s, which counts for 2^{-62} , on the rounding error on

cs*s, which counts for 2^{-62} too, and cs times the rounding error on s, which counts for $2^{-61.999}$. We can slightly improve the bound by using the fact that cs $\leq \cos(0.25)$, which gives $2^{-60.424}$ for the error bound, and 1.095 for the constant factor. However, since those three errors are independent, it seems difficult to improve much more.

References

- [1] Defour, D. Fonctions élémentaires: algorithmes et implémentations efficaces pour l'arrondi correct en double précision. PhD thesis, École Normale Supérieure de Lyon, 2003.
- [2] IEEE standard for floating-point arithmetic, 2008. Revision of ANSI-IEEE Standard 754-1985, approved June 12, 2008: IEEE Standards Board.